
MANAGEMENT SCIENCE
Vol. 50, No. 3, March 2004, pp. 405–418
issn 0025-1909 �eissn 1526-5501 �04 �5003 �0405

informs ®

doi 10.1287/mnsc.1030.0138
©2004 INFORMS

Multistage Monte Carlo Method for Solving Influence
Diagrams Using Local Computation

John M. Charnes, Prakash P. Shenoy
School of Business, University of Kansas, 1300 Sunnyside Avenue, Summerfield Hall, Lawrence, Kansas 66045-7585

{jcharnes@ku.edu, pshenoy@ku.edu}

The main goal of this paper is to describe a new multistage Monte Carlo (MMC) simulation method for solving
influence diagrams using local computation. Global methods have been proposed by others that sample from

the joint probability distribution of all the variables in the influence diagram. However, for influence diagrams
having many variables, the state space of all variables grows exponentially, and the sample sizes required for
good estimates may be too large to be practical. In this paper, we develop a MMC method, which samples
only a small set of chance variables for each decision node in the influence diagram. MMC is akin to methods
developed for exact solution of influence diagrams in that we limit the number of chance variables sampled at
any time. Because influence diagrams model each chance variable with a conditional probability distribution,
the MMC method lends itself well to influence diagram representations.

Key words : decision analysis; approximations; sequential; simulation; applications; Monte Carlo methods; local
computation

History : Accepted by James E. Smith; received August 15, 1999. This paper was with the authors 2 years and 9
months for 6 revisions.

1. Introduction
The main goal of this paper is to propose a new
multistage Monte Carlo (MMC) method for solving
influence diagrams using local computation. Influence
diagrams are a compact representation of Bayesian
decision problems that were initially proposed as a
front end for decision trees (Howard and Matheson
1984). Later, Olmsted (1983) and Shachter (1986)
devised a method for solving influence diagrams
directly, i.e., without first transforming them to deci-
sion trees. The direct influence diagram solution
technique uses local computation to obtain the con-
ditionals and an optimal strategy. Smith et al. (1993)
have proposed modifications to the influence diagram
technique for representing and solving asymmetric
decision problems.
Most of the research on representing and solv-

ing decision problems assume that all chance and
decision variables have discrete state spaces. For
problems in which some of the decision and/or
chance variables are continuous, several approxima-
tion methods have been proposed. The traditional
approach is to partition the state space of each con-
tinuous variable into a few discrete states (e.g., Miller
and Rice 1983, Keefer 1994). A related approach is
to summarize continuous distributions by their first
few moments, summarize continuous utility functions
by their first few derivatives, and then use either the
moments, the derivatives, or both to obtain a solu-
tion (Howard 1971, Smith 1993). Another approach

is to deal directly with continuous variables with-
out discretizations. For example, Shachter and Kenley
(1989) have studied influence diagram methodology
for decision problems in which the probability model
is multivariate Gaussian, and Poland (1994) has devel-
oped influence diagrams that use Gaussian mixtures
to approximate arbitrary continuous distributions.
For the general case of a decision problem consist-

ing of a mixture of discrete and continuous variables,
Jenzarli (1995) has investigated the use of Gibbs sam-
pling for solving such decision problems using local
computation. Gibbs sampling is one member of a
class of techniques called Markov chain Monte Carlo
that draw dependent samples from a distribution that
in the long run approaches the target joint distribu-
tion (e.g., see Gilks et al. 1996). Bielza et al. (1999)
explore the problem of using Markov chain Monte
Carlo methods to solve a single-stage decision problem
with continuous decision and chance nodes.
The MMC sampling technique proposed here

draws independent and identically distributed obser-
vations to solve multiple-stage decision problems.
Monte Carlo methods that have been proposed in this
spirit sample from the entire distribution (e.g., see
Hertz 1964, and Shachter and Peot 1990 for Bayesian
networks, which are influence diagrams without deci-
sion and value nodes). However, when the num-
ber of variables is large, the combined state space
of all variables is exponentially large, and the sam-
ple size required for precise estimates is too large to

405

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213382343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
406 Management Science 50(3), pp. 405–418, © 2004 INFORMS

be practical. The MMC method generates samples at
each stage from a small set of variables in the influ-
ence diagram. We use methods developed for exact
solution of influence diagrams to limit the number of
variables sampled at any time. Because influence dia-
grams model each chance variable with a conditional
probability distribution, the MMC solution method
lends itself well to influence diagram representations.
In §2, we provide a statement of the oil wild-

catter with secondary recovery (OWSR) problem as
an example. In §3, we describe an influence diagram
representation of the OWSR problem using the Smith
et al. (1993) distribution tree technique. In §4, we
describe our MMC method for solving influence dia-
grams using local computation and illustrate it using
the OWSR problem. In §5, we describe an applica-
tion of our method to pricing Bermudan put options.
Finally, in §6, we conclude with a summary and
some issues for further research. The online appendix
(mansci.pubs.informs.org/ecompanion.html) elabora-
tes on the statistical properties of the MMC method.

