827 research outputs found

    Transforming triangulations on non planar-surfaces

    Get PDF
    We consider whether any two triangulations of a polygon or a point set on a non-planar surface with a given metric can be transformed into each other by a sequence of edge flips. The answer is negative in general with some remarkable exceptions, such as polygons on the cylinder, and on the flat torus, and certain configurations of points on the cylinder.Comment: 19 pages, 17 figures. This version has been accepted in the SIAM Journal on Discrete Mathematics. Keywords: Graph of triangulations, triangulations on surfaces, triangulations of polygons, edge fli

    Combinatorial properties of the K3 surface: Simplicial blowups and slicings

    Full text link
    The 4-dimensional abstract Kummer variety K^4 with 16 nodes leads to the K3 surface by resolving the 16 singularities. Here we present a simplicial realization of this minimal resolution. Starting with a minimal 16-vertex triangulation of K^4 we resolve its 16 isolated singularities - step by step - by simplicial blowups. As a result we obtain a 17-vertex triangulation of the standard PL K3 surface. A key step is the construction of a triangulated version of the mapping cylinder of the Hopf map from the real projective 3-space onto the 2-sphere with the minimum number of vertices. Moreover we study simplicial Morse functions and the changes of their levels between the critical points. In this way we obtain slicings through the K3 surface of various topological types.Comment: 31 pages, 3 figure

    A History of Flips in Combinatorial Triangulations

    Get PDF
    Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.Comment: Added a paragraph referencing earlier work in the vertex-labelled setting that has implications for the unlabeled settin

    Making triangulations 4-connected using flips

    Full text link
    We show that any combinatorial triangulation on n vertices can be transformed into a 4-connected one using at most floor((3n - 9)/5) edge flips. We also give an example of an infinite family of triangulations that requires this many flips to be made 4-connected, showing that our bound is tight. In addition, for n >= 19, we improve the upper bound on the number of flips required to transform any 4-connected triangulation into the canonical triangulation (the triangulation with two dominant vertices), matching the known lower bound of 2n - 15. Our results imply a new upper bound on the diameter of the flip graph of 5.2n - 33.6, improving on the previous best known bound of 6n - 30.Comment: 22 pages, 8 figures. Accepted to CGTA special issue for CCCG 2011. Conference version available at http://2011.cccg.ca/PDFschedule/papers/paper34.pd

    BPS Graphs: From Spectral Networks to BPS Quivers

    Full text link
    We define "BPS graphs" on punctured Riemann surfaces associated with AN−1A_{N-1} theories of class S\mathcal{S}. BPS graphs provide a bridge between two powerful frameworks for studying the spectrum of BPS states: spectral networks and BPS quivers. They arise from degenerate spectral networks at maximal intersections of walls of marginal stability on the Coulomb branch. While the BPS spectrum is ill-defined at such intersections, a BPS graph captures a useful basis of elementary BPS states. The topology of a BPS graph encodes a BPS quiver, even for higher-rank theories and for theories with certain partial punctures. BPS graphs lead to a geometric realization of the combinatorics of Fock-Goncharov NN-triangulations and generalize them in several ways.Comment: 48 pages, 44 figure
    • …
    corecore