
Automated synthesis of EDACs for FLASH
Memories with User-Selectable

Correction Capability

Maurizio CARAMIA(+), Michele FABIANO(∗), Andrea MIELE(∗), Roberto PIAZZA(∗), Paolo PRINETTO(∗)

(+)
Thales Alenia Space Italia

Command Control & Data Handling

(*)
Politecnico di Torino

Dipartimento di Automatica ed Informatica (DAUIN)
-

{Maurizio.Caramia}thalesaleniaspace.com
-

{Michele.Fabiano, Andrea.Miele, Paolo.Prinetto}@polito.it
{Roberto.Piazza}@studenti.polito.it

Abstract—Tackling the design of a mission-critical system is
a rather complex task: different and quite often contrasting
dimensions need to be explored and the related trade-offs need
to be evaluated. Designing a mass-memory device is one of the
typical issues of mission-critical applications: the whole system
is expected to accomplish a high level of dependability which
highly relies on the dependability provided by the mass-memory
device itself. NAND flash-memories could be used for this goal:
in fact on the one hand they are nonvolatile, shock-resistant
and powereconomic but on the other hand they have several
drawbacks (e.g., higher cost and number of erasure cycles
bounded). Error Detection And Correction (EDAC) techniques
could be exploited to improve dependability of flash-memory
devices: in particular binary Bose and Ray-Chaudhuri (BCH)
codes are a well known correcting code technique for NAND
flash-memories. In spite of the importance of error correction
capability several other equally critical dimensions need to be
explored during the design of binary BCH codes for a flash-
memory based mass-memory device. No systematic approach
has so far been proposed to consider them all as a whole: as
a consequence a novel design environment with a user-selectable
error correction capability is aimed at supporting the design
of binary BCH codes for a flash-memory based mass-memory
device.

I. INTRODUCTION

The expected level of dependability of mission-critical
systems is always increasing: stricter requirements and more
severe constraints are contributing to expand and complicate
the whole design dimensions. In fact designing a mission-
critical system is a rather complex task: different and quite
often contrasting dimensions need to be explored and the
related trade-offs need to be evaluated.

Designing a mass-memory device is one of the typical issues
of mission-critical applications (e.g., for space applications
[7]): the whole system is expected to accomplish a high
level of dependability which highly relies on the dependability
provided by the mass-memory device itself.

NAND flash-memories could be used for this goal: in fact
NAND flash-memory based systems are gaining acceptance

and usage not only in the consumer market but in mission-
critical applications, as well, where they mainly play the role
of high-capacity storage devices.

On the one hand flash-memories guarantee both the non-
volatility in case of power loss and a highest storage density
as well as they are shock-resistant and power-economic, but on
the other hand they have several drawbacks [11] (e.g., higher
cost and number of erasure cycles bounded). As a result,
designing flash-based systems for mission-critical application
requires both exploring a huge number of design dimensions
and evaluating a huge amount of tradeoffs among all such
dimensions [6].

Error Detection And Correction (EDAC) is respectively the
ability to detect the presence of errors and to correct them:
EDAC techniques could be exploited to improve the depend-
ability of flash-memory devices. Designers should evaluate the
most proper choice for their design, addressing many issues:
the most significant ones include evaluating the type of code
to adopt, choosing the number of bits needed for that code
(i.e., for accomplishing the requested level of dependability)
and addressing where that code has to be stored.

Binary Bose and Ray-Chaudhuri (BCH) codes [1], [10], [15]
are a well known correcting code technique for NAND flash-
memories. In general error correction capability is defined
as the number of errors that a particular error correcting
code (ECC) is able to correct: this is usually fixed by the
requirements of the mission and is intuitively strongly linked
to the computational power required to accomplish it (i.e., a
higher error correction capability turns out in a more complex
design). A user-selectable error correction capability would be
the right tradeoff between the complexity and the requested
level of dependability of the design: in fact the EDAC design
would dynamically adapt to the current state of the mission-
critical mass-memory device.