2. Oil Wildcatter with Secondary
Recovery (OWSR) Problem

The OWSR problem is an adaptation of a problem
described by Raiffa (1968). An oil wildcatter must
decide whether or not to drill a well at a particular
location. He is uncertain whether the well will be dry,
wet (some oil), or soaking (lots of oil). The cost of
drilling is $70,000. The expected net revenue (exclu-
sive of drilling cost) resulting from primary recovery
of oil from a dry well is $0, from a wet well is $120,000
and from a soaking well is $270,000. The wildcatter’s
subjective probabilities for the state of the well are 0.5
for dry, 0.3 for wet, and 0.2 for soaking.
Before making the decision whether or not to drill,

the wildcatter can have a seismic test done to inves-
tigate the underground structure of the drill site. The
cost of the seismic test is $10,000 to classify the site
as having either no structure (ns), open structure (os),
or closed structure (cs). The underground structure is
related to the amount of oil as follows. If the well is
dry, the conditional probabilities of ns, os, and cs are
0.6, 0.3, and 0.1, respectively. If the well is wet, the cor-
responding probabilities are 0.3, 0.4, and 0.3. Finally,
if the well is soaking, the corresponding probabilities
are 0.1, 0.4, and 0.5.
After drilling, striking oil, and extracting an opti-

mal amount using primary recovery techniques, the
wildcatter has the option of extracting more oil using
secondary recovery techniques at an additional cost
of $20,000. Secondary recovery will result in no recov-
ery (nr) with associated revenues of $0, low recov-
ery (lr) with associated revenues of $30,000 or high
recovery (hr) with associated revenue of $50,000. The

amount of secondary recovery depends on the state of
the well. If the well is wet, the conditional probabili-
ties of nr , lr , and hr are 0.5, 0.4, and 0.1, respectively.
If the well is soaking, the corresponding probabilities
are 0.3, 0.5, and 0.2.

3. Influence Diagram Representation
A mathematical representation of a Bayesian deci-
sion problem can be broken into four parts:
(1) alternatives—the set of alternatives available to the
decision maker, (2) uncertainty model—a probability
model of the uncertainties faced by the decision maker,
(3) preferences for outcomes—a utility function model
of the preferences of the decision maker for all pos-
sible outcomes, and (4) information constraints—a set
of restrictions on the information available to the deci-
sion maker each time he or she must make a decision.
An influence diagram representation of a decision

problem is specified at two levels: graphical and
numerical. At the graphical level, we have an acyclic
directed graph with three different types of nodes—
chance, decision, and utility—and two different types
of directed edges—domain and pure information. At
the numerical level, we have a distribution tree for
each node in the graph. Figure 1 shows an influence
diagram representation of the OWSR problem at the
graphical level. Figures 2 and 3 show the influence
diagram representation at the numerical level.
In Figure 1, T (seismic test), D (drill), and S (sec-

ondary recovery) are rectangular decision nodes rep-
resenting decision variables; R (seismic test results),
O (amount of oil), and SR (secondary oil recovered),
are circular chance nodes representing chance vari-
ables; and 1, 2, and 3 are diamond-shaped value
nodes representing additive factors of the joint utility
function.
The solid arrows pointing to a decision variable

indicate the domain of the conditional for the decision
variable, which is the subset of variables included in
the conditional. In the OWSR problem, the domain
for the conditional for T is �T �, which we write as
Dom��T � = �T �, where �T denotes the conditional
for T . Also, Dom��D�= �D� and Dom��S�= �D�O�S�.

Figure 1 Influence Diagram Representation of the OWSR Problem at
the Graphical Level

T

R

D

O

S

SR

υ1 υ2 υ3

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
Management Science 50(3), pp. 405–418, © 2004 INFORMS 407

