144 research outputs found

    ARTMAP-IC and Medical Diagnosis: Instance Counting and Inconsistent Cases

    Full text link
    For complex database prediction problems such as medical diagnosis, the ARTMAP-IC neural network adds distributed prediction and category instance counting to the basic fuzzy ARTMAP system. For the ARTMAP match tracking algorithm, which controls search following a predictive error, a new version facilitates prediction with sparse or inconsistent data. Compared to the original match tracking algorithm (MT+), the new algorithm (MT-) better approximates the real-time network differential equations and further compresses memory without loss of performance. Simulations examine predictive accuracy on four medical databases: Pima Indian diabetes, breast cancer, heart disease, and gall bladder removal. ARTMAP-IC results arc equal to or better than those of logistic regression, K nearest neighbor (KNN), the ADAP perceptron, multisurface pattern separation, CLASSIT, instance-based (IBL), and C4. ARTMAP dynamics are fast, stable, and scalable. A voting strategy improves prediction by training the system several times on different orderings of an input set. Voting, instance counting, and distributed representations combine to form confidence estimates for competing predictions.National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-95-J-0409, N00014-95-0657

    About New Pattern Recognition Method for the Universal Program System “Recognition”

    Get PDF
    In this work the new pattern recognition method based on the unification of algebraic and statistical approaches is described. The main point of the method is the voting procedure upon the statistically weighted regularities, which are linear separators in two-dimensional projections of feature space. The report contains brief description of the theoretical foundations of the method, description of its software realization and the results of series of experiments proving its usefulness in practical tasks

    Pre-dispersive near-infrared light sensing in non-destructively classifying the brix of intact pineapples

    Get PDF
    Exported fresh intact pineapples must fulfill the minimum internal quality requirement of 12 degree brix. Even though near-infrared (NIR) spectroscopic approaches are promising to non-destructively and rapidly assess the internal quality of intact pineapples, these approaches involve expensive and complex NIR spectroscopic instrumentation. Thus, this research evaluates the performance of a proposed pre-dispersive NIR light sensing approach in non-destructively classifying the Brix of pineapples using K-fold cross-validation, holdout validation, and sensitive analysis. First, the proposed pre-dispersive NIR sensing device that consisted of a light sensing element and five NIR light emitting diodes with peak wavelengths of 780, 850, 870, 910, and 940 nm, respectively, was developed. After that, the diffuse reflectance NIR light of intact pineapples was non-destructively acquired using the developed NIR sensing device before their Brix values were conventionally measured using a digital refractometer. Next, an artificial neural network (ANN) was trained and optimized to classify the Brix values of pineapples using the acquired NIR light. The results of the sensitivity analysis showed that either one wavelength that was near to the water absorbance or chlorophyll band was redundant in the classification. The performance of the trained ANN was tested using new pineapples with the optimal classification accuracy of 80.56%. This indicates that the proposed predispersive NIR light sensing approach coupled with the ANN is promising to be an alternative to non-destructively classifying the internal quality of fruits
    corecore