In spite of the importance of error correction capability
several other equally critical dimensions need to be explored



during the design of binary BCH codes for a flash-memory
based mass-memory device. No systematic approach has so
far been proposed to consider them all as a whole.

This paper presents the architecture of a novel design
environment aimed at supporting the design of binary BCH
codes for a flash-memory based mass-memory device with
a user-selectable error correction capability. The project is
mainly pushed by the unavailability, at our best knowledge, of
a commercial tool capable of supporting a systematic analysis
and exploration of the different possible alternatives with the
chance of exploiting the advantages of a user-selectable error
correction capability. Moreover this project is intended to be
integrated with our FLARE design environment [5].

The rest of the paper is organized as follows: Section II
addresses the main ideas related to the design of ECC, Section
III explains in detail which are the main motivations for this
work, focusing the attention also on the tradeoff between
efficiency and complexity, Section IV proposes a possible
architecture for a design environment aimed at supporting
the design of binary BCH codes for a flash-memory based
mass-memory device with a user-selectable error correction
capability, while Section VI deals with a particular case study
and presents the related experimental results.

II. ERROR CORRECTING CODE DESIGN

EDAC techniques are able to improve the dependability of
flash-based device. Flash-memories presents several critical
issues [4], [11] and the mission environment could strongly
affects the design of a flash-based mass-memory device (e.g.,
space environment presents various issues especially because
of radiations [6]): designing an ECC implies also to take care
about all these issues.

Addressing the main basic code principles is absolutely
needed: in order to accomplish this task, we will refer to linear
ECC and, in particular, to binary BCH codes [13], [15]. This
choice let us to be general and practical at the same time: in
fact BCH codes presents both a design flow basically identical
to the more general linear codes design flow and are practically
adopted for on-chip error correcting [13]. Figure 3 resumes the
BCH codes design flow.

Other linear ECC are represented by Hamming codes and
Reed Solomon: several ECC algorithms for error checking and
correction of NAND flash were proposed, based on Hamming
codes or on Reed-Solomon codes [8], [16], [19] but are not
addressed in the sequel of the paper.

A. Principles of error correcting codes
In spite of the several possible implementations of a partic-

ular ECC (e.g., BCH codes), the basic principle of all possible

Figure 1. General Encoding/Decoding structure for Flash-memories

Figure 2. Codewords Space

ECCs is fairly simple. Assuming data as strings of k bits in
the binary domain, ECC algorithms first:

• consider a data string j1 of k bits;
• convert (i.e., encode) these k bits in a new string (i.e.,

codeword) of n bits, with n > k ;

Thus encoding operation is a one to one transformation that
maps each k bits data to a n bits codeword.

Finally the codeword (i.e., n bits) is stored in the memory:
all the possible error sources of the physical system can now
affect the stored codeword.

When a codeword is read out from the memory, ECC
algorithms:

• consider data of n bits;
• convert (i.e., decode) these n bits in a “new” string j2 of

k bits;

Thus decoding operation is intuitively dual to encoding one:
it performs a transformation that maps each n bits data to a k
bits codeword. At this point two data strings j1and j2 of k bits
each show up: a metric to determine the possible differences
(i.e., errors) between them is absolutely needed.

Figure 2 simply shows the codewords space. A distance
between two binary strings of the same length can be defined
as the number of different bits between them: the distance
(i.e., the number of different bits) between two strings is
defined as the Hamming distance d. Moreover the minimum
distance dmin of a code is the Hamming distance of the pair of
codewords with the smallest Hamming distance [3]. Different
ECC algorithms exist for different Hamming distance d:
intuitively they are able to guarantee a sort of a margin around
each codeword in terms of d. This margin is referred as the
error correction capability or t.

Therefore j1and j2would have a specific Hamming distance
d and these errors could be corrected according to the t of the
ECC algorithm used for the encoding and the decoding phases:
errors can be corrected if dmin ≥ 2t + 1 [10], otherwise in
most cases at least the presence of uncorrectable errors can be
detected.

Therefore knowing a priori the maximum number of errors
in a codeword the errors can be always corrected.



