29 research outputs found

    Exponential Operators, Dobinski Relations and Summability

    Get PDF
    We investigate properties of exponential operators preserving the particle number using combinatorial methods developed in order to solve the boson normal ordering problem. In particular, we apply generalized Dobinski relations and methods of multivariate Bell polynomials which enable us to understand the meaning of perturbation-like expansions of exponential operators. Such expansions, obtained as formal power series, are everywhere divergent but the Pade summation method is shown to give results which very well agree with exact solutions got for simplified quantum models of the one mode bosonic systems.Comment: Presented at XIIth Central European Workshop on Quantum Optics, Bilkent University, Ankara, Turkey, 6-10 June 2005. 4 figures, 6 pages, 10 reference

    Bell polynomials in combinatorial Hopf algebras

    Full text link
    Partial multivariate Bell polynomials have been defined by E.T. Bell in 1934. These polynomials have numerous applications in Combinatorics, Analysis, Algebra, Probabilities, etc. Many of the formulae on Bell polynomials involve combinatorial objects (set partitions, set partitions in lists, permutations, etc.). So it seems natural to investigate analogous formulae in some combinatorial Hopf algebras with bases indexed by these objects. The algebra of symmetric functions is the most famous example of a combinatorial Hopf algebra. In a first time, we show that most of the results on Bell polynomials can be written in terms of symmetric functions and transformations of alphabets. Then, we show that these results are clearer when stated in other Hopf algebras (this means that the combinatorial objects appear explicitly in the formulae). We investigate also the connexion with the Fa{\`a} di Bruno Hopf algebra and the Lagrange-B{\"u}rmann formula

    A product formula and combinatorial field theory

    Get PDF
    We treat the problem of normally ordering expressions involving the standard boson operators a, ay where [a; ay] = 1. We show that a simple product formula for formal power series | essentially an extension of the Taylor expansion | leads to a double exponential formula which enables a powerful graphical description of the generating functions of the combinatorial sequences associated with such functions | in essence, a combinatorial eld theory. We apply these techniques to some examples related to specic physical Hamiltonians

    Some useful combinatorial formulae for bosonic operators

    Get PDF
    We give a general expression for the normally ordered form of a function F(w(a,a*)) where w is a function of boson annihilation and creation operators satisfying [a,a*]=1. The expectation value of this expression in a coherent state becomes an exact generating function of Feynman-type graphs associated with the zero-dimensional Quantum Field Theory defined by F(w). This enables one to enumerate explicitly the graphs of given order in the realm of combinatorially defined sequences. We give several examples of the use of this technique, including the applications to Kerr-type and superfluidity-type hamiltonians.Comment: 8 pages, 3 figures, 17 reference

    r−r-Bell polynomials in combinatorial Hopf algebras

    Full text link
    We introduce partial rr-Bell polynomials in three combinatorial Hopf algebras. We prove a factorization formula for the generating functions which is a consequence of the Zassenhauss formula.Comment: 7 page
    corecore