6,334 research outputs found

    Music Similarity Estimation

    Get PDF
    Music is a complicated form of communication, where creators and culture communicate and expose their individuality. After music digitalization took place, recommendation systems and other online services have become indispensable in the field of Music Information Retrieval (MIR). To build these systems and recommend the right choice of song to the user, classification of songs is required. In this paper, we propose an approach for finding similarity between music based on mid-level attributes like pitch, midi value corresponding to pitch, interval, contour and duration and applying text based classification techniques. Our system predicts jazz, metal and ragtime for western music. The experiment to predict the genre of music is conducted based on 450 music files and maximum accuracy achieved is 95.8% across different n-grams. We have also analyzed the Indian classical Carnatic music and are classifying them based on its raga. Our system predicts Sankarabharam, Mohanam and Sindhubhairavi ragas. The experiment to predict the raga of the song is conducted based on 95 music files and the maximum accuracy achieved is 90.3% across different n-grams. Performance evaluation is done by using the accuracy score of scikit-learn

    Acoustic Feature Identification to Recognize Rag Present in Borgit

    Get PDF
    In the world of Indian classical music, raga recognition is a crucial undertaking. Due to its particular sound qualities, the traditional wind instrument known as the borgit presents special difficulties for automatic raga recognition. In this research, we investigate the use of auditory feature identification methods to create a reliable raga recognition system for Borgit performances. Each of the Borgits, the devotional song of Assam is enriched with rag and each rag has unique melodious tune. This paper has carried out few experiments on the audio samples of rags and a few Borgits sung with those rugs. In this manuscript three mostly used rags and a few Borgits  with these rags are considered for the experiment. Acoustic features considred here are FFT (Fast Fourier Transform), ZCR (Zero Crossing Rates), Mean and Standard deviation of pitch contour and RMS(Root Mean Square). After evaluation and analysis it is seen that FFT  and ZCR are two noteworthy acoustic features that helps to identify the rag present in Borgits. At last K-means clustering was applied on the FFT and ZCR values of the Borgits and were able to find correct grouping according to rags present there. This research validates FFT and ZCR as most precise acoustic parameters for rag identification in Borgit. Here researchers had observed roles of Standard deviation of pitch contour and RMS values of the audio samples in rag identification. &nbsp

    The role of artist and genre on music emotion recognition

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe goal of this study is to classify a dataset of songs according to their emotion and to understand the impact that the artist and genre have on the accuracy of the classification model. This will help market players such as Spotify and Apple Music to retrieve useful songs in the right context. This analysis was performed by extracting audio and non-audio features from the DEAM dataset and classifying them. The correlation between artist, song genre and other audio features was also analyzed. Furthermore, the classification performance of different machine learning algorithms was evaluated and compared, e.g., Support Vector Machines (SVM), Decision Trees, Naive Bayes and K-Nearest Neighbors. We found that Support Vector Machines attained the highest performance when using either only Audio features or a combination of Audio Features and Genre. Namely, an F-measure of 0.46 and 0.45 was achieved, respectively. We concluded that the Artist variable was not impactful to the emotion of the songs. Therefore, by using Support Vector Machines with the combination of Audio and Genre variables, we analyzed the results and created a dashboard to visualize the incorrectly classified songs. This information helped to understand if these variables are useful to improve the emotion classification model developed and what were the relationships between them and other audio and non-audio features

    Methodological considerations concerning manual annotation of musical audio in function of algorithm development

    Get PDF
    In research on musical audio-mining, annotated music databases are needed which allow the development of computational tools that extract from the musical audiostream the kind of high-level content that users can deal with in Music Information Retrieval (MIR) contexts. The notion of musical content, and therefore the notion of annotation, is ill-defined, however, both in the syntactic and semantic sense. As a consequence, annotation has been approached from a variety of perspectives (but mainly linguistic-symbolic oriented), and a general methodology is lacking. This paper is a step towards the definition of a general framework for manual annotation of musical audio in function of a computational approach to musical audio-mining that is based on algorithms that learn from annotated data. 1

    Music emotion recognition: a multimodal machine learning approach

    Get PDF
    Music emotion recognition (MER) is an emerging domain of the Music Information Retrieval (MIR) scientific community, and besides, music searches through emotions are one of the major selection preferred by web users. As the world goes to digital, the musical contents in online databases, such as Last.fm have expanded exponentially, which require substantial manual efforts for managing them and also keeping them updated. Therefore, the demand for innovative and adaptable search mechanisms, which can be personalized according to users’ emotional state, has gained increasing consideration in recent years. This thesis concentrates on addressing music emotion recognition problem by presenting several classification models, which were fed by textual features, as well as audio attributes extracted from the music. In this study, we build both supervised and semisupervised classification designs under four research experiments, that addresses the emotional role of audio features, such as tempo, acousticness, and energy, and also the impact of textual features extracted by two different approaches, which are TF-IDF and Word2Vec. Furthermore, we proposed a multi-modal approach by using a combined feature-set consisting of the features from the audio content, as well as from context-aware data. For this purpose, we generated a ground truth dataset containing over 1500 labeled song lyrics and also unlabeled big data, which stands for more than 2.5 million Turkish documents, for achieving to generate an accurate automatic emotion classification system. The analytical models were conducted by adopting several algorithms on the crossvalidated data by using Python. As a conclusion of the experiments, the best-attained performance was 44.2% when employing only audio features, whereas, with the usage of textual features, better performances were observed with 46.3% and 51.3% accuracy scores considering supervised and semi-supervised learning paradigms, respectively. As of last, even though we created a comprehensive feature set with the combination of audio and textual features, this approach did not display any significant improvement for classification performanc

    The italian music superdiversity: Geography, emotion and language: one resource to find them, one resource to rule them all

    Get PDF
    Globalization can lead to a growing standardization of musical contents. Using a cross-service multi-level dataset we investigate the actual Italian music scene. The investigation highlights the musical Italian superdiversity both individually analyzing the geographical and lexical dimensions and combining them. Using different kinds of features over the geographical dimension leads to two similar, comparable and coherent results, confirming the strong and essential correlation between melodies and lyrics. The profiles identified are markedly distinct one from another with respect to sentiment, lexicon, and melodic features. Through a novel application of a sentiment spreading algorithm and songs’ melodic features, we are able to highlight discriminant characteristics that violate the standard regional political boundaries, reconfiguring them following the actual musical communicative practices
    • …
    corecore