Figure 3. BCH Code Design Flow

To summarize, r = n − k check bits are added to the k
bits information data during the encoding phase (i.e., when
data is written), while the r check bits and the k data bits are
combined together in order to reconstruct the most probable
information data during the decoding phase (i.e., when data is
read): Figure 1 clearly depicts the two phases.

B. BCH Codes Design Flow

Figure 3 resumes the BCH codes design flow. Three main
functional steps compose the design flow: firstly there is an
initial phase of selection of the Design Requirements, which
are the inputs for the following Parameters Evaluation phase;
this second phase, in turn, evaluates and provides the inputs for
the final Code Characterization phase, after which the BCH
code is completely defined. Each step is going to be analyzed
in the sequel of this section.

1) Design Requirements: The first step of each BCH code
design flow is to define the mission-critical requirements: each
particular mission would present its own specific requirements
in terms of data length of information and of probability of
errors. In other words each ECC algorithm works on data of
fixed length (i.e., Data Length) and its correction capability
would be determined according to probabilistic studies.

Let k be the data length, r the check bits and n = k + r
the codeword length; let assume also r � k for simplicity
(i.e., n ≈ k). Finally let assume that each bit (i.e., the i-
th physical cell) of a stored codeword has a p probability
of error. Assuming a generic error correction capability t, a
system failure turns out when more than t errors occur: in fact
our system is able to correct up to t errors.

The probability of failure of at least w cells (i.e., at least w
errors) could be expressed in terms of the probability of error
pi of the i-th cell:

Pw/n =

n∑
i=w

(
n

i

)
pi (1− p)n−i (1)

where Equation 1 sums all the probabilities to have more than
w errors up to n errors, considering all the i-th cell (i.e., error)
with i = w,w + 1, ..., n. The probability to have at least one
error is expressed by w = 1: this probability simply is the
complement of the probability of having no errors in all the n
cells of the page. In fact it could be expressed by:

P1/n = 1− (1− p)n = Pe (2)

In order to characterize our code, the so called Bit Error
Rate (BER) has to be evaluated: in particular this parameter
could be split in an Input BER or BERinand an Output BER
or BERout, which are respectively the probability of error of
the i-th cell of the flash and the desired probability of failure
of the system. BERin can be simply expressed as:

BERin = p (3)

BERout is the probability of having more than t errors and
can be compute through Equation 1 as:

BERout = Pt+1/n =

n∑
i=t+1

(
n

i

)
pi (1− p)n−i ≈

≈
(

n

t+ 1

)
pt+1 (1− p)n−t−1 (4)

where let assume n · p � 1 in the last approximation of
Equation 4. Equation 4 is the direct link between BERin and
BERout: in fact Equation 4 let designers correctly choose
t according both to the required probability of failure (i.e.,
BERout) and to a rough estimation of p (i.e., BERin). [10]

E.g., let assume k = 214 = 16384bits = 2Kbytes : Figure
4 shows the resulting BERout = Pt+1/n of Equation 4 in
function of BERin = p (i.e., cell error probability) , with for
t = {0, 1, 5, 10, 15}.

In spite of the small difference among the different values
of the correction capability, Figure 4 shows the evident overall

Figure 4. BERout Vs BERin



Table I
SHORT BCH VS LONG BCH CODES

Short BCH Long BCH

Hardware Implementation Simple Complex

Resources Overhead Low High

Error correction capability Limited Range Wide Range

Code Efficiency Low High

Table II
BCH CODE PROPERTIES

Specified by zeroes α, α2, α3, ..., α2tof all the
codewords w(x)

Codewords Length n = 2m − 1

Information Symbols k = n− degree of the generator
polynomial g(x)

Minimum Distance d ≥ 2t− 1

Error Control Capability Corrects t errors

effect on the desired probability of failure (i.e., BERout).
Figure 4 will be exploited in Section II-B2 for choosing the
most suitable t according to the estimated BERin and the
desired BERout [10].

