
Politecnico di Torino

Porto Institutional Repository

[Proceeding] Ef3S: An evaluation framework for flash-based systems

Original Citation:
Di Carlo S.; Galfano S.; Indaco M.; Prinetto P. (2013). Ef3S: An evaluation framework for flash-
based systems. In: IEEE 19th International On-Line Testing Symposium (IOLTS), Crete, GR, 8-10
July, 2013. pp. 199-204

Availability:
This version is available at : http://porto.polito.it/2518963/ since: October 2013

Publisher:
IEEE

Published version:
DOI:10.1109/IOLTS.2013.6604079

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

http://porto.polito.it/2518963/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1109/IOLTS.2013.6604079
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2518963

EF3S: an Evaluation Framework For Flash-based
Systems

Di Carlo, S.; Galfano, S.; Indaco, M. and Prinetto, P.
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

Email: {stefano.dicarlo, salvatore.galfano, marco.indaco, paolo.prinetto}@polito.it

Abstract— NAND Flash memories are gaining popularity in
the development of electronic embedded systems for both con-
sumer and mission-critical applications. NAND Flashes crucially
influence computing systems development and performances.
EF3S, a framework to easily assess NAND Flash based memory
systems performances (reliability, throughput, power), is pre-
sented. The framework is based on a simulation engine and
a running environment which enable developers to assess any
application impact. Experimental results show functionality of
the framework, analysing several performance-reliability trade-
offs of an illustrative system.

I. INTRODUCTION

It is expected that the market of electronic embedded
systems, mainly fuelled by automotive, consumer electronics,
and industrial control systems, will double in size over the next
two years, reaching $158.6 billions by 2015 [1].

The non-volatile memory sub-system is a critical compo-
nent when designing an embedded system, mainly due to strict
requirements in terms of reliability, low power consumption,
low cost, very fast access, light weight, and long endurance.
Flash memories are today a consolidated technology, in terms
of non-volatility solutions, for embedded systems develop-
ment. They can replace power-hungry and unreliable hard disk
drives (HDDs) which are impractical in high mechanic shock
environments [2].

In the last decade, NAND flash technology faced a rapid
improvement, resulting in an outstanding scaling down of
the device physical structure up to 20-nm, and a significant
reduction of the cost per GB. This has been favoured by the
introduction of Double-level Cell (DLC) or Triple-level Cell
(TLC) technologies, which store two and three bits per cell,
respectively [3], [4]. However, due to the aggressive scaling
down of the cell size, current NAND flash memories suffer
from several reliability and endurance issues, which limit the
device lifetime to about 3k program/erase cycles [5].

In order to overcome this limitation, a variety of com-
bined approaches has been proposed. Error Correction Codes
(ECCs), as Bose Ray-Chaudhuri Hocquenghem (BCH) codes
[6], [7], [8] and Low-Density Parity-Check (LDPC) codes
[9], [10], are systematically applied. Thought ECCs prolong
device lifetime, they may be very complex [11], so their impact
on write/read latency cannot be neglected. Several techniques
for efficient Wear Leveling and Garbage Collection in the
Flash Translation Layer (FTL) have been also explored [12],
[13], [14]. FTL is typically implemented within specific Flash

File Systems. Wear Leveling and Garbage Collection act at a
higher level compared to ECCs. They can enhance the overall
performances and provide more robust flash devices but, at the
same time, they require additional computations to the system,
which penalize the throughput.

All entities related to the flash memory, i.e., ECC schemas,
FTL and the memory itself, constitute the so-called Non-
Volatile Memory (NVM) subsystem. Several design alternatives
are available to the designers for the implementation of each
of these components, and each design choice has a specific
impact on the characteristics of the NVM subsystem (e.g.,
performance, reliability, power consumption, etc.). Moreover,
proper design strategies are strictly application dependent. Sev-
eral trade-offs need to be investigated to best fit demanding ap-
plication requirements. Designing a cost-efficient flash-based
embedded system, and especially an application-specific one,
therefore requires a difficult evaluation and faithful exploration
of the enumerated design choices that requires the support of
a dedicated powerful and flexible design environment.