Figure 2 Conditionals for the Decision and Chance Nodes in the OWSR
Problem

T

t

nt

D

d

nd

dr, 0.5

so, 0.2

O
we, 0.3

S
sr

nsrdr

so

O
we

SR
nr, 1

nr, 0.5

hr, 0.1
SR

lr, 0.4

nr, 0.3

hr, 0.2
SR

lr, 0.5

S

S
sr

nsr

nsr

O

D

d

nd

S

sr

nsr

S
nsrdr

we, so

T

t

nt

dr

so

O
we

R
nr, 1

ns, 0.1

cs, 0.5

R
os, 0.4

ns, 0.6

cs, 0.1

R
os, 0.3

ns, 0.3

cs, 0.3

R
os, 0.4

A conditional for a decision variable constrains the
set of possible alternatives available to the decision
maker at that variable. Because there are no con-
straints on the choices at the decision variables T and
D, Dom��T � = �T � and Dom��D� = �D�. Because the
choices available at S depend on the choice made at D
and the realized value of O, Dom��S�= �D�O�S�. In
general, the domain of the variable X consists of the
set of variables at the tails of the solid arrows pointing
to X and X itself. Solid arrows pointing to decision
nodes are also interpreted as information constraints
in the sense that if there is a solid arrow from node
X (either chance or decision) to decision node A, then
the true state of X will be known to the decision
maker at the time he or she has to choose an alterna-
tive at A. Dashed arrows pointing to decision nodes
indicate information constraints only. A dashed arrow
from a node X to a decision node A means that the
decision maker knows the true value of X at the time
he or she has to make a choice at A. This is in contrast
to a solid arrow, which indicates both a conditional
and an information constraint.

Figure 3 Additive Factors of the Utility Function in the OWSR Problem

T

t

nt

υ1

υ1

−10,000

 0

D

d

nd

dr

so

O
we

υ2

υ2

υ2

υ2

−70,000

50,000

200,000

0

S

sr

nsr

nr

hr

SR
lr

υ3

υ3

υ3

υ3

−20,000

10,000

30,000

0

The influence diagram literature usually assumes a
“no-forgetting” condition, which specifies that if there
is a directed path from a node X (chance or decision)
to decision node A via other decision nodes only, then
this implies that the decision maker knows the value
of X at the time he or she has to make a choice at A.
Optionally, an implied constraint can be represented
in the influence diagram as a dashed arrow from X
to A, but because such constraints are easily deduced,
we omit them from our graphical representations. In
Figure 1, we can deduce dashed arrows from R to
S, and from T to S. Thus, at T , the wildcatter has
observed nothing; at D, the wildcatter has observed
the true state of R but does not yet know either the
true state of O or the true state of SR; while at S, the
wildcatter has observed the true states of O and R,
but not SR.
The solid arrows pointing to chance nodes in

Figure 1 specify the domains of the condition-
als for the chance variables in the same sense
as for decision variables. In the OWSR problem,
we have Dom��O� = �O�, Dom��R� = �T �O�R�, and
Dom��SR� = �O�S�SR�. These come from the follow-
ing conditionals: P�O�, P�R � T �O�, and P�SR �O�S�.
The solid arrows pointing to value nodes in Fig-

ure 1 indicate the domain of the corresponding util-
ity function in the sense that the domain of the
utility function at a value node is the set of vari-
ables at the tails of the arrows pointing to it. In the
OWSR problem, Dom�1� = �T �, Dom�2� = �D�O�,
and Dom�3�= �S� SR�.
At the numerical level, we specify the details of

the conditional for each decision node and each
chance node and the details of the utility functions.
In the OWSR problem, the state spaces for the vari-
ables are as follows: �T1 = �t�nt� (representing seis-
mic test, and no seismic test, respectively), �R =
�ns� os� cs�nr� (no structure, open structure, closed
structure, no results), �D = �d�nd� (drill, not drill),
�O = �dr�we� so� (dry, wet, soaking), �S = �sr�nsr�
(attempt secondary recovery, no secondary recovery),
and �SR = �nr� lr�hr� (no recovery, low recovery, high
recovery).
The conditionals for the decision and chance nodes

shown in Figure 2 use Smith et al. (1993) distribu-
tion trees notation. A distribution tree consists of
paths called conditioning scenarios that lead to atomic
distributions. For decision nodes, the atomic distri-
butions are the sets of alternatives available to the
decision maker under each conditioning scenario. For
chance nodes, the atomic distributions are probability
distributions conditioned on the paths leading to the
atomic distributions.
In Figure 2, the distribution trees for T , D, and O

have no conditioning scenarios and one atomic distri-
bution, �T , �D, and P�O�, respectively. The distribu-
tion tree for S has two atomic distributions �sr�nsr�

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
408 Management Science 50(3), pp. 405–418, © 2004 INFORMS

and �nsr� depending on the conditioning scenarios.
An atomic distribution with only one alternative is
called degenerate and is shown using double borders.
The distribution tree for R has four atomic distribu-
tions, P�R � T �O�, one of which is degenerate. The
distribution tree for SR has three atomic distributions,
P�SR �O�S�, one of which is degenerate. Finally, Fig-
ure 3 shows the numerical details of the utility func-
tions.
Unlike a decision tree representation, which re-

quires calculation of the preposterior and posterior
probabilities, no preprocessing is required for an
influence diagram representation. Thus, an influence
diagram may be more compact than a decision tree
because it does not attempt to depict all possible sce-
narios explicitly.

