248 research outputs found

    Sensor Augmented Large Interactive Surfaces

    Get PDF
    Large interactive surfaces enable effective multi-user collaboration, but a majority of the current multi-touch systems are not truly multi-user. In this work we present a novel sensor-based approach for both user identification around a touch table and integration of unique gestures above the table. The work proposes the criteria for a successful and robust user identification system. The Cricket sensor based user identification system is integrated with an open source gesture recognition system Sparsh-UI to enable rapid multi-touch application development. Finally we evaluate the Cricket-based algorithm with contemporary multi-user, multi-touch systems and describe the various interaction affordances provided by the Cricket based user identification system

    Gestures and Interaction: exploiting natural abilities in the design of interactive systems

    Get PDF
    Collana seminari interni 2012, Number 20120606.This talk explores the role of gestures in computer supported collaboration. People make extensive use of non-verbal forms of communication when they interact with each other in everyday life: of these, gestures are relatively easy to observe and quantify. However, the role of gestures in human computer interaction so far has been focused mainly on using conventional signs like visible commands, rather than on exploiting all nuances of such natural human skill. We propose a perspective on natural interaction that builds on recent advances in tangible interaction, embodiment and computer supported collaborative work. We consider the social and cognitive aspects of gestures and manipulations to support our claim of a primacy of tangible and multi-touch interfaces, and describe our experiences focused on assessing the suitability of such interface paradigms to traditional application scenarios

    AN EXPLORATORY STUDY IN INTERACTIVE CAR CATALOGUE SYSTEM ON TABLETOP DISPLAY SYSTEM

    Get PDF
    This report covers on the implementation of tabletop tablet to display interactive catalogue system in the car industry. This project is a prove of concept indicating that the multi touch techniques are really useful in car industry as the user can direct manipulate sense of touch on viewing the car catalogue. This is proved when car purchasing activity or car road show take place. It focuses on the background on the catalogue whereby less interactive and low in usability discussed. The prime objective of this project is to investigate whether by having tabletop tablet will add and induce usability via user collaboration enabling more than one user to perform moving, resizing, zooming and rotating the car catalogue projected on the tabletop. On the literature section, it had been mention details of the architectural, design and application component. It also findings and readings on the multi gestural techniques, natural user interfaces (NUI) and the multi touch development platform. On the methodology part touches on the timeline and period how the project being carried out. Attached together the Gantt chart and flow chart on the event flow and task schedule. Discussion and result section talks about the development of the project and outcome of it. Description and explanation was included on how the multi-touch application being developed integrated with the entire component. Discussion regarding the system advantages, recommendation for future opportunity and weakness included in second last section. The recommendation described and explained taking into account of the system weakness and further improvement on the further coming years. Last section is the conclusion, discussing on the hope and key aspect achieved throughout the software development and progress

    Evaluation of User Gestures in Multi-touch Interaction: a Case Study in Pair-programming

    Get PDF
    Natural User Interfaces are often described as familiar, evocative and intuitive, predictable, based on common skills. Though unquestionable in principle, such definitions don't provide the designer with effective means to design a natural interface or evaluate a design choice vs another. Two main issues in particular are open: (i) how do we evaluate a natural interface, is there a way to measure 'naturalness'; (ii) do natural user interfaces provide a concrete advantage in terms of efficiency, with respect to more traditional interface paradigms? In this paper we discuss and compare observations of user behavior in the task of pair programming, performed at a traditional desktop versus a multi-touch table. We show how the adoption of a multi-touch user interface fosters a significant, observable and measurable, increase of nonverbal communication in general and of gestures in particular, that in turn appears related to the overall performance of the users in the task of algorithm understanding and debugging

    The Smart Stage: Designing 3D interaction metaphors for immersive and ubiquitous music systems

    Get PDF
    This conceptual paper describes a work in progress in the process of design and implementation of the Smart Stage, an interactive music system prototype for collaborative musical creativity in immersive and ubiquitous environments. This system is intended to have a low entry barrier, thus more forgiving to users with lesser experience or knowledge in music, and it is designed with affordances to support intuitive progress in improvisational performance in a collaborative setting. We present a preliminary technical overview of the system and a first case study of a 3D interaction metaphor for granular synthesis, developed for this environment.Innovation Agency (Agência de Inovação, ADI, Portugal) and Quadro de Referência Estratégico Nacional (QREN, Portugal): VisualYzARt: Visual programming framework for augmented reality and ubiquitous natural user interfaces (QREN-ADI ref: 23201) and COMPETE - Programa Operacional Factores de Competitividade (POFC

    Interactive Spaces Natural interfaces supporting gestures and manipulations in interactive spaces

