117,688 research outputs found

    Generalized pairwise z-complementary codes

    Get PDF
    An approach to generate generalized pairwise Z-complementary (GPZ) codes, which works in pairs in order to offer a zero correlation zone (ZCZ) in the vicinity of zero phase shift and fit extremely well in power efficient quadrature carrier modems, is introduced in this letter. Each GPZ code has MK sequences, each of length 4NK, whereMis the number of Z-complementary mates, K is a factor to perform Walsh–Hadamard expansions, and N is the sequence length of the Z-complementary code. The proposed GPZ codes include the generalized pairwise complementary (GPC)codes as special cases

    A Systematic Framework for the Construction of Optimal Complete Complementary Codes

    Full text link
    The complete complementary code (CCC) is a sequence family with ideal correlation sums which was proposed by Suehiro and Hatori. Numerous literatures show its applications to direct-spread code-division multiple access (DS-CDMA) systems for inter-channel interference (ICI)-free communication with improved spectral efficiency. In this paper, we propose a systematic framework for the construction of CCCs based on NN-shift cross-orthogonal sequence families (NN-CO-SFs). We show theoretical bounds on the size of NN-CO-SFs and CCCs, and give a set of four algorithms for their generation and extension. The algorithms are optimal in the sense that the size of resulted sequence families achieves theoretical bounds and, with the algorithms, we can construct an optimal CCC consisting of sequences whose lengths are not only almost arbitrary but even variable between sequence families. We also discuss the family size, alphabet size, and lengths of constructible CCCs based on the proposed algorithms

    An Analytical Model of Packet Collisions in IEEE 802.15.4 Wireless Networks

    Full text link
    Numerous studies showed that concurrent transmissions can boost wireless network performance despite collisions. While these works provide empirical evidence that concurrent transmissions may be received reliably, existing signal capture models only partially explain the root causes of this phenomenon. We present a comprehensive mathematical model that reveals the reasons and provides insights on the key parameters affecting the performance of MSK-modulated transmissions. A major contribution is a closed-form derivation of the receiver bit decision variable for arbitrary numbers of colliding signals and constellations of power ratios, timing offsets, and carrier phase offsets. We systematically explore the root causes for successful packet delivery under concurrent transmissions across the whole parameter space of the model. We confirm the capture threshold behavior observed in previous studies but also reveal new insights relevant for the design of optimal protocols: We identify capture zones depending not only on the signal power ratio but also on time and phase offsets.Comment: Accepted for publication in the IEEE Transactions on Wireless Communications under the title "On the Reception of Concurrent Transmissions in Wireless Sensor Networks.
    • …
    corecore