4. Multistage Monte Carlo
(MMC) Method

The exact method for solving influence diagrams is
similar to the method for solving decision trees. In
both methods, we delete decision and chance nodes
in a sequence determined by the information con-
straints. In the OWSR problem, the only deletion
sequence allowed by the information constraints is
SR ↪→ S ↪→ O ↪→ D ↪→ R ↪→ T . The major difference
between the two solution methods is the computation
of the posterior and preposterior probabilities. With
decision trees, these probabilities are computed from
the joint probability distribution as a preliminary step
in constructing the representation. With influence dia-
grams, these probabilities are computed using local
computation by reversing arcs during the solution
phase.
Our method is similar to the exact method for solv-

ing influence diagrams for the case of an additive fac-
torization of the utility function (Tatmar and Shachter
1990, Shenoy 1992). This includes solving the influ-
ence diagram representation by reduction of deci-
sion and chance variables in the reverse order of the
sequence determined by the information constraints.
In each stage, the domain of the decision function is
also the same as in the exact method.
The novelty of our method is the computation of

the requisite conditionals for chance variables. In the
exact methods, the conditionals are determined by arc
reversals (Olmsted 1983, Shachter 1986) or by fusion
with respect to a chance variable (Shenoy 1992). In
the MMC method, we achieve the same computation
by sampling from a partial joint distribution and then
estimating the conditional expectation.
In our MMC method, we do not compute the poste-

rior and preposterior distributions explicitly. Instead,
we work with an appropriate partial joint distribu-
tion and then compute a conditional expectation. In

this sense, our method is similar to the game tree
solution of decision problems (Shenoy 1998). In game
trees, one can represent any decision problem with-
out preprocessing of probabilities. Information con-
straints are represented using information sets as in
von Neumann and Morgenstern’s (1944) extensive
form games. The only constraints on the ordering of
variables in a game tree is that if variable X (chance
or decision) is known when decision A is to be made,
then X must precede A.
Figure 4 depicts a game tree representation of the

OWSR problem. This depiction uses the same prob-
ability model specified in the statement of the prob-
lem and, thus, does not require any preprocessing of
probabilities. In the OWSR problem, we have seven
information sets (designated by shaded regions in
Figure 4) that partition the set of all decision nodes
in the game tree. For example, the three T nodes are
in the same information set indicating that the oil
wildcatter does not know the true amount of oil when
deciding whether to do a seismic test.
Solving a game tree is similar to solving a decision

tree by pruning nodes using the rollback procedure.
Game tree chance nodes are pruned by averaging the
utilities. Information sets are pruned by maximizing
conditional expectation, i.e., by first computing the
conditional probability distribution for each node in
an information set conditioned on the fact that we are
in the information set, and then choosing an alterna-
tive with the maximum conditional expected utility.
The conditional probability distribution for a decision
node is computed by multiplying all probabilities on
the path from the root to the node. See Shenoy (1998)
for a detailed description of this procedure.
In the game tree representation of the OWSR prob-

lem (Figure 4), consider the last decision S, whether to
attempt secondary recovery. Notice that the subtrees
for this decision do not depend on either R or T , but
do depend on O and D. The independence of these
subtrees of R and T is reflected in the game tree rep-
resentation in Figure 4 using “coalescence” (Olmsted
1983), where repeating subtrees are shown only once.
Reducing the top S node (on the path O =we) results
in a utility of 0, and reducing the bottom S node (on
the path O = so) results in a utility of 5�000.
Now consider the three D nodes on the paths R=

ns that are in the same information set. This set can
only be reached if we decide to perform the test. The
probability of reaching this information set is �0�5×
0�6�+ �0�3× 0�3�+ �0�2× 0�1� = 0�41. The conditional
probability of being at the top D node in this informa-
tion set (on the path O = dr) given that one is in this
information set is �0�5 × 0�6�/0�41 = 0�732. Similarly,
the conditional probabilities of being in the middle D
node (on the path O =we� and bottom D node (on the
path O = so� are 0.220 and 0.049, respectively. Thus, to

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
Management Science 50(3), pp. 405–418, © 2004 INFORMS 409

Figure 4 Game Tree Representation of the OWSR Problem

os, 0.4

cs, 0.1

os, 0.3

 S

SR

(20,000)
 nr, 0.5

 lr, 0.4

 hr, 0.1

 S

SR

(20,000)

10,000

30,000

 nr, 0.3

 lr, 0.5

 hr, 0.2

 0

D

R

 sr

 nsr

ns, 0.6

 sr

 nsr

T

O
we, 0.3

so, 0.2

D

D

cs, 0.3

D

R

ns, 0.3

T

D

D

cs, 0.5

os, 0.4

D

R

ns, 0.1

T

D

D

(70,000)