    Get PDF
    This doctoral dissertation focuses on the development of interactive spaces through the use of natural interfaces based on gestures and manipulative actions. In the real world people use their senses to perceive the external environment and they use manipulations and gestures to explore the world around them, communicate and interact with other individuals. From this perspective the use of natural interfaces that exploit the human sensorial and explorative abilities helps filling the gap between physical and digital world. In the first part of this thesis we describe the work made for improving interfaces and devices for tangible, multi touch and free hand interactions. The idea is to design devices able to work also in uncontrolled environments, and in situations where control is mostly of the physical type where even the less experienced users can express their manipulative exploration and gesture communication abilities. We also analyze how it can be possible to mix these techniques to create an interactive space, specifically designed for teamwork where the natural interfaces are distributed in order to encourage collaboration. We then give some examples of how these interactive scenarios can host various types of applications facilitating, for instance, the exploration of 3D models, the enjoyment of multimedia contents and social interaction. Finally we discuss our results and put them in a wider context, focusing our attention particularly on how the proposed interfaces actually improve people’s lives and activities and the interactive spaces become a place of aggregation where we can pursue objectives that are both personal and shared with others

    Interactive Spaces Natural interfaces supporting gestures and manipulations in interactive spaces

    Get PDF
    This doctoral dissertation focuses on the development of interactive spaces through the use of natural interfaces based on gestures and manipulative actions. In the real world people use their senses to perceive the external environment and they use manipulations and gestures to explore the world around them, communicate and interact with other individuals. From this perspective the use of natural interfaces that exploit the human sensorial and explorative abilities helps filling the gap between physical and digital world. In the first part of this thesis we describe the work made for improving interfaces and devices for tangible, multi touch and free hand interactions. The idea is to design devices able to work also in uncontrolled environments, and in situations where control is mostly of the physical type where even the less experienced users can express their manipulative exploration and gesture communication abilities. We also analyze how it can be possible to mix these techniques to create an interactive space, specifically designed for teamwork where the natural interfaces are distributed in order to encourage collaboration. We then give some examples of how these interactive scenarios can host various types of applications facilitating, for instance, the exploration of 3D models, the enjoyment of multimedia contents and social interaction. Finally we discuss our results and put them in a wider context, focusing our attention particularly on how the proposed interfaces actually improve people’s lives and activities and the interactive spaces become a place of aggregation where we can pursue objectives that are both personal and shared with others

    AQUA-G: a universal gesture recognition framework

    Get PDF
    In this thesis, I describe a software architecture and implementation which is designed to ease the process of 1) developing gesture-enabled applications and 2) using multiple disparate interaction devices simultaneously to create gestures. Developing gesture-enabled applications from scratch can be a time-consuming process involving obtaining input from novel input devices, processing that input in order to recognize gestures, and connecting this information to the application. Previously, developers have turned to gesture recognition systems to assist them in developing these applications. However, existing systems to date are limited in flexibility and adaptability. I propose AQUA-G, a universal gesture recognition framework that utilizes a unified event architecture to communicate with a limitless variety of input devices. AQUA-G provides abstraction of gesture recognition and allows developers to write custom gestures. Its features have been driven in part by previous architectures and are partially based on a needs assessment with a sample of developers. This research contributes a scalable and reliable software system for gesture-enabled application development, which makes developing and prototyping novel interaction styles more accessible to a larger development community

    Gestures and cooperation: considering non verbal communication in the design of interactive spaces

    Get PDF
    This dissertation explores the role of gestures in computer supported collaboration. People make extensive use of non-verbal forms of communication when they interact with each other in everyday life: of these, gestures are relatively easy to observe and quantify. However, the role of gestures in human computer interaction so far has been focused mainly on using conventional signs like visible commands, rather than on exploiting all nuances of such natural human skill. We propose a perspective on natural interaction that builds on recent advances in tangible interaction, embodiment and computer supported collaborative work. We consider the social and cognitive aspects of gestures and manipulations to support our claim of a primacy of tangible and multi-touch interfaces, and describe our experiences focused on assessing the suitability of such interface paradigms to traditional application scenarios. We describe our design and prototype of an interactive space for group-work, in which natural interfaces, such as tangible user interfaces and multi-touch screens, are deployed so as to foster and encourage collaboration. We show that these interfaces can lead to an improvement in performances and that such improvements appear related to an increase of the gestures performed by the users. We also describe the progress on the state of the art that have been necessary to implement such tools on commodity hardware and deploy them in a relatively uncontrolled environment. Finally, we discuss our findings and frame them in the broader context of embodied interaction, drawing useful implications for interactions design, with emphasis on how to enhance the activity of people in their workplace, home, school, etc. supported in their individual and collaborative tasks by natural interfaces
    corecore