This paper presents EF3S (Evaluation Framework For
Flash-based System), an EDA tool which aims at supporting
the design of flash-based systems, targeting different kinds
of applications. EF3S offers the possibility of modeling: the
physical NAND device, the memory controller, the NAND
flash driver, the Flash File System (including wear leveling and
garbage collection), and the application workloads. It offers the
users a meaningful and synoptic vision (e.g., graphs, tables,
punctual metrics) of the features (reliability, throughput, and
other statistics) of the modeled NVM subsystem.

EF3S is designed for a Linux based environment featuring
a Flash File System (FFS), the Linux Memory Technology
Device (MTD) and operating system support for raw flash
management, including wear leveling and garbage collection.
While the current version is designed to work with the YAFFS2
[15] Flash File System, it is foreseen, in future versions of the
framework, to include additional choices such as UBIFS [16]
or JFFS2 [17]. The whole framework combines Linux scripts,
C programs and Matlab software modules. EF3S enables de-
signers to evaluate the NVM subsystem characteristics resort-
ing to both synthetic workloads and real traces automatically
extracted from real applications running in the environment.

Even thought more complex test-bed environments ba-
sically targeting Solid State Drives (SSDs) do exist (e.g.,
FlashSim [18]), the development of EF3S is pushed by the un-
availability of a simulation environment that specifically targets

199978-1-4799-0664-2/13/$31.00 c⃝2013 IEEE

flash-based embedded systems design. Differently from other
existing solutions, and, at the best of our knowledge, EF3S
is the first tool supporting raw flash based NVM subsystems
characterization using non-synthetic workloads.

The rest of this paper is organized as follows: Section II
explores the dimensions of the issues of designing a NVM
subsystem and overviews the main architectures and features of
EF3S. Experimental results from the application of EF3S on a
selected use case are reported in Section III. Finally, Section IV
concludes the paper proposing future improvements.

II. EF3S FRAMEWORK

Figure 1 shows the EF3S architecture. EF3S is designed to
run into a Linux box and comprises three main modules:

• the System Configurator, representing the interface
with the user; it is in charge of collecting different
design parameters in order to properly configure the
target NVM subsystem;

• the NVM Subsystem Software Stack, that exploits the
Linux kernel and file system stack to provide an execu-
tion environment for the target application workload in
which operations on the flash memory can be properly
profiled. The software characteristics of the target
system are among the most difficult parts to model
and usually significantly influence the overall system’s
behaviour. To precisely take all software layers into
account, the whole NVM Subsystem Software Stack is
set up in the Linux system hosting EF3S, configuring
it accordingly to the user inputs while the actual flash
memory is emulated;

• the Simulation Engine, that elaborates information
provided by the System Configurator and the NVM
Subsystem Software Stack, simulates the behavior of
the target flash memory, and finally outputs the de-
sired statistics. The output of the framework includes
information about throughput, power consumptions,
reliability, and aging of the considered system. To
assist users in design space exploration, combined
and synoptic views of the previous features are pro-
vided. This helps evaluating trade-offs between NVM
subsystem features in order to meet the demanding
requirements set by the target applications.

In the next section, the different modules composing EF3S
will be analyzed in detail.

A. System Configurator

Designing a NVM subsystem requires the investigation of
several design choices, whose characteristics must be specified
to EF3S in order to carry out the desired simulations. The
System Configurator is in charge of collecting these informa-
tion items. NVM characteristics can be classified into Hard-
ware Level and Software Level parameters. Going into more
details, Software Level design parameters include: the target
application and workload, the selected Flash File System, the
Wear Leveling algorithm, and the Garbage Collection strategy.
Similarly, Hardware Level parameters can be further classified
into flash memory device parameters, error correction schemas,

and memory interconnection system (i.e., bus). These design
choices fully characterize the NVM subsystem and can be
provided in input to the system configuration through a set
of dedicated configuration files. Some design choices have a
limited set of possible options, while others may be freely
configured by the user. The universe of the NVM subsystems
which can be evaluated by the framework is delimited by
all the possible configurations of the design choices. The
remainder of this section will detail each specific configuration
item available in EF3S.

