7 research outputs found

    Next generation space robot

    Get PDF
    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies

    Task oriented nonlinear control laws for telerobotic assembly operations

    Get PDF
    The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented

    Concept development of a tendon arm manipulator and anthropomorphic robotic hand

    Get PDF
    AMETEK/ORED inhouse research and development efforts leading toward a next-generation robotic manipulator arm and end-effector technology is summarized. Manipulator arm development has been directed toward a multiple-degree-of-freedom, flexible, tendon-driven concept referred to here as a Tendon Arm Manipulator (TAM). End-effector development has been directed toward a three-fingered, dextrous, tendon-driven, anthropomorphic configuration which is referred to as an Anthropomorphic Robotic Hand (ARH). Key technology issues are identified for both concepts

    Tele-Autonomous control involving contact

    Get PDF
    Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed

    University of Maryland walking robot: A design project for undergraduate students

    Get PDF
    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars

    Telerobotic Sensor-based Tool Control Derived From Behavior-based Robotics Concepts

    Get PDF
    @font-face { font-family: TimesNewRoman ; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: Times New Roman ; }div.Section1 { page: Section1; } Teleoperated task execution for hazardous environments is slow and requires highly skilled operators. Attempts to implement telerobotic assists to improve efficiency have been demonstrated in constrained laboratory environments but are not being used in the field because they are not appropriate for use on actual remote systems operating in complex unstructured environments using typical operators. This work describes a methodology for combining select concepts from behavior-based systems with telerobotic tool control in a way that is compatible with existing manipulator architectures used by remote systems typical to operations in hazardous environment. The purpose of the approach is to minimize the task instance modeling in favor of a priori task type models while using sensor information to register the task type model to the task instance. The concept was demonstrated for two tools useful to decontamination & dismantlement type operations鈥攁 reciprocating saw and a powered socket tool. The experimental results demonstrated that the approach works to facilitate traded control telerobotic tooling execution by enabling difficult tasks and by limiting tool damage. The role of the tools and tasks as drivers to the telerobotic implementation was better understood in the need for thorough task decomposition and the discovery and examination of the tool process signature. The contributions of this work include: (1) the exploration and evaluation of select features of behavior-based robotics to create a new methodology for integrating telerobotic tool control with positional teleoperation in the execution of complex tool-centric remote tasks, (2) the simplification of task decomposition and the implementation of sensor-based tool control in such a way that eliminates the need for the creation of a task instance model for telerobotic task execution, and (3) the discovery, demonstrated use, and documentation of characteristic tool process signatures that have general value in the investigation of other tool control, tool maintenance, and tool development strategies above and beyond the benefit sustained for the methodology described in this work

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center
    corecore