(70,000)

 (70,000)

(70,000)

 t, (10,000)

 nt, 0

 d

d

d

d

 nd

nd

nd

nd

0

0

 0

0
 d, 50,000

 d, 50,000

 d, 50,000

 d, 50,000

 0

 0

 0

0

 t, (10,000)

 nt, 0

 t, –10,000

 nt, 0

 d, 200,000

 d, 200,000

 d, 200,000

 d, 200,000

 nd

nd

nd

 nd

 0

 0

 0

0

dr, 0.5

 nd

nd

nd

nd

10,000

30,000

0

 D

 D

 D

reduce this information set, we compute a conditional
expectation: D= d results in a conditional expectation
of 0�732�−70�000� + 0�220�50�000� + 0�049�205�000� =
−30�195, and D = nd results in 0. Thus, the optimal
choice is D= nd once we know that R= ns.

The MMC method works in a similar manner to
the game tree solution. However, the MMC method
relies on sampling-based estimates of the conditional
expectations to specify decision functions in stages.
Sampling lets us obtain approximate solutions to

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
410 Management Science 50(3), pp. 405–418, © 2004 INFORMS

problems that cannot be solved exactly using the
influence diagram method.

4.1. Overview
We begin each stage of the MMC method by select-
ing what we call the current maximal decision variable,
denoted by M and defined formally in the next sec-
tion. Then, we determine a decision function forM by
iteratively sampling the state of each chance variable
in a subset of relevant variables, in an order we call a
sampling sequence, to estimate the conditional expected
utility. After we have completed enough iterations
to achieve the desired precision in our estimates, we
determine a decision function forM based on the esti-
mated maximum conditional expected utility.
To prepare for the next stage, we modify the influ-

ence diagram. We do this by convertingM to a chance
variable whose conditional is the decision function
we have just computed, and replacing a set of util-
ity functions by a single utility function composed
from the estimates of conditional expected utilities
just obtained. The next stage begins with the selection
of a new current maximal decision variable. The main
idea behind the algorithm is to determine a decision
function for each decision variable in turn by sam-
pling a small subset of relevant chance variables using
the conditionals specified in the influence diagram
representation. The formal algorithm is presented in
Table 1.

4.2. Definitions
In this section, we define the notation used in the
algorithm presented in Table 1.

M—Current Maximal Decision Variable. The
information constraints specified in the ID represen-
tation impose a partial order, <, on the set of all
decision and chance variables. We designate as cur-
rent a decision variable that is maximal with respect
to the partial order <. If there is more than one such
decision variable, we pick one using a heuristic such
as “one step look ahead” (Olmsted 1983). At the out-
set of the solution of the OWSR problem, the partial

Table 1 MMC Algorithm for Solving Influence Diagrams Using Local Computation

Step 1. Choose a current maximal decision variable M for the sampling stage. If there are no remaining decision variables, then stop.
Step 2. For each possible state of the variables in F �M�, sample for the chance variables in SV �M� using their conditional distributions in a sequence

determined by the partial order ≺. After each iteration, store the vector of realizations of RD�M�∪DRU�M� and the associated sum of the utility values of
functions in RU�M�. After each 50 iterations, for each state of the variables in RD�M�, find the mean utility averaged across realizations of all other variables
in DRU�M�\RD�M�, and compute the standard error of the mean. Stop sampling when the standard error is less than some target, or the number of
iterations has reached a prespecified limit, N.

Step 3. Specify an optimal decision function whose domain is RD�M� based on maximizing average utility computed in Step 2 for each state of the
variables in RD�M�.

Step 4. Make M a chance variable whose conditional distribution is given by the decision function specified in Step 3.
Step 5. Replace the set of utility functions RU�M� by the utility function whose domain is RD�M�\�M�, and whose values are the corresponding maximum

utility values found in Step 3. Go to Step 1.

Note. Refer to §4.2 for definitions and further explanation.

order obtained is T < R <D <O < S < SR (which, in
this case, is a complete order). The current maximal
decision variable for stage 1 is M = S.
RD�M�—Relevant Domain of the Decision

Function for M . The relevant domain of the deci-
sion function for M is a small set of decision and
chance variables sufficient to make the decision at
M . See Nielsen and Jensen (1999), who describe a
complicated procedure for specifying RD�M� based
on several rules. Notice that inclusion of irrelevant
variables in the relevant domain does not affect
the computation of an optimal strategy, but may
reduce the efficiency of finding one. One easy rule for
determining RD�M� is as follows. Let U�M� denote
the set of unobserved chance variables with respect to
decision M and the partial order, <. First, we find a
smallest subset of decision and chance variables that
d-separates M ∪U�M� from the rest of the variables.
Then, RD�M� is equal to the union of this smallest
subset and �M�. This rule may not always result in
the smallest subset. In stage 1 of the OWSR problem,
for the current maximal decision variable M = S, the
relevant domain RD�S�= �D�O�S�.
RU�M�—Relevant Factors of the Joint Utility