The workload, i.e., the system application interaction with
the NVM subsystem, is one of the most critical elements to
properly customize a system to the requirement of specific
software applications. Two main parameters allow in EF3S to
configure the target workload:

• Workload Type. The user may select a set of in-
ternally generated workloads produced resorting to
the FileBench [19], [20] software suite, or employ a
custom workload generated profiling the execution of
a custom software application reflecting the specific
mission of the simulated system.

• Workload Running Time. It is the time for which the
workload is executed and profiled. It has to be large
enough to perform a significant amount of operations
on the system thus collecting enough information
about the system’s behavior.

Together with the workload, at Software Level the Sys-
tem Configurator also enables to select among the following
system’s design choices:

• Flash File System (FFS). The selected Flash File
System and its configuration parameters strongly af-
fect the NVM performance. EF3S is designed to
enable simulations using different Linux based Flash
Filesystems including YAFFS2 (Yet Another Flash
File System 2), UBIFS (UBI File System) [16] or
JFFS2 (Journaling Flash File System 2) [17] 1.

• Garbage Collection and Wear Leveling algorithms
can be switched among a selection of available strate-
gies that depend on the selected filesystem.

• Caches. In the NVM Subsystem Software Stack sev-
eral level of caches at the Virtual File System (VFS)
and Flash File System (FFS) level are used. These
caches can be enabled or disabled to reflect the desired
system configuration.

Software Level parameters are used by the System Config-
urator to properly instrument the NVM Subsystem Software
Stack. The System Configurator also manages the execution
of the chosen Workload, by executing and profiling it for the
chosen Running Time.

At the Hardware Level, EF3S enables the user to configure
the NVM subsystem acting on the flash memory, the ECC and
the flash interconnection type.

The target flash memory can be configured according to
the following parameters:

1In the current release YAFFS2 is the only available filesystem, integration
of UBIFS and JFFS2 is however under development

200 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

Fig. 1. EF3S Architecture

• Logical Parameters. Include page size, block size
(or pages per block), device partition size (or blocks
per partitions) and total size (or number of device
partitions).

• Operational Parameters, which may be found on the
device datasheet. Such parameters include:

◦ device clock frequency;
◦ read/program/erase elementary physical opera-

tions specifications (e.g., program verify algo-
rithm [21]);

◦ elementary operation timing and power con-
sumptions, with the possibility of defining time
or aging dependent values;

• Bare Memory Reliability Model to be used for
reliability status estimation of the memory. Raw Bit
Error Rate (RBER) may be assumed as a measure
of the reliability status of the bare flash memory.
RBER is the fraction of bits that contain incorrect
data before applying ECC [22]. An equation, corre-
lating the RBER with the aging of the memory (i.e.,
the program/erase cycles of each block), is typically
used to estimate the reliability status and to model
thus physical and circuit level reliability model of
the flash memory [7]. A possible choice is to use
JEDEC standard [23]. The user may provide (RBER;
program/erase cycles) couples, which will be automat-
ically interpolated to fit the JEDEC model equation,
or a completely new model equation.

All provided parameters may be time or memory aging
dependent and can be specified as piecewise defined functions.
This means that values are obtained from different functions,
each one defined on different sub-intervals delimited either
by program/erase cycles values or by time intervals (e.g.,
flash operation latencies strongly depend on the aging of the
memory). Piecewise cubic polynomials may be specified by
the user to accurately approximate them into the model.

Together with the target flash memory, the ECC subsys-
tem can be also fully configured according to the following
parameters:

• ECC family, chosen between BCH, LDPC, Reed
Solomon (RS)[24] and Product Codes[25];

• correction capability or target reliability, measured
as UBER (Uncorrectable Bit Error Rate) value, i.e.,
the error rate after applying ECC [22];

• message length, with the possibility to apply the code
to portions of a page;

• adaptability, i.e., a fixed correction capability ECC
schema versus a variable one can be chosen [21], [26];

• encoding/decoding latency and power consumptions
or implementation technology, in terms of technol-
ogy node used to synthesize the ECC, and possibly
running clock frequency upper limit.