2) Parameters Evaluation: Let assume that the Data Length
k, the BERin and the desired BERout have been defined
according to the mission-critical dependability requirements.
The second step takes these inputs and performs two main
elaborations: the choices of the Error Correction Capability
t and of the Galois Field. While Error Correction Capability
has been addressed in Section II-A as the number of errors
the ECC algorithm is able to correct, Galois Fields have not
been discussed yet.

BCH codes are based on the abstract algebra and, in
particular, on Galois Fields [1]. Basically a Galois Field for a
specified m:

• contains 2m elements, defined as pm(x = α) = 0 ⇐⇒
αm = bm−1a

m−1 + bm−2a
m−2 + ...+ b0;

• all elements can be expressed as αi with
iε (0, ..., 2m − 2);

• always α2m−1 = 1 = α0;
• is closed respect addition and multiplication;

Each BCH code related to the specified Data Length needs a
particular Galois Field to be generated.[15] shows a relation
between codeword length (i.e., data length k and check bits r)
and the m of the Galois Field:

2q + r ≤ 2m − 1 (5)

E.g., let assume k = 2q = 214 = 16384bits = 2KBytes:
this implies a Galois Field with 2m = 215 = 32767 elements,
in order to satisfy Equation 6.

3) Code Characterization: Let assume, at this point, that
the Error Correction Capability has been evaluated and that
the Galois Field related to the data length has been generated.

The third final step simply takes these inputs and generates the
so called Minimal Polynomials ψ1(x), ψ2(x), ..., ψ2t(x) [1],
[15] : they fully characterize the BCH error correcting code
with respect to the defined inputs.

The set of Minimal Polynomials, in turns, defines the so
called Polynomial Generator g(x) of the BCH code [1], which
can be expressed as:

g (x) = LCM (ψ1 (x) , ψ2 (x) ..., ψ2t (x)) (6)

where LCM is the Least Common Multiple operator among
the 2t minimal polynomials defined above.

Several applications of BCH codes have been proposed
[9], [10], [13], [20]: Table II summarize the main BCH code
properties.

4) Code length Vs Code efficiency: All the design choices
could not be taken only with the ideas explained in Sections
II-B1,II-B2 and II-B3: addressing the practical implementation
of BCH codes is absolutely needed. Table I resumes the main
advantages and drawbacks of implementing a short or a long
BCH code: intuitively a shorter code is easier to implement,
less resource-consuming, but with a poor efficiency, while a
longer code is highly efficient, but more complex to imple-
ment and more resources-consuming. Table I shows the main
tradeoffs between short and long BCH codes [15].

III. MOTIVATIONS

In this section the motivations of this work are presented.
The target problem is the development of a real error cor-
rection system suitable for a NAND flash-memory based
mass-memory device. In particular, the goal is to devise a
powerful design environment for exploiting binary BCH codes:
this environment is strongly intended to be user-Selectable,
Automatic and Parametric.

Firstly it is intended to be fully user-selectable in terms
of error correction capability: this need is stricly related
to the disturbances [12], [17], [18] and to the reliability
characterization of flash-memories [4], [11] as well as to the
optimization of the overall performances of the whole system.
On the one hand Flash-based devices are subject to aging (i.e.,
the write/read operations cycling): due to this phenomenon,
after a certain number of cycles, the memory block becomes
rapidly fully unreliable and should be discarded. On the other
hand an important aspect of such a selectable rate correction
system is the possibility to trade-off run time performance (i.e.,
in terms of latency) versus reliability (in terms of correction
capability). Moreover the adaptivity of our solution can also
be exploited to allow the correction of both transient and
permanent faults [17].

Secondly our design environment is intended to be au-
tomatic and parametric at the same time: in particular an
automatic hardware generation tool has been developed to
tackle the high complexity of the BCH encoder and decoder.
In addition this tool is fully parametric: this feature allows the
exploration of the design space and the related tradeoffs.



Figure 5. High Level Composing Blocks of Encoder and Decoder

A powerful BCH-based pipelined solution has been pro-
posed in [9] and also [14] provides useful support for high-
level design, but they both provides no adaptability features.
The presented tool is intended not only to be fully selectable
in terms of correction capability but is also able to tune several
parameters related to the overall desired design: in particular
parameters could be considered as the ones discussed in Sub-
section II-B1 and previously showed in Figure 3. In addition
parameters that are strictly related to the hardware parallelism
need to be addressed: in spite of the presence of parameters
related both to the hardware and the software, most of them
concern the hardware blocks of the whole system.