Function. Let " denote the set of all utility factors
in the influence diagram. Let # denote the set of all
chance variables in the influence diagram, $ denote
the set of all decision variables, and ≺ denote a partial
order on # ∪ $ defined as follows. Suppose X1�X2 ∈
∪$. Then, X1 ≺X2 if, and only if, there is a directed
path from X1 to X2 using solid arrows in the influ-
ence diagram representation. Because the influence
diagram is acyclic, it follows that the binary relation ≺
is a partial order. If X1 ≺X2, we say X1 is a predecessor
of X2 and X2 is a successor of X1. Let S�X� denote the
set of all successors of variable X. In the OWSR prob-
lem, the partial order is �T �O� ≺ R��D�O� ≺ S ≺ SR.
Notice that the partial order ≺ is different from the
partial order < defined earlier.
Consider all utility factors that haveM or its succes-

sors in their domains and let H�M� denote the union
of their domains, i.e., H�M�=⋃

�Dom�� � ∈" such

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
Management Science 50(3), pp. 405–418, © 2004 INFORMS 411

that Dom��∩ ��M�∪ S�M�� �= �. It follows from the
method proposed by Tatman and Shachter (1990) that
only utility factors whose domains include variables
in �M�∪ &U �M�∩H�M�' are relevant for the determi-
nation of the decision function for M , i.e., RU�M�=
� ∈ " � Dom�� ∩ &�M� ∪ �U�M� ∩ H�M��' �= �. In
stage 1 of the OWSR problem, U�S� = �SR�, H�S� =
�S� SR�, and RU�S�= �3�.
DRU�M�—Domain of the Relevant Utility Factors.

Let DRU�M� denote the union of the domains of the
relevant utility functions, i.e., DRU�M�=⋃

�Dom�� �
 ∈RU�M��. In stage 1 of the OWSR problem, because
RU�S�= 3, DRU�S�= �S� SR�.
SV �M�—The Set of Sampled Chance Variables.

Isolation of this set is unique to our method because
we do not compute the conditionals for unobserved
chance variables (as is done using arc reversals in
the exact methods). Our goal is to sample a sub-
set of unobserved chance variables using the condi-
tionals specified in the ID representation. Clearly, we
need to sample all the chance variables in DRU�M�.
We must also sample all unobserved chance variables
that are predecessors of the unobserved chance vari-
ables in DRU�M�, because predecessor distributions
will influence the distributions of the chance variables
in DRU�M�. Let P�M� denote the set of unobserved
chance variables that are predecessors of the chance
variables in DRU�M�, i.e., P�M�= �C ∈U�M� �C ≺W
for some W ∈ # ∩DRU�M��\DRU�M�. We can ignore
the unobserved chance variables that are successors of
the chance variables in DRU�M� because these have
no influence on the chance variables in DRU�M�.
Also, because we sample directly from the condi-

tionals specified in the influence diagram representa-
tion, we also need to sample all chance variables that
lie “between” the chance variables in �# ∩DRU�M��∪
P�M�. Let B�M� denote the variables that are between
the variables in �# ∩DRU�M��∪ P�M�, i.e.,

B�M� = {
V ∈ # � V ≺W for some

W ∈ &# ∩DRU�M�'∪ P�M�}∖{
V ∈ # � V ≺W for all

W ∈ &# ∩DRU�M�'∪ P�M�}∖{
&# ∩DRU�M�'∪ P�M�}�

In stage 1 of the OWSR problem, P�M� = and
B�M�=.
The set of chance variables that we sample to deter-

mine a decision function for M is given by SV �M�=
�# ∩ DRU�M�� ∪ P�M� ∪ B�M�. We avoid doing arc
reversals by sampling from the conditional joint dis-
tribution to estimate the conditional expectation (as
in game trees). In stage 1 of the OWSR problem,
SV �M�= �SR�.

F �M�—The Variables Whose States Are Fixed. To
enable us to sample the variables in SV �M� using
the conditionals specified in the ID representation, we
must fix the states of the variables that are in the
domains of the conditionals of the variables in SV �M�
if they are not already included. Let F �M� denote this
set of variables. Formally, F �M� =⋃

�Dom��� � � is a
conditional for a variable in SV �M�� ∪ �M�\SV �M�.
Notice that M is always included in F �M�. In stage 1
of the OWSR problem, SV �S� = �SR� and F �S� =
�D�O�S�. Thus, in stage 1, we solve the subprob-
lem shown in Figure 5. The chance variables in F �M�
whose states are fixed are shown using thickly bor-
dered circles.

