42 research outputs found

    Adaptive Image Denoising by Targeted Databases

    Full text link
    We propose a data-dependent denoising procedure to restore noisy images. Different from existing denoising algorithms which search for patches from either the noisy image or a generic database, the new algorithm finds patches from a database that contains only relevant patches. We formulate the denoising problem as an optimal filter design problem and make two contributions. First, we determine the basis function of the denoising filter by solving a group sparsity minimization problem. The optimization formulation generalizes existing denoising algorithms and offers systematic analysis of the performance. Improvement methods are proposed to enhance the patch search process. Second, we determine the spectral coefficients of the denoising filter by considering a localized Bayesian prior. The localized prior leverages the similarity of the targeted database, alleviates the intensive Bayesian computation, and links the new method to the classical linear minimum mean squared error estimation. We demonstrate applications of the proposed method in a variety of scenarios, including text images, multiview images and face images. Experimental results show the superiority of the new algorithm over existing methods.Comment: 15 pages, 13 figures, 2 tables, journa

    Adaptive non-local means for multiview image denoising: Searching for the right patches via a statistical approach

    Get PDF
    ABSTRACT We present an adaptive non-local means (NLM) denoising method for a sequence of images captured by a multiview imaging system, where direct extensions of existing single image NLM methods are incapable of producing good results. Our proposed method consists of three major components: (1) a robust joint-view distance metric to measure the similarity of patches; (2) an adaptive procedure derived from statistical properties of the estimates to determine the optimal number of patches to be used; (3) a new NLM algorithm to denoise using only a set of similar patches. Experimental results show that the proposed method is robust to disparity estimation error, out-performs existing algorithms in multiview settings, and performs competitively in video settings. Index Terms-Non-local means, adaptive filtering, multiview denoising, patch-based denoisin

    Compression and Subjective Quality Assessment of 3D Video

    Get PDF
    In recent years, three-dimensional television (3D TV) has been broadly considered as the successor to the existing traditional two-dimensional television (2D TV) sets. With its capability of offering a dynamic and immersive experience, 3D video (3DV) is expected to expand conventional video in several applications in the near future. However, 3D content requires more than a single view to deliver the depth sensation to the viewers and this, inevitably, increases the bitrate compared to the corresponding 2D content. This need drives the research trend in video compression field towards more advanced and more efficient algorithms. Currently, the Advanced Video Coding (H.264/AVC) is the state-of-the-art video coding standard which has been developed by the Joint Video Team of ISO/IEC MPEG and ITU-T VCEG. This codec has been widely adopted in various applications and products such as TV broadcasting, video conferencing, mobile TV, and blue-ray disc. One important extension of H.264/AVC, namely Multiview Video Coding (MVC) was an attempt to multiple view compression by taking into consideration the inter-view dependency between different views of the same scene. This codec H.264/AVC with its MVC extension (H.264/MVC) can be used for encoding either conventional stereoscopic video, including only two views, or multiview video, including more than two views. In spite of the high performance of H.264/MVC, a typical multiview video sequence requires a huge amount of storage space, which is proportional to the number of offered views. The available views are still limited and the research has been devoted to synthesizing an arbitrary number of views using the multiview video and depth map (MVD). This process is mandatory for auto-stereoscopic displays (ASDs) where many views are required at the viewer side and there is no way to transmit such a relatively huge number of views with currently available broadcasting technology. Therefore, to satisfy the growing hunger for 3D related applications, it is mandatory to further decrease the bitstream by introducing new and more efficient algorithms for compressing multiview video and depth maps. This thesis tackles the 3D content compression targeting different formats i.e. stereoscopic video and depth-enhanced multiview video. Stereoscopic video compression algorithms introduced in this thesis mostly focus on proposing different types of asymmetry between the left and right views. This means reducing the quality of one view compared to the other view aiming to achieve a better subjective quality against the symmetric case (the reference) and under the same bitrate constraint. The proposed algorithms to optimize depth-enhanced multiview video compression include both texture compression schemes as well as depth map coding tools. Some of the introduced coding schemes proposed for this format include asymmetric quality between the views. Knowing that objective metrics are not able to accurately estimate the subjective quality of stereoscopic content, it is suggested to perform subjective quality assessment to evaluate different codecs. Moreover, when the concept of asymmetry is introduced, the Human Visual System (HVS) performs a fusion process which is not completely understood. Therefore, another important aspect of this thesis is conducting several subjective tests and reporting the subjective ratings to evaluate the perceived quality of the proposed coded content against the references. Statistical analysis is carried out in the thesis to assess the validity of the subjective ratings and determine the best performing test cases