IV. THE ADAGE DESIGN ENVIRONMENT

In this section the proposed ADaptive ECC Automatic GEn-
erator (ADAGE) design environment with a user-selectable
error correction capability is presented: ADAGE is aimed at
supporting the design of binary BCH codes for a flash-memory
based mass-memory device.

A. Overall Hardware Architecture

The general Figure 1 can be expanded in order to get a
more accurate overall hardware architecture.

Figure 5 shows the composing blocks of the Encoder in
Figure 1: it is mainly composed by a parallel controllable
LSFR [9], [15] and an Encoder Controller. The first is simply
a calculus machine receiving an input of k bits input and
producing an output of n bits, while the second manages a
set of control signals and controls the LFSR.

Figure 5 shows the composing blocks of the Decoder in
Figure 1: it is composed by a Syndrome Machine, a iBM
Machine [21], a Chien Search Machine [9], [15] and, finally,
a Decoder Controller. The first three machines perform all

Figure 6. High Level View ADAGE tool

Figure 7. Encoder Generator High Level View

the needed computations for the decoding, while the last one
schedules the operations and handles failure events.

B. Tool Architecture

Figure 6 shows the high-level view of ADAGE: ADAGE
takes the Design Requirements addressed in Section II-B1
as inputs and is able to automatically and parametrically
generate and connect all the blocks of the Adaptive BCH-
based correction system.

The general Figure 1 can be exploited to understand that
two main functional blocks are generated: the Encoder and
the Decoder.

1) Encoder Generation: Figure 7 shows the high-level view
of the Encoder Generator: it basically takes a set of Configu-
ration Parameters as inputs, elaborates them and automatically
provides a HW Encoder Description. The Encoder Generator
could produce different outputs, according to a particular set
of configuration parameters.

The set of parameters for the Encoder Generator is com-
posed by the following elements: the code length, the input
parallelism, tmin, tmax.

The code length affects the whole managing of the input
data stream in the encoder. The input parallelism obviously
matches with the parallelism of the hardware (i.e., a con-
trollable LFSR) needed in the encoder for producing the
codeword.

The tmax parameter is combined with the selected Galois
Field (i.e., the functional “BCH Manager” of Figure 3) and
affects the complexity (i.e., the number of internal flip-flops)
of the resulting generated encoder: in particular, assuming a
Galois Field of 2m elements, the complexity grows with m ·
tmax.

2) Decoder Generation: The high-level view of the De-
coder Generator is functionally identical to the one in Figure
7 of the encoder: it basically takes a set of Configuration
Parameters as inputs, elaborates them and automatically pro-
vides a HW Decoder Description. The Decoder Generator
could produce different outputs, according to a particular set
of configuration parameters.

The set of parameters for the Decoder Generator is com-
posed by the following elements: the code length, the input
parallelism, tmin, tmax and, in addition, the Chien Search Par-
allelism and the iBM Parallelism. The code length, the input
parallelism, tmin, tmax are identical to the ones described in
Subsection IV-B1.

The iBM Parallelism is an important parameter: it basically
determines how the iBM Machine of Figure 5 is practically
implemented. Designers are allowed to specify a Low or



Figure 8. Latency Vs Complexity in iBM Machine

High level of parallelism: it respectively implies the use of a
Sequential Multiplications iBM Machine and of a Full Parallel
iBM Machine. This tradeoff is addressed in Section IV-C1.

The spite the importance of iBM parallelism, the Chien
Search Parallelism is a more critical parameter: in fact the
Chien Search of Figure 5 is the most time consuming operation
and presents a crucial tradeoff between latency and area. This
tradeoff will be addressed in Section IV-C2.

C. Design Space Exploration

In the sequel of this section, the ADAGE tool will be
exploited to explore the main dimensions of the design space
addressed in Section IV-A.

