5,563 research outputs found

    The Bionic Radiologist: avoiding blurry pictures and providing greater insights

    Get PDF
    Radiology images and reports have long been digitalized. However, the potential of the more than 3.6 billion radiology examinations performed annually worldwide has largely gone unused in the effort to digitally transform health care. The Bionic Radiologist is a concept that combines humanity and digitalization for better health care integration of radiology. At a practical level, this concept will achieve critical goals: (1) testing decisions being made scientifically on the basis of disease probabilities and patient preferences; (2) image analysis done consistently at any time and at any site; and (3) treatment suggestions that are closely linked to imaging results and are seamlessly integrated with other information. The Bionic Radiologist will thus help avoiding missed care opportunities, will provide continuous learning in the work process, and will also allow more time for radiologists’ primary roles: interacting with patients and referring physicians. To achieve that potential, one has to cope with many implementation barriers at both the individual and institutional levels. These include: reluctance to delegate decision making, a possible decrease in image interpretation knowledge and the perception that patient safety and trust are at stake. To facilitate implementation of the Bionic Radiologist the following will be helpful: uncertainty quantifications for suggestions, shared decision making, changes in organizational culture and leadership style, maintained expertise through continuous learning systems for training, and role development of the involved experts. With the support of the Bionic Radiologist, disparities are reduced and the delivery of care is provided in a humane and personalized fashion

    Simultaneous lesion and neuroanatomy segmentation in Multiple Sclerosis using deep neural networks

    Get PDF
    Segmentation of both white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. Typically these tasks are performed separately: in this paper we present a single segmentation solution based on convolutional neural networks (CNNs) for providing fast, reliable segmentations of multimodal magnetic resonance images into lesion classes and normal-appearing grey- and white-matter structures. We show substantial, statistically significant improvements in both Dice coefficient and in lesion-wise specificity and sensitivity, compared to previous approaches, and agreement with individual human raters in the range of human inter-rater variability. The method is trained on data gathered from a single centre: nonetheless, it performs well on data from centres, scanners and field-strengths not represented in the training dataset. A retrospective study found that the classifier successfully identified lesions missed by the human raters. Lesion labels were provided by human raters, while weak labels for other brain structures (including CSF, cortical grey matter, cortical white matter, cerebellum, amygdala, hippocampus, subcortical GM structures and choroid plexus) were provided by Freesurfer 5.3. The segmentations of these structures compared well, not only with Freesurfer 5.3, but also with FSL-First and Freesurfer 6.0

    Art and Medicine: A Collaborative Project Between Virginia Commonwealth University in Qatar and Weill Cornell Medicine in Qatar

    Get PDF
    Four faculty researchers, two from Virginia Commonwealth University in Qatar, and two from Weill Cornell Medicine in Qatar developed a one semester workshop-based course in Qatar exploring the connections between art and medicine in a contemporary context. Students (6 art / 6 medicine) were enrolled in the course. The course included presentations by clinicians, medical engineers, artists, computing engineers, an art historian, a graphic designer, a painter, and other experts from the fields of art, design, and medicine. To measure the student experience of interdisciplinarity, the faculty researchers employed a mixed methods approach involving psychometric tests and observational ethnography. Data instruments included pre- and post-course semi-structured audio interviews, pre-test / post-test psychometric instruments (Budner Scale and Torrance Tests of Creativity), observational field notes, self-reflective blogging, and videography. This book describes the course and the experience of the students. It also contains images of the interdisciplinary work they created for a culminating class exhibition. Finally, the book provides insight on how different fields in a Middle Eastern context can share critical /analytical thinking tools to refine their own professional practices

    Causality-inspired single-source domain generalization for medical image segmentation

    Get PDF
    Deep learning models usually suffer from the domain shift issue, where models trained on one source domain do not generalize well to other unseen domains. In this work, we investigate the single-source domain generalization problem: training a deep network that is robust to unseen domains, under the condition that training data are only available from one source domain, which is common in medical imaging applications. We tackle this problem in the context of cross-domain medical image segmentation. In this scenario, domain shifts are mainly caused by different acquisition processes. We propose a simple causality-inspired data augmentation approach to expose a segmentation model to synthesized domain-shifted training examples. Specifically, 1) to make the deep model robust to discrepancies in image intensities and textures, we employ a family of randomly-weighted shallow networks. They augment training images using diverse appearance transformations. 2) Further we show that spurious correlations among objects in an image are detrimental to domain robustness. These correlations might be taken by the network as domain-specific clues for making predictions, and they may break on unseen domains. We remove these spurious correlations via causal intervention. This is achieved by resampling the appearances of potentially correlated objects independently. The proposed approach is validated on three cross-domain segmentation scenarios: cross-modality (CT-MRI) abdominal image segmentation, cross-sequence (bSSFP-LGE) cardiac MRI segmentation, and cross-site prostate MRI segmentation. The proposed approach yields consistent performance gains compared with competitive methods when tested on unseen domains

    Man to Machine, Applications in Electromyography

    Get PDF
    • …
    corecore