Sampling Sequence. In our algorithm, we sample
the variables in SV �M� such that if V1 ≺ V2, then V1
precedes V2 in the sampling sequence. The sampling
sequence is motivated by the fact that in an influence
diagram there is a conditional for each chance and
decision variable. In a given sampling sequence, all
direct predecessors of V2 will have been sampled (or
fixed) when it is time to sample V2 and, thus, the con-
ditional distribution for V2 can be used at that point
in the sequence.

4.3. Number of Iterations
For a given stage, working our way through the sam-
pling sequence for the variables in SV �M� constitutes
one iteration. The required number of iterations at
each stage is determined by the desired precision and
level of confidence of an approximately optimal strat-
egy. In general, the greater precision and higher level
of confidence we desire in the result, the larger the
number of iterations required. With MMC, we control
the precision of the estimates by specifying the maxi-
mum standard error of the estimates at each stage.
The question of how best to make statistical infer-

ences via computer sampling has received much
attention in the simulation output analysis literature.
Variance reduction techniques (e.g., see Law and
Kelton 2000) may be more extensively employed in
future refinements of the MMC method to reduce
the required number of iterations. In §5, we use an
antithetic variates variance reduction procedure to

Figure 5 OWSR Sub-ID Solved in Stage 1

D S

SR

υ3

O

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
412 Management Science 50(3), pp. 405–418, © 2004 INFORMS

obtain the results presented there. The ranking and
selection, or multiple comparisons methods described
by Goldsman and Nelson (1998) might also be
applied to further reduce the required number of
iterations. Quasi-Monte Carlo sampling (Niederrreiter
1992) could provide a third approach to reducing the
computation required for solving influence diagrams
using simulation. However, in this paper, we focus on
a straightforward sampling technique to convey the
logic of our method.
We begin by defining what we mean by an approxi-

mately optimal strategy. Each well-defined decision
problem has a maximum expected utility associated
with at least one optimal strategy. Suppose our goal
is to find a strategy whose estimated expected util-
ity is within - of the maximum expected utility. For
example, in the OWSR problem, we wish to find a
strategy whose expected profit is within - = $1�000
of the maximum expected profit. With Monte Carlo
methods, there is no guarantee that we will be able to
find such a strategy, so we settle for doing so with a
100�1−.�% level of confidence. For example, we may
choose to run enough iterations to become 90% confi-
dent that the strategy identified by the MMC method
has an expected utility that is within -= $1�000 of the
maximum. We call such a strategy an �-�.� approxi-
mate strategy.
We also wish to find an �-�.� approximate strategy

in a reasonable amount of time, which depends upon
the number of iterations run. In practice, we prefer to
do just enough sampling at each stage to achieve the
desired precision, but we also specify an upper limit,
N , on the number of iterations to bound the execution
time.
The number of estimates required for each stage is

determined after we reduce, in two ways, the amount
of sampling required. The first sampling reduction
strategy that is already built into our algorithm is not
to sample for variables in F �M�. Instead, we sample
only the variables in SV �M� for all possible states of
the variables in F �M�. The second sampling reduction
strategy is to exploit some of the asymmetric features
of the influence diagram representation. First, if a par-
ticular combination of states of variables in F �M� is
ruled out by the conditionals, then no sampling of
the variables in SV �M� is required for this combina-
tion. Second, for a given set of states of variables in
F �M�, if all chance variables in SV �M� are degener-
ate, then no sampling is necessary. Third, if the util-
ity factors in RU�M� are independent of the chance
variables in SV �M� for a particular combination of
states of variables in F �M�, then again no sampling is
necessary.
Let W denote the estimated mean utility at the final

stage of sampling, which is a function of the esti-
mated mean utilities at all stages. We wish to place a

bound on Var�W�, the variance of W . At each stage,
we can reduce the conditional variance of the esti-
mates (conditioned on the estimates from previous
stages) to an arbitrarily small value by running the
simulation for a sufficiently large number of itera-
tions. Let 0 2j denote the upper bound on the condi-
tional variances (squared standard errors) of utility
estimates associated with chance variables (and con-
ditioned on estimates from previous stages) obtained
in stage j , which we control through specification of
the number of iterations.
Using a property of conditional variance, one can

show that the unconditional variance of the average
utilities associated with chance variables in stage j is
less than or equal to

∑j
i=1 0

2
i . In the process of find-

ing a decision function for the decision variable in
stage j , we choose the maxima of the average utilities
associated with the chance variables. Using a result
from order statistics, one can show that the variances
of the maximum utilities associated with the decision
variable in stage j is less than or equal to

∑j
i=1 0

2
i .

