16 research outputs found

    Multistart Methods for Quantum Approximate Optimization

    Full text link
    Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters to maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima in the space of parameters makes it harder for the classical optimizer. In this paper we study the use of a multistart optimization approach within a QAOA framework to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT

    Evaluating Quantum Approximate Optimization Algorithm: A Case Study

    Full text link
    Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising quantum algorithms for the Noisy Intermediate-Scale Quantum (NISQ) era. Quantifying the performance of QAOA in the near-term regime is of utmost importance. We perform a large-scale numerical study of the approximation ratios attainable by QAOA is the low- to medium-depth regime. To find good QAOA parameters we perform 990 million 10-qubit QAOA circuit evaluations. We find that the approximation ratio increases only marginally as the depth is increased, and the gains are offset by the increasing complexity of optimizing variational parameters. We observe a high variation in approximation ratios attained by QAOA, including high variations within the same class of problem instances. We observe that the difference in approximation ratios between problem instances increases as the similarity between instances decreases. We find that optimal QAOA parameters concentrate for instances in out benchmark, confirming the previous findings for a different class of problems

    Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut

    Full text link
    Finding high-quality parameters is a central obstacle to using the quantum approximate optimization algorithm (QAOA). Previous work partially addresses this issue for QAOA on unweighted MaxCut problems by leveraging similarities in the objective landscape among different problem instances. However, we show that the more general weighted MaxCut problem has significantly modified objective landscapes, with a proliferation of poor local optima. Our main contribution is a simple rescaling scheme that overcomes these deleterious effects of weights. We show that for a given QAOA depth, a single "typical" vector of QAOA parameters can be successfully transferred to weighted MaxCut instances. This transfer leads to a median decrease in the approximation ratio of only 2.0 percentage points relative to a considerably more expensive direct optimization on a dataset of 34,701 instances with up to 20 nodes and multiple weight distributions. This decrease can be reduced to 1.2 percentage points at the cost of only 10 additional QAOA circuit evaluations with parameters sampled from a pretrained metadistribution, or the transferred parameters can be used as a starting point for a single local optimization run to obtain approximation ratios equivalent to those achieved by exhaustive optimization in 96.35%96.35\% of our cases

    Graph decomposition techniques for solving combinatorial optimization problems with variational quantum algorithms

    Full text link
    The quantum approximate optimization algorithm (QAOA) has the potential to approximately solve complex combinatorial optimization problems in polynomial time. However, current noisy quantum devices cannot solve large problems due to hardware constraints. In this work, we develop an algorithm that decomposes the QAOA input problem graph into a smaller problem and solves MaxCut using QAOA on the reduced graph. The algorithm requires a subroutine that can be classical or quantum--in this work, we implement the algorithm twice on each graph. One implementation uses the classical solver Gurobi in the subroutine and the other uses QAOA. We solve these reduced problems with QAOA. On average, the reduced problems require only approximately 1/10 of the number of vertices than the original MaxCut instances. Furthermore, the average approximation ratio of the original MaxCut problems is 0.75, while the approximation ratios of the decomposed graphs are on average of 0.96 for both Gurobi and QAOA. With this decomposition, we are able to measure optimal solutions for ten 100-vertex graphs by running single-layer QAOA circuits on the Quantinuum trapped-ion quantum computer H1-1, sampling each circuit only 500 times. This approach is best suited for sparse, particularly kk-regular graphs, as kk-regular graphs on nn vertices can be decomposed into a graph with at most nkk+1\frac{nk}{k+1} vertices in polynomial time. Further reductions can be obtained with a potential trade-off in computational time. While this paper applies the decomposition method to the MaxCut problem, it can be applied to more general classes of combinatorial optimization problems

    Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems

    Full text link
    Quantum computing is a computational paradigm with the potential to outperform classical methods for a variety of problems. Proposed recently, the Quantum Approximate Optimization Algorithm (QAOA) is considered as one of the leading candidates for demonstrating quantum advantage in the near term. QAOA is a variational hybrid quantum-classical algorithm for approximately solving combinatorial optimization problems. The quality of the solution obtained by QAOA for a given problem instance depends on the performance of the classical optimizer used to optimize the variational parameters. In this paper, we formulate the problem of finding optimal QAOA parameters as a learning task in which the knowledge gained from solving training instances can be leveraged to find high-quality solutions for unseen test instances. To this end, we develop two machine-learning-based approaches. Our first approach adopts a reinforcement learning (RL) framework to learn a policy network to optimize QAOA circuits. Our second approach adopts a kernel density estimation (KDE) technique to learn a generative model of optimal QAOA parameters. In both approaches, the training procedure is performed on small-sized problem instances that can be simulated on a classical computer; yet the learned RL policy and the generative model can be used to efficiently solve larger problems. Extensive simulations using the IBM Qiskit Aer quantum circuit simulator demonstrate that our proposed RL- and KDE-based approaches reduce the optimality gap by factors up to 30.15 when compared with other commonly used off-the-shelf optimizers.Comment: To appear in the proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), New York, USA, February 202

    Quantum annealing initialization of the quantum approximate optimization algorithm

    Get PDF
    The quantum approximate optimization algorithm (QAOA) is a prospective near-term quantum algorithm due to its modest circuit depth and promising benchmarks. However, an external parameter optimization required in QAOA could become a performance bottleneck. This motivates studies of the optimization landscape and search for heuristic ways of parameter initialization. In this work we visualize the optimization landscape of the QAOA applied to the MaxCut problem on random graphs, demonstrating that random initialization of the QAOA is prone to converging to local minima with sub-optimal performance. We introduce the initialization of QAOA parameters based on the Trotterized quantum annealing (TQA) protocol, parameterized by the Trotter time step. We find that the TQA initialization allows to circumvent the issue of false minima for a broad range of time steps, yielding the same performance as the best result out of an exponentially scaling number of random initializations. Moreover, we demonstrate that the optimal value of the time step coincides with the point of proliferation of Trotter errors in quantum annealing. Our results suggest practical ways of initializing QAOA protocols on near-term quantum devices and reveals new connections between QAOA and quantum annealing.Comment: 10 pages, 9 figures; typos corrected, references adde

    Of Representation Theory and Quantum Approximate Optimization Algorithm

    Full text link
    In this paper, the Quantum Approximate Optimization Algorithm (QAOA) is analyzed by leveraging symmetries inherent in problem Hamiltonians. We focus on the generalized formulation of optimization problems defined on the sets of nn-element dd-ary strings. Our main contribution encompasses dimension reductions for the originally proposed QAOA. These reductions retain the same problem Hamiltonian as the original QAOA but differ in terms of their mixer Hamiltonian, and initial state. The vast QAOA space has a daunting dimension of exponential scaling in nn, where certain reduced QAOA spaces exhibit dimensions governed by polynomial functions. This phenomenon is illustrated in this paper, by providing partitions corresponding to polynomial dimensions in the corresponding subspaces. As a result, each reduced QAOA partition encapsulates unique classical solutions absent in others, allowing us to establish a lower bound on the number of solutions to the initial optimization problem. Our novel approach opens promising practical advantages in accelerating the class of QAOA approaches, both quantum-based and classical simulation of circuits, as well as a potential tool to cope with barren plateaus problem

    To quantum or not to quantum: towards algorithm selection in near-term quantum optimization

    Get PDF
    The Quantum Approximate Optimization Algorithm (QAOA) constitutes one of the often mentioned candidates expected to yield a quantum boost in the era of near-term quantum computing. In practice, quantum optimization will have to compete with cheaper classical heuristic methods, which have the advantage of decades of empirical domain-specific enhancements. Consequently, to achieve optimal performance we will face the issue of algorithm selection, well-studied in practical computing. Here we introduce this problem to the quantum optimization domain. Specifically, we study the problem of detecting those problem instances of where QAOA is most likely to yield an advantage over a conventional algorithm. As our case study, we compare QAOA against the well-understood approximation algorithm of Goemans and Williamson (GW) on the Max-Cut problem. As exactly predicting the performance of algorithms can be intractable, we utilize machine learning to identify when to resort to the quantum algorithm. We achieve cross-validated accuracy well over 96\%, which would yield a substantial practical advantage. In the process, we highlight a number of features of instances rendering them better suited for QAOA. While we work with simulated idealised algorithms, the flexibility of ML methods we employed provides confidence that our methods will be equally applicable to broader classes of classical heuristics, and to QAOA running on real-world noisy devices
    corecore