BCH solution has been characterized using a cycle accurate
simulation of implemented codecs and offers higher flexibility,
while other ECC families configuration relies on data extracted
from literature. Further configurations will be characterized in
following developments of EF3S.

Finally, the Interconnection System is characterized by the
Flash Interconnection Type with the rest of the system, i.e.,
the particular topology of interconnection and protocol.

B. NVM Subsystem Software Stack

The NVM Subsystem Software Stack comprises the basic
Linux software modules required to deal with flash based
storage systems: VFS, FFS and MTD.

The VFS role is to hide the specific Flash File System
to the application thus offering a standard set of functions
to the application. The Flash File System, is the core of the
NVM Subsystem Software Stack in which stored information

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 201

consistency is granted. The Flash File System usually embeds
specific Wear Leveling and Garbage Collection. Finally the
MTD [27] is a driver, which provides a uniform interface to
different (raw) flash chips. The MTD, if properly instrumented,
emulates the presence of a raw NAND flash chip, providing
thus the capability to run the NVM Subsystem Software Stack
within the hosting Linux system, even when no physical
memory devices are available.

In EF3S, all elements of the NVM Subsystem Software
Stack are configured and instrumented according to the con-
figuration parameters provided to the System Configurator. In
particular, the Flash File System is instrumented to produce a
log file of all flash operations required by the target application
workload. This log file is pivotal to analyze the system’s
behavior and provide output statistics.

C. Simulation Engine

The Simulation Engine is responsible for simulating the
configured NVM subsystem.

The Filter Set is the main interface of the simulation
engine with the NVM Subsystem Software Stack. It contains a
set of filters, based on regular expressions, which are applied
to the log file produced by the Flash File System and the Linux
Kernel during the execution of the target application. The log
file contains a huge amount of negligible information (e.g.,
information about the mounting of the flash memory, pointers
to read/written data) that must be properly filtered before per-
forming the required simulation. Moreover, several information
items in the log that are written in a human readable way
and must be removed. After filtering, a sequence of operations
(hereinafter referred to as operation trace) is produced. Each
operation is described according to the following formal:

⟨time⟩ ⟨r/w (/e)⟩ ⟨page (/block) address⟩

where: ⟨time⟩ is the time when the operation was issued;
⟨r/w (/e)⟩ represents the operation type (r stands for read,
w for write, e for erase); ⟨page (/block) address⟩ is the
operation target page or block address.

The Model Interface acts as an interface between the
System Configurator and the Simulation Environment. It elabo-
rates the hardware specific configuration parameters in order to
setup the simulation of the computed operation traces. In par-
ticular, this module evaluates the piecewise functions defining
the Flash Operational Parameters: the right subinterval is iden-
tified and expressions are evaluated. The model interface also
evaluates the reliability model equations. Finally, the Model
Interface module sets the ECC characteristics and correction
capability required to satisfy specifications and computes the
ECC run-time parameters such as encoding/decoding latencies
and power, resorting to previously characterized ECC schema.

Simulation Environment is the core module of the sim-
ulation engine. Here all data are combined. The operations to
simulate are read from the operation trace. Each operation is
emulated using the parameters that are concurrently updated
by the Model Interface, according to the status of the simulated
flash memory. At the same time, the Simulator Environment
estimates and collects the relevant NVM subsystem features
(e.g., average operation latency and throughput, average power
and energy per operation, and aging of the pages) that are then

collected and provided in output. Of course, produced output
accuracy stems from the input models and data accuracy.
The Statistics Extractor works in parallel to the Simulation
Environment. By solely analyzing the input operation traces,
this module extracts statistics about the Flash memory utiliza-
tion, like number of read, write or erase operations per page
or block, write/read intensity (ratio between read and write
operations) and total number of operations.

