568 research outputs found

    Joint Reconstruction of Multi-view Compressed Images

    Full text link
    The distributed representation of correlated multi-view images is an important problem that arise in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed correlated images are jointly decoded in order to improve the reconstruction quality of all the compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG, H.264 intra) with a balanced rate distribution among different cameras. A central decoder first estimates the underlying correlation model from the independently compressed images which will be used for the joint signal recovery. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images that comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be consistent with their compressed versions. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our proposed algorithm compares advantageously to state-of-the-art distributed coding schemes based on disparity learning and on the DISCOVER

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Optimization of Occlusion-Inducing Depth Pixels in 3-D Video Coding

    Full text link
    The optimization of occlusion-inducing depth pixels in depth map coding has received little attention in the literature, since their associated texture pixels are occluded in the synthesized view and their effect on the synthesized view is considered negligible. However, the occlusion-inducing depth pixels still need to consume the bits to be transmitted, and will induce geometry distortion that inherently exists in the synthesized view. In this paper, we propose an efficient depth map coding scheme specifically for the occlusion-inducing depth pixels by using allowable depth distortions. Firstly, we formulate a problem of minimizing the overall geometry distortion in the occlusion subject to the bit rate constraint, for which the depth distortion is properly adjusted within the set of allowable depth distortions that introduce the same disparity error as the initial depth distortion. Then, we propose a dynamic programming solution to find the optimal depth distortion vector for the occlusion. The proposed algorithm can improve the coding efficiency without alteration of the occlusion order. Simulation results confirm the performance improvement compared to other existing algorithms

    Chapter International Standardization of FTV

    Get PDF
    FTV (Free-viewpoint Television) is visual media that transmits all ray information of a 3D space and enables immersive 3D viewing. The international standardization of FTV has been conducted in MPEG. The first phase of FTV is multiview video coding (MVC), and the second phase is 3D video (3DV). The third phase of FTV is MPEG-FTV, which targets revolutionized viewing of 3D scenes via super multiview, free navigation, and 360-degree 3D. After the success of exploration experiments and Call for Evidence, MPEG-FTV moved MPEG Immersive project (MPEG-I), where it is in charge of video part as MPEG-I Visual. MPEG-I will create standards for immersive audio-visual services

    Depth-based Multi-View 3D Video Coding

    Get PDF
    • …
    corecore