2,482 research outputs found

    Convolutional Neural Networks for Counting Fish in Fisheries Surveillance Video

    Get PDF
    We present a computer vision tool that analyses video from a CCTV system installed on fishing trawlers to monitor discarded fish catch. The system aims to support expert observers who review the footage and verify numbers, species and sizes of discarded fish. The operational environment presents a significant challenge for these tasks. Fish are processed below deck under fluorescent lights, they are randomly oriented and there are multiple occlusions. The scene is unstructured and complicated by the presence of fishermen processing the catch. We describe an approach to segmenting the scene and counting fish that exploits the N4N^4-Fields algorithm. We performed extensive tests of the algorithm on a data set comprising 443 frames from 6 belts. Results indicate the relative count error (for individual fish) ranges from 2\% to 16\%. We believe this is the first system that is able to handle footage from operational trawlers

    Solar Storm Type Classification Using Probabilistic Neural Network compared with the Self-Organizing Map

    Get PDF
    One of the task of the LAPAN is making observation and forecasting of solar storms disturbance. This disturbances can affect the earths electromagnetic field that disrupt the electronic and navigational equipment on earth. LAPAN wanted a computer application that can automatically classify the type of solar storms, which became part of early warning systems to be created. The classification of the digital images of solar storm / sunspot is based on Modified - Zurich Sunspot Classification System. Classification method that we use here is the Probabilistic Neural Networks. The result of testing is promising because it has an accuracy of 94 for testing data. The accuracy is better than the accuracy of similar applications weve built with a combination of methods Self-Organizing Map and K-Nearest Neighbor

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    A Smoothed Dual Approach for Variational Wasserstein Problems

    Full text link
    Variational problems that involve Wasserstein distances have been recently proposed to summarize and learn from probability measures. Despite being conceptually simple, such problems are computationally challenging because they involve minimizing over quantities (Wasserstein distances) that are themselves hard to compute. We show that the dual formulation of Wasserstein variational problems introduced recently by Carlier et al. (2014) can be regularized using an entropic smoothing, which leads to smooth, differentiable, convex optimization problems that are simpler to implement and numerically more stable. We illustrate the versatility of this approach by applying it to the computation of Wasserstein barycenters and gradient flows of spacial regularization functionals
    • …
    corecore