3 research outputs found

    Music Genre Classification using Masked Conditional Neural Networks

    Get PDF
    The ConditionaL Neural Networks (CLNN) and the Masked ConditionaL Neural Networks (MCLNN) exploit the nature of multi-dimensional temporal signals. The CLNN captures the conditional temporal influence between the frames in a window and the mask in the MCLNN enforces a systematic sparseness that follows a filterbank-like pattern over the network links. The mask induces the network to learn about time-frequency representations in bands, allowing the network to sustain frequency shifts. Additionally, the mask in the MCLNN automates the exploration of a range of feature combinations, usually done through an exhaustive manual search. We have evaluated the MCLNN performance using the Ballroom and Homburg datasets of music genres. MCLNN has achieved accuracies that are competitive to state-of-the-art handcrafted attempts in addition to models based on Convolutional Neural Networks

    Masked Conditional Neural Networks for Sound Recognition

    Get PDF
    Sound recognition has been studied for decades to grant machines the human hearing ability. The advances in this field help in a range of applications, from industrial ones such as fault detection in machines and noise monitoring to household applications such as surveillance and hearing aids. The problem of sound recognition like any pattern recognition task involves the reliability of the extracted features and the recognition model. The problem has been approached through decades of crafted features used collaboratively with models based on neural networks or statistical models such as Gaussian Mixtures and Hidden Markov models. Neural networks are currently being considered as a method to automate the feature extraction stage together with the already incorporated role of recognition. The performance of such models is approaching handcrafted features. Current neural network based models are not primarily designed for the nature of the sound signal, which may not optimally harness distinctive properties of the signal. This thesis proposes neural network models that exploit the nature of the time-frequency representation of the sound signal. We propose the ConditionaL Neural Network (CLNN) and the Masked ConditionaL Neural Network (MCLNN). The CLNN is designed to account for the temporal dimension of a signal and behaves as the framework for the MCLNN. The MCLNN allows a filterbank-like behaviour to be embedded within the network using a specially designed binary mask. The masking subdivides the frequency range of a signal into bands and allows concurrent consideration of different feature combinations analogous to the manual handcrafting of the optimum set of features for a recognition task. The proposed models have been evaluated through an extensive set of experiments using a range of publicly available datasets of music genres and environmental sounds, where they surpass state-of-the-art Convolutional Neural Networks and several hand-crafted attempts
    corecore