1) iBM Parallelism: Sequential Multiplications iBM Ma-
chine and Full Parallel iBM Machine are two different imple-
mentations of the iBM Machine. They differ in the way of
performing multiplications: this implies the Sequential iBM to
be slower but less area consuming, whereas the Parallel iBM
provides high-performances but with a wider area. Figure 8
shows the relation between iBM latency and complexity for
several values of tmax: the iBM latency is defined as the time
between the arrival of the the information from the Syndrome
Machine and the dispatch of the evaluated data to the Chien
Machine.

Figure 9. Chien Machine Parallelism Vs Decoder Latency

Figure 10. Chien Machine Parallelism Vs Equivalent Gates

2) Chien Machine Parallelism: Firstly let assume the use of
the so called Double Chien Machine [15]: in fact it is the most
suitable basic tradeoff between performance and resources.
Secondly designers are able to set its parallelism (or p): the
Double Chien Machine will simply consider p bytes at each
clock cycle. At this point designers have to evaluate the related
tradeoffs. E.g., considering several values of tmax, Figure 9
shows the relation between p and the resulting decoder latency,
while Figure 10 shows the relation between p and the resulting
area.

D. Example: a Chien Machine Generation

The spite it is the most critical and complex part of
the whole ECC system, ADAGE is able to easily generate
a complete Chien Machine. Let assume the Single Chien
Machine case with tmax = 15 and p = 8: ADAGE generates
a Chien Machine made by (tmax − 1) = 14 15-bits registers,
(tmax − 1) = 14 15-bits multiplexers, (tmax − 1) = 14 full
multiplexers, (tmax − 1)·p = 14·8 = 112 constant multipliers,
(tmax − 1)·p = 112 XOR gates. In the Double Chien Machine
case, each machine is generated independently with its own
tmax1 , tmax2 , p1 and p2: ADAGE is able to automatically
connect them and to provide the proper control signals to
handle them.

V. VALIDATION AND VERIFICATION

A proper environment has been designed to Validate and
Verify our ADAGE tool. Figure 11 shows the architecture of

Figure 11. V&V Architecture



Table III
CASE STUDY ARCHITECTURES

iBM Machine Chien Machine

Architecture 1 Parallel p = 8

Architecture 2 Sequential p = 8

Architecture 3 Sequential p = 48

Architecture 4 Sequential Double Chien

the V&V environment: it is a high-level simulator providing
the input data generation, the flash-memory emulation, the
fault injection and the storage in a file of the collected decoder
outputs.

V&V was done via a significant fault-injection campaign.
In particular the simulation cycle is defined as follows:

1) The set of faults to be injected in the codeword are
defined

2) For a correction capability t from 1 to 15
a) The input data in Encoded (i.e., codeword);
b) The faulty codeword is generated with the help of

the faults definitions;
c) The faulty codeword is Decoded and the output of

the decoder are collected and written in the Output
file;

The FARM model was used [2]. Bit flippings were randomly
injected and their number dynamically varied to span the
complete set of possible concurrent errors. The Readout was
performed resorting to external files.

VI. CASE STUDY

Let assume the data length k = 214 = 16384 = 4KBytes,
tmax = 15, tmin = 1 and a data width of 1Bytes. The
architectures listed in Table III have been addressed.

A. V&V Experimental Results

The simulations were aimed at both verifying the correct-
ness of the design and at measuring the latencies in different
situations. The correctness has been verified injecting faults as
described in Section V and then launching simulation cycles:
in particular for each simulation cycle we stored in a file the
results corresponding to the tested correction capabilities.