Finally, the Output Renderer manages the data produced
by the Simulator Environment and the Statistics Extractor,
to offer a meaningful and synoptic vision of the reliability,
performance and behavior of the simulated system. Primary
outputs of the performed analysis are are Throughput, Power
Consumptions, Reliability, and Aging. Rendered data, instead,
include graphs and tables. Several interesting aspects/relations
have been selected to be displayed, to better show the trade-
offs involved in the design field:

• UBER vs. program/erase cycles;

• average latency or average read, write or application
throughput or average power or average energy per
operation vs. program/erase cycles;

• UBER vs. average latency or average read, write or
application throughput or average power or average
energy per operation;

• Aging vs. block address.

III. EXPERIMENTAL RESULTS

In order to prove its effectiveness, EF3S has been used to
analyze a case study in which the impact of run-time ECC
adaptation on the NVM performance and reliability must be
evaluated. A NVM subsystem with fixed correction capabil-
ity ECC is compared with one having a variable correction
capability ECC.

A. Experimental Setup

In order to obtain the desired comparison, the framework
has been used with two different configurations, differing in the
ECC adaptivity setting. All remaining parameters have been
configured in the same way, and two framework runs have
been performed.

We used an internally generated workload based on
FileBench benchmark behaviour emulating a Video Server,
simulating the system for a Running Time of 10 minutes.
The simulated system exploits YAFFS2 as FFS. Both VFS
and YAFFS2 caches have been disabled.

We emulated a NAND Flash memory (with one parti-
tion), having 8192 blocks of 64 pages, with a page size of
4 kB. Its timings and power consumptions are summarized
in Table I and are referred to a standard ISPP programming
algorithm [21].

TABLE I. NAND FLASH MEMORY SPECIFICATIONS

Operation Timing (Average) Power
Read 75µs 40mW

Program 680µs 813mW
Erase 3ms 813mW

202 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

The reliability model used to evaluate the RBER is the
default one, i.e.:

RBER(peCycles) = A · peCyclesB + C (1)

where A, B and C were obtained by fitting the equation
towards RBER values provided by the factory, and peCycles
are the program/erase cycles experienced by the page. Model
was fitted to actual measures of RBER of a real memory chip
(of the same kind of the emulated one) across its life.

For both system configurations a target UBER of 10−11

was set and a BCH code was applied to an entire page
of the flash. For the fixed ECC schema configuration, the
correction capability, t, was automatically set to meet the target
UBER constraint even in the worst case, i.e., at the end of
memory life (100k program/erase cycles). For the adaptable
ECC schema, correction capability was instead chosen at every
step of the memory life according to the punctual RBER
estimation. Characterized default ECC schema were already
implemented [21] and characterized considering a STM-45nm
[28] Synopsys technology library and the ECC to be running
at 100MHz clock frequency.

All simulations have been performed on a workstation
equipped with an Intel Core i5 460m CPU, with 1GB RAM
running Ubuntu 10.4 operating system.

B. Outputs Demonstration and Comparison

The Video Server behaves as a read intensive application,
i.e., the number of read operations prevails over the number
of write operations (with a ratio of 1084.70). During 10
minutes, 457,138 read, 42,410 write, and 6 erase operations
were performed.

Figure 2 compares the ultimate reliability (UBER) be-
haviour of the two solutions. Clearly, adaptable ECC solution
follows more closely the target UBER, while fixed ECC
solution overkills it.

Fig. 2. UBER vs. program erase cycles

Figure 3 clearly shows the throughput advantages of adapt-
able ECC w.r.t. a fixed ECC schema. Figure 4 depicts the
energy per operation trends across memory life, showing also
power consumptions advantages of the adaptable solution.

Fig. 3. Throughput

Fig. 4. Energy per Operation

Figure 5 represents a snapshot of the wear-out, i.e., pro-
gram/erase (PE) cycles, of each flash memory block during
the workload running time: used blocks are quite evenly
distributed.