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    Transform-based methods for stereo matching and dense depth estimation

    Get PDF
    Stereo matching is a passive method for estimating depth of a scene from two views from different perspectives. Parallax creates a disparity between the relative positions of scene points on the imaging planes depending on the distance of the points. The principle of stereo matching is to extract those disparities by finding the corresponding points between the images. Although stereo matching has been extensively studied, the existing solutions are still compromises between computational load and achieved quality. In this thesis, advances are made on both fronts. At the core of the matching algorithm is the similarity measure, which directly determines how well correspondences are found and how reliable they are. Traditionally, matching has been done in spatial domain using pixel differences such as sum of absolute differences (SAD). In this thesis, a similarity measure is proposed for use in stereo matching that is based on analysis of coefficient signs of transform domain representations. While originally formulated as an extension of Fourier domain phase-only correlation to the discrete cosine transform (DCT), here the method is developed further by applying it to a number of real-valued abstract harmonic transforms, including type II DCT, integer DCT, Walsh-Hadamard and a modified version of Haar. Results are presented showing that the method in general provides better quality than the reference algorithm SAD, while Haar is shown to be the best performing transform, both in terms of quality and speed. Furthermore, the approach is adapted to a mobile platform by replacing the transform with an even simpler one, the census transform. An efficient implementation is developed, which utilizes the single instruction, multiple data (SIMD) enabled NEON core included in many ARM processors currently dominating the mobile market. Special attention is paid to the alternate methods of performing a population count on a variable, which is a key component in computing the similarities. Subjective testing along with numerical measurements set the census-based matching slightly under the reference point SAD in terms of quality, but speed-wise SAD is clearly out-performed by the census approach, thus establishing it as a competitive candidate for stereo matching in mobile applications

    Data-Driven Image Restoration

    Get PDF
    Every day many images are taken by digital cameras, and people are demanding visually accurate and pleasing result. Noise and blur degrade images captured by modern cameras, and high-level vision tasks (such as segmentation, recognition, and tracking) require high-quality images. Therefore, image restoration specifically, image deblurring and image denoising is a critical preprocessing step. A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. Existing image deblurring techniques often rely on generic image priors that only help recover part of the frequency spectrum, such as the frequencies near the high-end. To this end, we pose the following specific questions: (i) Does class-specific information offer an advantage over existing generic priors for image quality restoration? (ii) If a class-specific prior exists, how should it be encoded into a deblurring framework to recover attenuated image frequencies? Throughout this work, we devise a class-specific prior based on the band-pass filter responses and incorporate it into a deblurring strategy. Specifically, we show that the subspace of band-pass filtered images and their intensity distributions serve as useful priors for recovering image frequencies. Next, we present a novel image denoising algorithm that uses external, category specific image database. In contrast to existing noisy image restoration algorithms, our method selects clean image “support patches” similar to the noisy patch from an external database. We employ a content adaptive distribution model for each patch where we derive the parameters of the distribution from the support patches. Our objective function composed of a Gaussian fidelity term that imposes category specific information, and a low-rank term that encourages the similarity between the noisy and the support patches in a robust manner. Finally, we propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules (CIMM) for image denoising. The CIMM structure possesses two distinctive features that are important for the noise removal task. Firstly, each residual unit employs identity mappings as the skip connections and receives pre-activated input to preserve the gradient magnitude propagated in both the forward and backward directions. Secondly, by utilizing dilated kernels for the convolution layers in the residual branch, each neuron in the last convolution layer of each module can observe the full receptive field of the first layer

    Discontinuity-Aware Base-Mesh Modeling of Depth for Scalable Multiview Image Synthesis and Compression

