18,186 research outputs found

    Multivariate sparse interpolation using randomized Kronecker substitutions

    Full text link
    We present new techniques for reducing a multivariate sparse polynomial to a univariate polynomial. The reduction works similarly to the classical and widely-used Kronecker substitution, except that we choose the degrees randomly based on the number of nonzero terms in the multivariate polynomial, that is, its sparsity. The resulting univariate polynomial often has a significantly lower degree than the Kronecker substitution polynomial, at the expense of a small number of term collisions. As an application, we give a new algorithm for multivariate interpolation which uses these new techniques along with any existing univariate interpolation algorithm.Comment: 21 pages, 2 tables, 1 procedure. Accepted to ISSAC 201

    Fast systematic encoding of multiplicity codes

    Get PDF
    We present quasi-linear time systematic encoding algorithms for multiplicity codes. The algorithms have their origins in the fast multivariate interpolation and evaluation algorithms of van der Hoeven and Schost (2013), which we generalise to address certain Hermite-type interpolation and evaluation problems. By providing fast encoding algorithms for multiplicity codes, we remove an obstruction on the road to the practical application of the private information retrieval protocol of Augot, Levy-dit-Vehel and Shikfa (2014)

    Trivariate polynomial approximation on Lissajous curves

    Get PDF
    We study Lissajous curves in the 3-cube, that generate algebraic cubature formulas on a special family of rank-1 Chebyshev lattices. These formulas are used to construct trivariate hyperinterpolation polynomials via a single 1-d Fast Chebyshev Transform (by the Chebfun package), and to compute discrete extremal sets of Fekete and Leja type for trivariate polynomial interpolation. Applications could arise in the framework of Lissajous sampling for MPI (Magnetic Particle Imaging)

    Nodal bases for the serendipity family of finite elements

    Full text link
    Using the notion of multivariate lower set interpolation, we construct nodal basis functions for the serendipity family of finite elements, of any order and any dimension. For the purpose of computation, we also show how to express these functions as linear combinations of tensor-product polynomials.Comment: Pre-print of version that will appear in Foundations of Computational Mathematic

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure
    • …
    corecore