1,545 research outputs found

    Automatic characterization and generation of music loops and instrument samples for electronic music production

    Get PDF
    Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation.Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation

    Towards End-to-End spoken intent recognition in smart home

    Get PDF
    International audienceVoice based interaction in a smart home has become a feature of many industrial products. These systems react to voice commands, whether it is for answering a question, providing music or turning on the lights. To be efficient, these systems must be able to extract the intent of the user from the voice command. Intent recognition from voice is typically performed through automatic speech recognition (ASR) and intent classification from the transcriptions in a pipeline. However, the errors accumulated at the ASR stage might severely impact the intent classifier. In this paper, we propose an End-to-End (E2E) model to perform intent classification directly from the raw speech input. The E2E approach is thus optimized for this specific task and avoids error propagation. Furthermore, prosodic aspects of the speech signal can be exploited by the E2E model for intent classification (e.g., question vs imperative voice). Experiments on a corpus of voice commands acquired in a real smart home reveal that the state-of-the art pipeline baseline is still superior to the E2E approach. However, using artificial data generation techniques we show that significant improvement to the E2E model can be brought to reach competitive performances. This opens the way to further research on E2E Spoken Language Understanding

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    AI and Tempo Estimation: A Review

    Full text link
    The author's goal in this paper is to explore how artificial intelligence (AI) has been utilised to inform our understanding of and ability to estimate at scale a critical aspect of musical creativity - musical tempo. The central importance of tempo to musical creativity can be seen in how it is used to express specific emotions (Eerola and Vuoskoski 2013), suggest particular musical styles (Li and Chan 2011), influence perception of expression (Webster and Weir 2005) and mediate the urge to move one's body in time to the music (Burger et al. 2014). Traditional tempo estimation methods typically detect signal periodicities that reflect the underlying rhythmic structure of the music, often using some form of autocorrelation of the amplitude envelope (Lartillot and Toiviainen 2007). Recently, AI-based methods utilising convolutional or recurrent neural networks (CNNs, RNNs) on spectral representations of the audio signal have enjoyed significant improvements in accuracy (Aarabi and Peeters 2022). Common AI-based techniques include those based on probability (e.g., Bayesian approaches, hidden Markov models (HMM)), classification and statistical learning (e.g., support vector machines (SVM)), and artificial neural networks (ANNs) (e.g., self-organising maps (SOMs), CNNs, RNNs, deep learning (DL)). The aim here is to provide an overview of some of the more common AI-based tempo estimation algorithms and to shine a light on notable benefits and potential drawbacks of each. Limitations of AI in this field in general are also considered, as is the capacity for such methods to account for idiosyncrasies inherent in tempo perception, i.e., how well AI-based approaches are able to think and act like humans.Comment: 9 page
    • …
    corecore