1,450 research outputs found

    Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation

    Get PDF
    The initial draft of this article appeared as a School of Business Working Paper No. 273, dated January 1996, and titled "A Forward Monte Carlo Method For Solving Influence Diagrams Using Local Computation." A short version of this Working Paper appeared as "A Forward Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Preliminary Papers of the Sixth International Workshop on Artificial Intelligence and Statistics, pp. 75--82, January 1997.The main goal of this paper is to describe a new multistage Monte Carlo (MMC) simulation method for solving influence diagrams using local computation. Global methods have been proposed by others that sample from the joint probability distribution of all the variables in the influence diagram. However, for influence diagrams having many variables, the state space of all variables grows exponentially, and the sample sizes required for good estimates may be too large to be practical. In this paper, we develop a MMC method, which samples only a small set of chance variables for each decision node in the influence diagram. MMC is akin to methods developed for exact solution of influence diagrams in that we limit the number of chance variables sampled at any time. Because influence diagrams model each chance variable with a conditional probability distribution, the MMC method lends itself well to influence diagram representations.Partially supported by a grant from Sprint and Nortel Networks to John M. Charnes and by a contract from Sparta, Inc., to Prakash P. Shenoy

    A Computational Framework for Efficient Reliability Analysis of Complex Networks

    Get PDF
    With the growing scale and complexity of modern infrastructure networks comes the challenge of developing efficient and dependable methods for analysing their reliability. Special attention must be given to potential network interdependencies as disregarding these can lead to catastrophic failures. Furthermore, it is of paramount importance to properly treat all uncertainties. The survival signature is a recent development built to effectively analyse complex networks that far exceeds standard techniques in several important areas. Its most distinguishing feature is the complete separation of system structure from probabilistic information. Because of this, it is possible to take into account a variety of component failure phenomena such as dependencies, common causes of failure, and imprecise probabilities without reevaluating the network structure. This cumulative dissertation presents several key improvements to the survival signature ecosystem focused on the structural evaluation of the system as well as the modelling of component failures. A new method is presented in which (inter)-dependencies between components and networks are modelled using vine copulas. Furthermore, aleatory and epistemic uncertainties are included by applying probability boxes and imprecise copulas. By leveraging the large number of available copula families it is possible to account for varying dependent effects. The graph-based design of vine copulas synergizes well with the typical descriptions of network topologies. The proposed method is tested on a challenging scenario using the IEEE reliability test system, demonstrating its usefulness and emphasizing the ability to represent complicated scenarios with a range of dependent failure modes. The numerical effort required to analytically compute the survival signature is prohibitive for large complex systems. This work presents two methods for the approximation of the survival signature. In the first approach system configurations of low interest are excluded using percolation theory, while the remaining parts of the signature are estimated by Monte Carlo simulation. The method is able to accurately approximate the survival signature with very small errors while drastically reducing computational demand. Several simple test systems, as well as two real-world situations, are used to show the accuracy and performance. However, with increasing network size and complexity this technique also reaches its limits. A second method is presented where the numerical demand is further reduced. Here, instead of approximating the whole survival signature only a few strategically selected values are computed using Monte Carlo simulation and used to build a surrogate model based on normalized radial basis functions. The uncertainty resulting from the approximation of the data points is then propagated through an interval predictor model which estimates bounds for the remaining survival signature values. This imprecise model provides bounds on the survival signature and therefore the network reliability. Because a few data points are sufficient to build the interval predictor model it allows for even larger systems to be analysed. With the rising complexity of not just the system but also the individual components themselves comes the need for the components to be modelled as subsystems in a system-of-systems approach. A study is presented, where a previously developed framework for resilience decision-making is adapted to multidimensional scenarios in which the subsystems are represented as survival signatures. The survival signature of the subsystems can be computed ahead of the resilience analysis due to the inherent separation of structural information. This enables efficient analysis in which the failure rates of subsystems for various resilience-enhancing endowments are calculated directly from the survival function without reevaluating the system structure. In addition to the advancements in the field of survival signature, this work also presents a new framework for uncertainty quantification developed as a package in the Julia programming language called UncertaintyQuantification.jl. Julia is a modern high-level dynamic programming language that is ideal for applications such as data analysis and scientific computing. UncertaintyQuantification.jl was built from the ground up to be generalised and versatile while remaining simple to use. The framework is in constant development and its goal is to become a toolbox encompassing state-of-the-art algorithms from all fields of uncertainty quantification and to serve as a valuable tool for both research and industry. UncertaintyQuantification.jl currently includes simulation-based reliability analysis utilising a wide range of sampling schemes, local and global sensitivity analysis, and surrogate modelling methodologies

