18,628 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Using hypergraph theory to model coexistence management and coordinated spectrum allocation for heterogeneous wireless networks operating in shared spectrum

    Get PDF
    Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity.Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Vehicular Dynamic Spectrum Access: Using Cognitive Radio for Automobile Networks

    Get PDF
    Vehicular Dynamic Spectrum Access (VDSA) combines the advantages of dynamic spectrum access to achieve higher spectrum efficiency and the special mobility pattern of vehicle fleets. This dissertation presents several noval contributions with respect to vehicular communications, especially vehicle-to-vehicle communications. Starting from a system engineering aspect, this dissertation will present several promising future directions for vehicle communications, taking into consideration both the theoretical and practical aspects of wireless communication deployment. This dissertation starts with presenting a feasibility analysis using queueing theory to model and estimate the performance of VDSA within a TV whitespace environment. The analytical tool uses spectrum measurement data and vehicle density to find upper bounds of several performance metrics for a VDSA scenario in TVWS. Then, a framework for optimizing VDSA via artificial intelligence and learning, as well as simulation testbeds that reflect realistic spectrum sharing scenarios between vehicle networks and heterogeneous wireless networks including wireless local area networks and wireless regional area networks. Detailed experimental results justify the testbed for emulating a mobile dynamic spectrum access environment composed of heterogeneous networks with four dimensional mutual interference. Vehicular cooperative communication is the other proposed technique that combines the cooperative communication technology and vehicle platooning, an emerging concept that is expected to both increase highway utilization and enhance both driver experience and safety. This dissertation will focus on the coexistence of multiple vehicle groups in shared spectrum, where intra-group cooperation and inter-group competition are investigated in the aspect of channel access. Finally, a testbed implementation VDSA is presented and a few applications are developed within a VDSA environment, demonstrating the feasibility and benefits of some features in a future transportation system

    プライマリシステムの干渉制限を考慮した周波数共用のためのリソース割り当てに関する研究

    Get PDF
    In wireless communications, the improvement of spectral efficiency isrequired due to the shortage of frequency resource. As an effectivesolution, spectrum sharing has been attracted attention. A cognitiveradio is promising technology for realization of spectrum sharing. Inthe spectrum sharing, cognitive user (secondary user) has to protectlicensed user (primary user) according to the interference constraint.However, conventional metric of interference constraint cannot avoidlarge performance degradation in primary system with widely rangeof Signal to Noise Ratio (SNR) such as a cellular system. Additionally,conventional interference constraints do not considers schedulingbehavior in cellular system. In order to solve these problems, thispaper proposes novel metric of the interference constraint whichsupports the widely SNR region of the primary system, so calledcapacity conservation ratio (CCR). The CCR is defined as the ratio ofthe capacity of the Primary receiver without interference from thesecondary transmitter, to the decreased primary capacity due tointerference. Proposed interference constraint based on CCR canprotect primary capacities over the widely SNR region. In addition,scheduling behavior of the primary system can be protected by usingproposed interference constraint. In addition, we propose transmitpower control schemes: exact and simplified power control. The exactpower control can satisfy requirement of interference constraintwithout large margin; however, transmit power cannot be derivewithout numerical analysis. In contrast, transmit power isclosed-form solution in the simplified power control with satisfyingthe interference constraint. Finally, this thesis proposes the resourcescheduling under the interference constraint. Proposed schedulingachieves the high throughput and high user fairness in the secondarysystem without increasing feedback information compared withconventional algorithm.現在、無線通信において周波数リソース不足が深刻な問題となっており、抜本的な対策技術としてコグニティブ周波数共用が注目されている。本論文では、周波数共用において既存システムの周波数帯を他システム(2 次システム)が二次利用するために干渉制限指標及びリソース割り当てに関する研究を行った。一つ目の研究では、既存システムに与える与干渉状態の評価指標について提案を行い,幅広い通信品質の既存システムを保護可能な干渉制限について評価を行った.評価ではシステムのリンクが静的モデルおよび動的なリソース配分で変更される動的モデルを用いた.二つ目の研究では,その干渉制限達成可能な送信電力制御の検討を行った。送信電力制御を行う際に,外部からチャネル情報の一部のみが得られると仮定し,確率的に変動するフェージング要素について所望のアウテージ確率を満足できるように数値解析を行い,厳密設計および簡易設計について提案を行った.三つ目の研究では、既存システムが複数端末に対して無線リソースをスケジューリングするモデルへと拡張し,2 次システムが干渉を回避しつつ,効率的リソース割り当てに関する検討を行った。電気通信大学201

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities
    corecore