    Full text link
    This thesis is concerned with the challenge of deriving disparity from sparsely communicated depth for performing disparity-compensated view synthesis for compression and rendering of multiview images. The modeling of depth is essential for deducing disparity at view locations where depth is not available and is also critical for visibility reasoning and occlusion handling. This thesis first explores disparity derivation methods and disparity-compensated view synthesis approaches. Investigations reveal the merits of adopting a piece-wise continuous mesh description of depth for deriving disparity at target view locations to enable disparity-compensated backward warping of texture. Visibility information can be reasoned due to the correspondence relationship between views that a mesh model provides, while the connectivity of a mesh model assists in resolving depth occlusion. The recent JPEG 2000 Part-17 extension defines tools for scalable coding of discontinuous media using breakpoint-dependent DWT, where breakpoints describe discontinuity boundary geometry. This thesis proposes a method to efficiently reconstruct depth coded using JPEG 2000 Part-17 as a piece-wise continuous mesh, where discontinuities are driven by the encoded breakpoints. Results show that the proposed mesh can accurately represent decoded depth while its complexity scales along with decoded depth quality. The piece-wise continuous mesh model anchored at a single viewpoint or base-view can be augmented to form a multi-layered structure where the underlying layers carry depth information of regions that are occluded at the base-view. Such a consolidated mesh representation is termed a base-mesh model and can be projected to many viewpoints, to deduce complete disparity fields between any pair of views that are inherently consistent. Experimental results demonstrate the superior performance of the base-mesh model in multiview synthesis and compression compared to other state-of-the-art methods, including the JPEG Pleno light field codec. The proposed base-mesh model departs greatly from conventional pixel-wise or block-wise depth models and their forward depth mapping for deriving disparity ingrained in existing multiview processing systems. When performing disparity-compensated view synthesis, there can be regions for which reference texture is unavailable, and inpainting is required. A new depth-guided texture inpainting algorithm is proposed to restore occluded texture in regions where depth information is either available or can be inferred using the base-mesh model

    Kernelized Supervised Dictionary Learning

    Get PDF
    The representation of a signal using a learned dictionary instead of predefined operators, such as wavelets, has led to state-of-the-art results in various applications such as denoising, texture analysis, and face recognition. The area of dictionary learning is closely associated with sparse representation, which means that the signal is represented using few atoms in the dictionary. Despite recent advances in the computation of a dictionary using fast algorithms such as K-SVD, online learning, and cyclic coordinate descent, which make the computation of a dictionary from millions of data samples computationally feasible, the dictionary is mainly computed using unsupervised approaches such as k-means. These approaches learn the dictionary by minimizing the reconstruction error without taking into account the category information, which is not optimal in classification tasks. In this thesis, we propose a supervised dictionary learning (SDL) approach by incorporating information on class labels into the learning of the dictionary. To this end, we propose to learn the dictionary in a space where the dependency between the signals and their corresponding labels is maximized. To maximize this dependency, the recently-introduced Hilbert Schmidt independence criterion (HSIC) is used. The learned dictionary is compact and has closed form; the proposed approach is fast. We show that it outperforms other unsupervised and supervised dictionary learning approaches in the literature on real-world data. Moreover, the proposed SDL approach has as its main advantage that it can be easily kernelized, particularly by incorporating a data-driven kernel such as a compression-based kernel, into the formulation. In this thesis, we propose a novel compression-based (dis)similarity measure. The proposed measure utilizes a 2D MPEG-1 encoder, which takes into consideration the spatial locality and connectivity of pixels in the images. The proposed formulation has been carefully designed based on MPEG encoder functionality. To this end, by design, it solely uses P-frame coding to find the (dis)similarity among patches/images. We show that the proposed measure works properly on both small and large patch sizes on textures. Experimental results show that by incorporating the proposed measure as a kernel into our SDL, it significantly improves the performance of a supervised pixel-based texture classification on Brodatz and outdoor images compared to other compression-based dissimilarity measures, as well as state-of-the-art SDL methods. It also improves the computation speed by about 40% compared to its closest rival. Eventually, we have extended the proposed SDL to multiview learning, where more than one representation is available on a dataset. We propose two different multiview approaches: one fusing the feature sets in the original space and then learning the dictionary and sparse coefficients on the fused set; and the other by learning one dictionary and the corresponding coefficients in each view separately, and then fusing the representations in the space of the dictionaries learned. We will show that the proposed multiview approaches benefit from the complementary information in multiple views, and investigate the relative performance of these approaches in the application of emotion recognition
    corecore