474 research outputs found

    Design Issues and Challenges of File Systems for Flash Memories

    Get PDF
    This chapter discusses how to properly address the issues of using NAND flash memories as mass-memory devices from the native file system standpoint. We hope that the ideas and the solutions proposed in this chapter will be a valuable starting point for designers of NAND flash-based mass-memory devices

    EDACs and test integration strategies for NAND flash memories

    Get PDF
    Mission-critical applications usually presents several critical issues: the required level of dependability of the whole mission always implies to address different and contrasting dimensions and to evaluate the tradeoffs among them. A mass-memory device is always needed in all mission-critical applications: NAND flash-memories could be used for this goal. Error Detection And Correction (EDAC) techniques are needed to improve dependability of flash-memory devices. However also testing strategies need to be explored in order to provide highly dependable systems. Integrating these two main aspects results in providing a fault-tolerant mass-memory device, but no systematic approach has so far been proposed to consider them as a whole. As a consequence a novel strategy integrating a particular code-based design environment with newly selected testing strategies is presented in this pape

    Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L2 and L1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.Peer reviewe

    Ef3S: An evaluation framework for flash-based systems

    Get PDF
    NAND Flash memories are gaining popularity in the development of electronic embedded systems for both consumer and mission-critical applications. NAND Flashes crucially influence computing systems development and performances. EF3S, a framework to easily assess NAND Flash based memory systems performances (reliability, throughput, power), is presented. The framework is based on a simulation engine and a running environment which enable developers to assess any application impact. Experimental results show functionality of the framework, analysing several performance-reliability tradeoffs of an illustrative syste

    Flash-memories in Space Applications: Trends and Challenges

    Get PDF
    Nowadays space applications are provided with a processing power absolutely overcoming the one available just a few years ago. Typical mission-critical space system applications include also the issue of solid-state recorder(s). Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawbacks. A solid-state recorder for space applications should satisfy many different constraints especially because of the issues related to radiations: proper countermeasures are needed, together with EDAC and testing techniques in order to improve the dependability of the whole system. Different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid- state recorder. In particular, we shall explore the most important flash-memory design dimensions and trade-offs to tackle during the design of flash-based hard disks for space application

    Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers

    Get PDF
    NAND flash memories are becoming the predominant technology in the implementation of mass storage systems for both embedded and high-performance applications. However, when considering data and code storage in non-volatile memories (NVMs), such as NAND flash memories, reliability and performance be- come a serious concern for systems' designer. Designing NAND flash based systems based on worst-case scenarios leads to waste of resources in terms of performance, power consumption, and storage capacity. This is clearly in contrast with the request for run-time reconfigurability, adaptivity, and resource optimiza- tion in nowadays computing systems. There is a clear trend toward supporting differentiated access modes in flash memory controllers, each one setting a differentiated trade-off point in the performance-reliability optimization space. This is supported by the possibility of tuning the NAND flash memory performance, reli- ability and power consumption acting on several tuning knobs such as the flash programming algorithm and the flash error correcting code. However, to successfully exploit these degrees of freedom, it is mandatory to clearly understand the effect the combined tuning of these parameters have on the full NVM sub-system. This paper performs a comprehensive quantitative analysis of the benefits provided by the run-time reconfigurability of an MLC NAND flash controller through the combined effect of an adaptable memory programming circuitry coupled with run-time adaptation of the ECC correction capability. The full non- volatile memory (NVM) sub-system is taken into account, starting from the characterization of the low level circuitry to the effect of the adaptation on a wide set of realistic benchmarks in order to provide the readers a clear figure of the benefit this combined adaptation would provide at the system leve
    corecore