188 research outputs found

    Resource allocation software algorithms for AMC-OFDM systems

    Get PDF
    PhD ThesisIn recent years, adaptive modulation and coding (AMC) technologies, resource allocation strategies and user scheduling for single-cell downlink orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems have been widely researched in order to ensure that capacity and throughput are maximised. In terms of AMC technologies, the correlation between the channel coefficients corresponding to the transmitted sub-carriers has not been considered yet. In the literature of resource allocation and user scheduling, either channel coding is not considered or only a fixed code rate is specified. Consequently, with a fixed number of data sub-carriers for each user, all these criteria restrict the flexibility of exploiting the available channel capacity, which reflects negatively on system throughput. At the same time, the presented scheduling algorithms so far managed the data of each user regardless the fair services of all users. The philosophy of this thesis is to maximise the average system throughput by proposing novel AMC, resource allocation and user scheduling strategies for OFDM and OFDMA systems based on developed software engineering life cycle models. These models have been designed to guarantee the scalability, extendibility and portability of the proposed strategies. This thesis presents an AMC strategy that divides the transmitted frame into sub-channels with an equal number of sub-carriers and selects different modulation and coding schemes (MCSs) amongst them rather than considering the same MCS for the entire frame. This strategy has been combined with a pilot adjustment scheme that reduces the pilots used for channel estimation in each sub-channel depending on the measured coherence bandwidth, signal to noise ratio (SNR), and SNR fluctuation values. The reduced pilots are replaced with additional data sub-carriers in order to improve the throughput. Additionally, a novel resource allocation strategy has been introduced in order to maximise the system throughput by distributing the users, transmission power and information bit streams over the employed sub-channels. The introduced method utilises the proposed AMC strategy in combination with pilot adjustment scheme to tackle the problem of channel capacity exploiting efficiently. It presents the throughput as a new cost function in terms of spectral efficiency and bit-error rate (BER), in which both convolutional coding rates and modulation order can be varied. The investigated throughput maximisation problem has been solved by producing two approaches. Firstly, optimised approach that solves the adopted problem optimally using the well known Lagrange multipliers method. This approach requires a huge search processes to achieve the optimal allocation of the resources, which yields a high computational complexity. To overcome the complexity issue, the second approach decouples the considered maximisation problem into two sub-problems based on the decomposition method on the cost of performance particularly for low SNR values. The proposed resource allocation strategy has been developed to work with multi-input-multi-output (MIMO) based AMC-OFDMA systems. In this project, two MIMO transmission criteria are considered, i.e. traditional and eigen-mode. In contrast, a user scheduling algorithm combined with the proposed resource allocation and AMC strategies is presented. The user scheduling algorithm aims to maximize the average system throughput by arranging the users in distinct queues according to their priorities and selecting the best user of each queue individually in order to guarantee a fair user service amongst different priority levels. When the involved users are scheduled, the scheduled users have been passed to the resource allocation to implement the distribution of the available resources. The proposed strategies have been tested over different international telecommunication union (ITU) channel profiles. The obtained simulation results show the superior performance of the introduced approaches in comparison with the related conventional methods. Furthermore, the gradually improvement in the throughput performance of the AMC-OFDM/ODMA system throughout the combination of the proposed strategies is clearly explained.Ministry of Higher Education and Scientific Research/IRAQ

    Studies on efficient spectrum sharing in coexisting wireless networks.