An example of an output file, in which six errors in different
positions were injected, is reported below:
END ECC t = 1: Timer = 2097; Failure = 1
END ECC t = 2: Timer = 2140; Failure = 1
-> ECC t = 3 Found Error: Index = 2051 Mask = 00100000

END ECC t = 3: Timer = 2185; Failure = 1
-> ECC t = 4 Found Error: Index = 294 Mask = 01000000

(...)
-> ECC t = 14 Found Error: Index = 2049 Mask = 00101000

END ECC t = 14: Timer = 2749; Failure = 0
-> ECC t = 15 Found Error: Index = 2048 Mask = 01000100
-> ECC t = 15 Found Error: Index = 2049 Mask = 00101000

END ECC t = 15: Timer = 2810; Failure = 0

The latency is defined as the time between the moment in
which memory outputs the last byte and the one in which the
decoding ends (i.e., the time for decoding the data). The so

Figure 12. Single Chien Decoder Latencies

called Worst Case Latency occurs when tmax is the maximum
possible and depends on the position of the faulty bits: since
faults were randomly injected, the response (i.e., the latency)
is expected to be high or low according to the position of the
injected bit-error.

Let assume to inject a single error: the bit error in the first
and last bit position tested by the Chien machine respectively
provide the best and the worst latency. The worst case latencies
of the Architectures 1, 2 and 3 are plotted in Figure 12 in
function of the selected correction capability t.

Architecture 4 needed a different approach: the adaptive
error correction system will present different latencies in
function of the selected Chien machine (i.e., the first or the
second one). Four errors in the first and last four bits were
injected in order to respectively test the best and the worst
latency for this Chien machine. The worst case latencies of
the Architectures 4 are plotted in Figure 13 in function of the
selected correction capability t: the resulting latencies are the
combined ones of the Architecture 2 and 3.

B. Synthesis Experimental Results

After verifying the correctness of the environment, the
Synopsys Design Vision Environment has been exploited for

Figure 13. Double Chien Decoder Latencies



Table IV
COMPLEXITY AND PERFORMANCE ESTIMATION

Equivalent Gate Count Clock Frequency (MHz)

Architecture 1 170.963K 61.95

Architecture 2 96.698K 62.97

Architecture 3 221.360K 28.40

Architecture 4 135.194K 27.81

evaluating the complexity related to the considered Architec-
ture of Table III. Table IV shows the complexity of each archi-
tecture in terms of equivalent number of gates and maximum
achievable clock frequency.

Architecture 1 (i.e., a parallel iBM Machine and p = 8
Chien Machine) and Architecture 2 (i.e., same of Architecture
1 with a sequential iBM Machine) can be easily compared: the
spite they implement the same Chien Machine, Architecture
1 provides a higher area (i.e., higher number of gates) but
also a lower latency than Architecture 2 as Figure 13 clearly
highlights.

Moreover Figure 13 also shows Architecture 3 to provide
the lowest latency among the first three cases: however Table
IV underlines that the complexity of the third case is the
highest among all proposed architectures.

Finally Figure 13 and Table IV clearly show Architecture
4 to be the most suitable tradeoff among all the other archi-
tectures: in fact, in the average, it provides the same latency
of the third case with an extremely reduced cost in terms of
area.

VII. CONCLUSIONS

In this paper a parametric design environment for supporting
the design of BCH codes for flash-memory based mass-
memory device has been presented.

All the main problems of both the flash-memories and the
correction codes design has been largely explored and taken
in account. Our environment provides high flexibility to the
designer and allows the tuning of the different parameters
and trade-offs that arise designing a BCH codes based ECC
system. The user-selection feature has been widely motivated
and together with the characteristics explained above repre-
sents a significant element of novelty, not offered by previous
works. The effectiveness of our solution has been proved by
the experimental results which confirm that it represents a
significant aid for solving the problems of the ECC hardware
systems design.

In our future works the ADAGE environment will be
exploited for an integration between EDAC and Testing strate-
gies: in fact Testing strategies could be exploited in order to
understand the actual state of the system and, in turns, the
EDAC structure should be able to adapt its own error correc-
tion capability according to the results provided by the test
environment. Integrating these two main aspects (i.e., EDAC
and Testing) would result in providing both a adaptive-rate
correction system and a fault-tolerant mass-memory device.

REFERENCES

[1] J. Adamek. Foundations of Coding: Theory and Applications of Error-
Correcting Codes, with an Introduction to Cryptography and Informat.
John Wiley & Sons, Inc., New York, NY, USA, 1991.