    Probabilistic decision graphs for optimization under uncertainty

    Get PDF

    Probabilistic decision graphs for optimization under uncertainty

    Get PDF

    Magnetic properties of colloidal suspensions of interacting magnetic particles

    Full text link
    We review equilibrium thermodynamic properties of systems of magnetic particles like ferrofluids in which dipolar interactions play an important role. The review is focussed on two subjects: ({\em i}) the magnetization with the initial magnetic susceptibility as a special case and ({\em ii}) the phase transition behavior. Here the condensation ("gas/liquid") transition in the subsystem of the suspended particles is treated as well as the isotropic/ferromagnetic transition to a state with spontaneously generated long--range magnetic order.Comment: Review. 62 pages, 4 figure

    Valuing portfolios of interdependent real options using influence diagrams and simulation-and-regression: A multi-stage stochastic integer programming approach

    Get PDF
    Although real options generally occur within portfolios, most valuation approaches based on either option pricing or decision analysis alone focus on single well-defined options. In this paper we present a new approach for modelling and approximating the value of portfolios of interdependent real options using both influence diagrams and simulation-and-regression. The key feature of this approach is that it translates the interdependencies between real options into a set of constraints and then directly models the dynamics of all underlying uncertainties using (Markovian) stochastic processes. These are then integrated in a portfolio optimisation problem which is formulated as a multi-stage stochastic integer program. Applying a simulation and parametric regression approach to approximate the value of this optimisation problem, we present a transparent valuation algorithm that explicitly takes into account vector-valued exercise decisions and the state variable’s multidimensional resource component. The approach is therefore applicable to a wide range of complex investment projects with both inherent interdependent flexibilities and many underlying uncertainties. The approach is illustrated by evaluating a complex natural resource investment that features both a large portfolio of interdependent real options and four stochastic factors. We analyse the way in which the approximated value of the portfolio and its individual options are affected by the initial copper price as well as by the degrees of production cost and copper price uncertainty

    A decomposition strategy for decision problems with endogenous uncertainty using mixed-integer programming

    Full text link
    Despite methodological advances for modeling decision problems under uncertainty, faithfully representing endogenous uncertainty still proves challenging, both in terms of modeling capabilities and computational requirements. A novel framework called Decision Programming provides an approach for solving such decision problems using off-the-shelf mathematical optimization solvers. This is made possible by using influence diagrams to represent a given decision problem, which is then formulated as a mixed-integer linear programming problem. In this paper, we focus on the type of endogenous uncertainty that received less attention in the introduction of Decision Programming: conditionally observed information. Multi-stage stochastic programming (MSSP) models use conditional non-anticipativity constraints (C-NACs) to represent such uncertainties, and we show how such constraints can be incorporated into Decision Programming models. This allows us to consider the two main types of endogenous uncertainty simultaneously, namely decision-dependent information structure and decision-dependent probability distribution. Additionally, we present a decomposition approach that provides significant computational savings and also enables considering continuous decision variables in certain parts of the problem, whereas the original formulation was restricted to discrete variables only. The extended framework is illustrated with two example problems. The first considers an illustrative multiperiod game and the second is a large-scale cost-benefit problem regarding climate change mitigation. Neither of these example problems could be solved with existing frameworks.Comment: 26 pages, 10 figure

    Structural Integrity and Durability of Reusable Space Propulsion Systems

    Get PDF
    The space shuttle main engine (SSME), a reusable space propulsion system, is discussed. The advances in high pressure oxygen hydrogen rocket technology are reported to establish the basic technology and to develop new analytical tools for the evaluation in reusable rocket systems
    • …
    corecore