    Get PDF
    Wireless communication is facing serious challenges worldwide: the severe spectrum shortage along with the explosive increase of the wireless communication demands. Moreover, different communication networks may coexist in the same geographical area. By allowing multiple communication networks cooperatively or opportunistically sharing the same frequency will potentially enhance the spectrum efficiency. This dissertation aims to investigate important spectrum sharing schemes for coexisting networks. For coexisting networks operating in interweave cognitive radio mode, most existing works focus on the secondary network’s spectrum sensing and accessing schemes. However, the primary network can be selfish and tends to use up all the frequency resource. In this dissertation, a novel optimization scheme is proposed to let primary network maximally release unnecessary frequency resource for secondary networks. The optimization problems are formulated for both uplink and downlink orthogonal frequency-division multiple access (OFDMA)-based primary networks, and near optimal algorithms are proposed as well. For coexisting networks in the underlay cognitive radio mode, this work focuses on the resource allocation in distributed secondary networks as long as the primary network’s rate constraint can be met. Global optimal multicarrier discrete distributed (MCDD) algorithm and suboptimal Gibbs sampler based Lagrangian algorithm (GSLA) are proposed to solve the problem distributively. Regarding to the dirty paper coding (DPC)-based system where multiple networks share the common transmitter, this dissertation focuses on its fundamental performance analysis from information theoretic point of view. Time division multiple access (TDMA) as an orthogonal frequency sharing scheme is also investigated for comparison purpose. Specifically, the delay sensitive quality of service (QoS) requirements are incorporated by considering effective capacity in fast fading and outage capacity in slow fading. The performance metrics in low signal to noise ratio (SNR) regime and high SNR regime are obtained in closed forms followed by the detailed performance analysis

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Resource allocation and flexible scheduling in wireless networks

    Get PDF

    The WiMAX PHY Layer

    Get PDF

    Cross layer designs for OFDMA wireless systems with heterogeneous delay requirements

    Get PDF
    This paper investigates a cross layer scheduling scheme for OFDMA wireless system with heterogeneous delay requirements. Unlike most existing cross layer designs which take a decoupling approach, our design considers both queueing theory and information theory in modeling the system dynamics. The cross layer design is formulated as an optimization of total system throughput, subject to individual user's delay constraint and total base station transmit power constraint. The optimal scheduling algorithm for the delay-sensitive cross layer optimization is to dynamically allocate radio resources based on users' channel state information, source statistics and delay requirements. Specifically, optimal power allocation was found to be multilevel water-filling where urgent users have higher water-filling levels, while optimal subcarrier allocation strategy is shown to be achievable by low complexity greedy algorithm. Simulation results also show the proposed jointly optimal power and subcarrier allocation policy can provide substantial throughput gain with all delay constraints being satisfied. © 2006 IEEE.published_or_final_versio

    Cross-Layer Capacity Optimization In OFDMA Systems: WiMAX And LTE

    Get PDF
    Given the broad range of applications supported, high data rate required and low latency promised; dynamic radio resource management is becoming vital for newly emerging air interface technologies such as wireless interoperability for microwave access (Wimax) and long term evolution (lte) adopted by international standards. This thesis considers orthogonal frequency division multiple access (ofdma) system, which has been implemented in both Wimax and lte technologies as their air interface multiple access mechanism. A framework for optimized resource allocation with quality of service (qos) support that aims to balance between service provider\u27s revenue and subscriber\u27s satisfaction is proposed. A cross-layer optimization design for subchannel, for Wimax, and physical resource block (prb), for lte, and power allocations with the objective of maximizing the capacity (in bits/symbol/hz) subject to fairness parameters and qos requirements as constraints is presented. An adaptive modulation and coding (amc)-based cross-layer scheme has also been proposed in this thesis by adopting an amc scheme together with the cross-layer scheme to realize a more practical and viable resource allocation. The optimization does not only consider users channel conditions but also queue status of each user as well as different qos requirements. In the proposed framework, the problem of power allocation is solved analytically while the subchannel/prb allocation is solved using integer programming exhaustive search. The simulation and numerical results obtained in this thesis have shown improved system performance as compared to other optimization schemes known in literature

    Improved IDMA for Multiple Access of 5G

    Get PDF
    Due to its good performance and low complexity, IDMA is believed to be an important technique for future radio access (FRA). However, its performances are highly affected by the interleaver design. In this paper we propose two contributions to improve the performance of the IDMA. First, we propose a new interleaver design, called "NLM interleaver", which improves the computational complexity, reduces the bandwidth consumption and the memory requirements of the system, provides the quasi-orthogonal spreading codes and interleavers with a high security and offers infinite sets of codes and interleavers based on only one parameter. Second, we propose a new user grouping algorithm based on the correlation function to improve the resources (Codes, Interleavers). All users are divided into several equal-size groups where each group's data transmitted at the same time, over the same frequencies and the same interleaver. The simulation results indicate that the proposed scheme can achieve better performances compared to the existing algorithms
    corecore