[2] A. Benso and P. Prinetto. Fault Injection Techniques and Tools
for Embedded Systems Reliability Evaluation, volume 1-4020-7589-8.
Kluver Academic, 2003.

[3] Richard E. Blahut. Theory and Practice of Error Control Codes.
Addison-Wesley.

[4] J. Brewer and M. Gill. Nonvolatile Memory Technologies with Em-
phasis on Flash: A Comprehensive Guide to Understanding and Using
Flash Memory Devices, volume 978-0-471-77002-2. Wiley-IEEE Press,
February 2008.

[5] M. Caramia, S. Di Carlo, M. Fabiano, and P. Prinetto. Flare: A design
environment for flash-based space applications. Proceedings of High
Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE
International, pages 14 –19, nov. 2009.

[6] M. Caramia, S. Di Carlo, M. Fabiano, and P. Prinetto. Flash-memories
in space applications: Trends and challenges. Proceedings of East-West
Design & Test Symposium (EWDTS), pages 18–21, September 2009.

[7] M. Cassel, D. Walter, H. Schmidt, F. Gliem, H. Michalik, M. Stähle,
K. Vögele, and P. Casel Roos. Nand-flash-memory technology in mass
memory systems for space applications. Proceedings Data Systems In
Aerospace (DASIA) 2008, 2008. Palma de Mallorca, Spain.

[8] S. Chen. What types of ecc should be used on flash-memory? Technical
report, Spansion, November 2007.

[9] Te-Hsuan Chen, Yu-Ying Hsiao, Yu-Tsao Hsing, and Cheng-Wen Wu.
An adaptive-rate error correction scheme for nand flash memory. VLSI
Test Symposium, 2009. VTS ’09. 27th IEEE, pages 53 –58, may 2009.

[10] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli. On-chip error
correcting techniques for new-generation flash memories. Proceedings
of the IEEE, 91(4):602 – 616, april 2003.

[11] D. Ielmini. Reliability issues and modeling of flash and post-flash
memory (invited paper). Microelectronic Engineering, 86(7-9):1870 –
1875, 2009. INFOS 2009.

[12] Jae-Duk Lee, Sung-Hoi Hur, and Jung-Dal Choi. Effects of floating-
gate interference on nand flash memory cell operation. Electron Device
Letters, IEEE, 23(5):264 –266, may 2002.

[13] Wei Liu, Junrye Rho, and Wonyong Sung. Low-power high-throughput
bch error correction vlsi design for multi-level cell nand flash memories.
Signal Processing Systems Design and Implementation, 2006. SIPS ’06.
IEEE Workshop on, pages 303 –308, oct. 2006.

[14] The MathWorks. http://www.mathworks.com/products/slhdlcoder/.
[15] R. Micheloni, A. Marelli, and R. Ravasio. Error Correction Codes for

Non-Volatile Memories. Springer Publishing Company, Incorporated,
2008.

[16] Micron. Hamming codes for nand flash-memory devices overview.
Technical Report 29-08, May 2007.

[17] M.G. Mohammad and K.K. Saluja. Flash memory disturbances: mod-
eling and test. VLSI Test Symposium, 19th IEEE Proceedings on. VTS
2001, pages 218 –224, 2001.

[18] Mincheol Park, Keonsoo Kim, Jong-Ho Park, and Jeong-Hyuck Choi.
Direct field effect of neighboring cell transistor on cell-to-cell interfer-
ence of nand flash cell arrays. Electron Device Letters, IEEE, 30(2):174
–177, feb. 2009.

[19] Ltd Samsung Electronics Co. Nand flash ecc algorithm (error checking
& correction). Technical report, June 2004.

[20] F. Sun, S. Devarajan, K. Rose, and T. Zhang. Design of on-chip error
correction systems for multilevel nor and nand flash memories. Circuits,
Devices Systems, IET, 1(3):241 –249, june 2007.

[21] Xu Youzhi. Implementation of berlekamp-massey algorithm without
inversion. Communications, Speech and Vision, IEE Proceedings I,
138(3):138 –140, june 1991.