Fig. 5. Wear-out snapshot

C. Framework performance

The framework was developed considering to be as lightest
as possible. Engine is the core of the computations. Trace
filtering is the most data intensive operation. Such an elabora-
tion, for a 10 minutes profiled trace of the above experiment,
originates an output trace file of about 10 MB (it depends on
the profiled application activity). For the rest of the engine

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 203

computations, instead, marginal time (less than one second)
and memory resources (4MB) are employed.

IV. CONCLUSION

This paper presented EF3S, an easy-to-use, highly con-
figurable, and modular framework to assess a NAND flash
based NVM subsystem performance (reliability, throughput,
power, aging). The main architecture and characteristics of
the framework have been presented and its application on a
selected case study has been provided in order to show its
effectiveness and the information the tool may provide.

EF3S is continuously under development. Extended support
for other several Flash File Systems is underway. Moreover,
in its current release, the EF3S is not aware of the specific
data being stored in the flash memory. Adding data-awareness
will enable to derive further insights about reliability and
performances data dependency.

EF3S is available for research purposes to interested readers
and can be downloaded at http://www.testgroup.polito.it/index.
php/component/k2/item/204-ef3s .

REFERENCES

[1] M. King, “Embedded systems market to
experience CAGR of 72013. [Online]. Available:
http://www.companiesandmarkets.com/News/Information-Technology/
Embedded-systems-market-to-experience-CAGR-of-7/NI3284

[2] M. Jedrak, “NAND flash memory in embedded systems,” Accessed,
Feb 2013. [Online]. Available: http://www.design-reuse.com/articles/
24503/nand-flash-memory-embedded-systems.html

[3] G. Marotta, A. Macerola, A. D’Alessandro, A. Torsi, C. Cerafogli,
C. Lattaro, C. Musilli, D. Rivers, E. Sirizotti, F. Paolini, G. Imondi,
G. Naso, G. Santin, L. Botticchio, L. De Santis, L. Pilolli, M. Gallese,
M. Incarnati, M. Tiburzi, P. Conenna, S. Perugini, V. Moschiano,
W. Di Francesco, M. Goldman, C. Haid, D. Di Cicco, D. Orlandi,
F. Rori, M. Rossini, T. Vali, R. Ghodsi, and F. Roohparvar, “A 3bit/cell
32Gb NAND flash memory at 34nm with 6MB/s program throughput
and with dynamic 2b/cell blocks configuration mode for a program
throughput increase up to 13MB/s,” in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2010 IEEE International, feb.
2010, pp. 444 –445.

[4] T. Futatsuyama, N. Fujita, N. Tokiwa, Y. Shindo, T. Edahiro, T. Kamei,
H. Nasu, M. Iwai, K. Kato, Y. Fukuda, N. Kanagawa, N. Abiko,
M. Matsumoto, T. Himeno, T. Hashimoto, Y.-C. Liu, H. Chibvongodze,
T. Hori, M. Sakai, H. Ding, Y. Takeuchi, H. Shiga, N. Kajimura,
Y. Kajitani, K. Sakurai, K. Yanagidaira, T. Suzuki, Y. Namiki, T. Fu-
jimura, M. Mui, H. Nguyen, S. Lee, A. Mak, J. Lutze, T. Maruyama,
T. Watanabe, T. Hara, and S. Ohshima, “A 113mm2 32Gb 3b/cell
NAND flash memory,” in Solid-State Circuits Conference - Digest of
Technical Papers, 2009. ISSCC 2009. IEEE International, feb. 2009,
pp. 242 –243.

[5] Z. Wang, M. Karpovsky, and A. Joshi, “Nonlinear multi-error correction
codes for reliable MLC NAND flash memories,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 20, no. 7, pp.
1221 –1234, july 2012.

[6] H. Choi, W. Liu, and W. Sung, “VLSI implementation of BCH error
correction for multilevel cell NAND flash memory,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 843–847,
2010.

[7] R. Micheloni, A. Marelli, and R. Ravasio, Error Correction Codes for
Non-Volatile Memories. Springer Publishing Company, 2008.

[8] M. Caramia, M. Fabiano, A. Miele, R. Piazza, and P. Prinetto, “Auto-
mated synthesis of EDACs for FLASH memories with user-selectable
correction capability,” Proceedings of IEEE International High Level
Design Validation and Test Workshop (HLDVT), pp. 113 –120, june
2010.

