148,233 research outputs found

    Taking Heisenberg's Potentia Seriously

    Get PDF
    It is argued that quantum theory is best understood as requiring an ontological duality of res extensa and res potentia, where the latter is understood per Heisenberg's original proposal, and the former is roughly equivalent to Descartes' 'extended substance.' However, this is not a dualism of mutually exclusive substances in the classical Cartesian sense, and therefore does not inherit the infamous 'mind-body' problem. Rather, res potentia and res extensa are proposed as mutually implicative ontological extants that serve to explain the key conceptual challenges of quantum theory; in particular, nonlocality, entanglement, null measurements, and wave function collapse. It is shown that a natural account of these quantum perplexities emerges, along with a need to reassess our usual ontological commitments involving the nature of space and time.Comment: Final version, to appear in International Journal of Quantum Foundation

    Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

    Full text link
    We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.Comment: Accepted for publication at German Conference on Pattern Recognition (GCPR) 2017. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualisation and Social Computing

    Disproof of Bell's Theorem: Further Consolidations

    Get PDF
    The failure of Bell's theorem for Clifford algebra valued local variables is further consolidated by proving that the conditions of remote parameter independence and remote outcome independence are duly respected within the recently constructed exact, local realistic model for the EPR-Bohm correlations. Since the conjunction of these two conditions is equivalent to the locality condition of Bell, this provides an independent geometric proof of the local causality of the model, at the level of microstates. In addition to local causality, the model respects at least seven other conceptual and operational requirements, arising either from the predictions of quantum mechanics or the premises of Bell's theorem, including the Malus's law for sequential spin measurements. Since the agreement between the predictions of the model and those of quantum mechanics is quantitatively precise in all respects, the ensemble interpretation of the entangled singlet state becomes amenable.Comment: 11 pages; This is a followup to arXiv:quant-ph/0703179; see also arXiv:quant-ph/070324
    • …
    corecore