[9] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in nand flash memory,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 58, no. 2, pp. 429 –439, feb. 2011.

[10] J. Kim, J. Cho, and W. Sung, “A high-speed layered min-sum LDPC
decoder for error correction of NAND flash memories,” in Circuits and
Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium
on, aug. 2011, pp. 1 –4.

[11] S. Di Carlo, M. Fabiano, R. Piazza, and P. Prinetto, “EDACs and
test integration strategies for NAND flash memories,” in Design Test
Symposium (EWDTS), 2010 East-West, 2010, pp. 218–221.

[12] S. Di Carlo, M. Fabiano, P. Prinetto, and M. Cramia, Design Issues and
Challenges of File Systems for Flash Memories. InTech, 2011, ch. 1,
pp. 3–30.

[13] S. Mylavarapu, S. Choudhuri, A. Shrivastava, J. Lee, and T. Givargis,
“FSAF: File system aware flash translation layer for NAND flash mem-
ories,” in Design, Automation Test in Europe Conference Exhibition,
2009. DATE ’09., april 2009, pp. 399 –404.

[14] M.-L. Chiao and D.-W. Chang, “ROSE: A novel flash translation
layer for NAND flash memory based on hybrid address translation,”
Computers, IEEE Transactions on, vol. 60, no. 6, pp. 753 –766, june
2011.

[15] “YAFFS: A Flash file system for embedded use,” Accessed, Feb 2013.
[Online]. Available: http://www.yaffs.net/

[16] “UBIFS - UBI File-System,” Accessed, Feb 2013. [Online]. Available:
http://www.linux-mtd.infradead.org/doc/ubifs.html

[17] “JFFS: The Journalling Flash File System,” Accessed, Feb 2013.
[Online]. Available: http://linux-mtd.infradead.org/∼dwmw2/jffs2.pdf

[18] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashSim: A simu-
lator for NAND flash-based solid-state drives,” in Advances in System
Simulation, 2009. SIMUL ’09. First International Conference on, sept.
2009, pp. 125 –131.

[19] “Filebench,” web available resource - http://sourceforge.net/apps/
mediawiki/filebench/index.php?title=Filebench, 2012.

[20] Wilson, “The new and improved filebench,” in File and Storage
Technologies (FAST), 2008. 6th USENIX Conference on, 2008.

[21] C. Zambelli, M. Indaco, M. Fabiano, S. Di Carlo, P. Prinetto,
P. Olivo, and D. Bertozzi, “A cross-layer approach for new reliability-
performance trade-offs in MLC NAND flash memories,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, march
2012, pp. 881 –886.

[22] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill, “Bit error rate in NAND flash
memories,” in Reliability Physics Symposium, 2008. IRPS 2008. IEEE
International, 27 2008-may 1 2008, pp. 9 –19.

[23] JEP122G, “Failure mechanisms and models for semiconductor devices,”
JEDEC Solid State Technology Association, Tech. Rep., 2011.

[24] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level
NAND flash memory using reed-solomon codes,” in Signal Processing
Systems, 2008. SiPS 2008. IEEE Workshop on. IEEE, 2008, pp. 94–99.

[25] C. Yang, Y. Emre, C. Chakrabarti, and T. Mudge, “Flexible product
code-based ECC schemes for MLC NAND flash memories,” in Signal
Processing Systems (SiPS), 2011 IEEE Workshop on, 2011, pp. 255–
260.

[26] M. Fabiano, M. Indaco, S. Di Carlo, and P. Prinetto, “Design and opti-
mization of adaptable BCH codecs for NAND flash memories,” Micro-
processors and Microsystems: Embedded Hardware Design (MICPRO),
In Press, 2013.

[27] “Linux Memory Technology Devices,” Accessed, Feb 2013. [Online].
Available: http://www.linux-mtd.infradead.org/index.html

[28] “CMP project,” web available resource - http://cmp.imag.fr/, 2012.

204 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