Using induction, one can show that Var�W�≤∑k
i=1 0

2
i .

A proof of this assertion for a canonical example is
given in the online appendix.
After all sampling is complete, we use the standard

normal cumulative distribution function 4�·� to form
the confidence interval W ±4−1�1−./2�√Var�W�. If
the half-width of this interval is smaller than -, we
are confident that we have obtained an approximate
�-�.� estimate of mean utility. In testing, we find
our method to be conservative in the sense that
after many replications of the method, more than
100�1−.�% of the estimates are within - of the true
mean utilities for test problems where the true mean
utilities are known.
One way to partition Var�W� into k components

is to make a fixed, small number of pilot iterations
(e.g., n= 100) to estimate the sampling error of each
estimate at each stage for the fixed number of itera-
tions. Then, Var�W� can be allocated in direct propor-
tion to each stage’s maximum sampling error variance
obtained with the pilot iterations. This is not necessar-
ily the best way to partition Var�W�, but is a method
that can be automated and used with minimal user
intervention.
The estimated utilities obtained with the MMC

method are slightly biased in a statistical sense
because we are using sampling rather than exact cal-
culations to obtain conditional expectations. Although
our estimators for conditional expected utility in each
stage are unbiased, we introduce bias when choosing
the superior alternative having maximum estimated
expected utility. This bias is most severe when the
expected utilities of the superior and inferior alterna-
tives are close to each other, so the bias will be lower
in many practical problems where we wish to discern

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
Management Science 50(3), pp. 405–418, © 2004 INFORMS 413

differences in utilities that are relatively large. Our
estimates in each stage are consistent, so performing
more iterations in each stage will mitigate this bias.
It is important to emphasize that at this point, we
are interested in identifying an approximately opti-
mal strategy, not necessarily the expected utility of the
identified strategy. Further, if the bias from a previous
stage affects all alternatives in a given stage equally,
the bias will have no effect on the selection of the
maximum.
We can obtain an estimate of overall expected util-

ity that is biased slightly downward by running a
global simulation to obtain a final estimate of the
expected utility of any policy we identify as optimal
with the MMC method. By definition, the expected
utility of any policy must be less than or equal to
the expected utility of the optimal policy, so this final
estimate of maximum expected utility will be unbi-
ased if we have, indeed, identified the optimal pol-
icy, and biased slightly downward if not. To obtain
a better estimate of the expected utility of the opti-
mal policy, we can average the biased high estimate
obtained in the final stage of the MMC algorithm and
the biased low estimate obtained in a final global sim-
ulation. Broadie and Glasserman (1997), who argue
that under some restrictions there can be no general
unbiased estimator of the price of American financial
options, use a similar averaging technique. However,
even though such bias exists, our experiments (some
of which are not reported here) lead us to conclude
that it is small. Moreover, as the number of iterations
is increased in each stage of the solution, the bias
diminishes so that the estimator of overall expected
utility obtained from the MMC method is consistent
(i.e., asymptotically unbiased).
In practice, it appears that our estimate of the

required number of iterations is overly conservative.
Ortiz and Kaelbling (2000) describe an alternative
method for determining the number of iterations in
a single-stage decision problem based on results from
the field of multiple comparisons. Future research will
focus on extending the multiple-comparison approach
to multiple-stage problems.

4.4. Solving the OWSR Problem
Suppose our goal is to compute an �-�.� approximate
strategy for the OWSR problem, where -= 1�000 and
.= 0�10. The solution is found in three stages. Based
on pilot runs of n = 100 observations, for each stage
the estimated maximum standard errors at Stages 1,
2, and 3 were 12,929, 189,712, and 40,621, respectively.
With - = 1�000 and . = 0�10, we require a final
sampling error variance of 369,612. Partitioning this
in proportion to the maximum variances obtained
with the pilot runs, we set 021 = 3�130, 022 = 350�416,
and 023 = 16�066 (see the online appendix for fur-
ther explanation of these bounds on variance), and

N = 300�000 as the maximum number of interactions
for any estimate.
In the first stage of the simulation (see Figure 5),

the maximal decision variable is S. We sample chance
variable SR for some combinations of the 12 possi-
ble states of �D�O�S�. Of these, four states are ruled
out by the conditional for S (see Figure 2). Also, for
six of the remaining eight states (when S = nsr), 3
does not depend on SR (see Figure 3). Therefore, sam-
pling is required only for the two remaining cases.
Because only one variable is sampled, sequence is not
an issue. Using the estimated expected utility values,
the decision function for S is determined from Table 2
as follows: If D = d and O = we, then S = nsr , and
if D = d and O = so, then S = sr . In all other cases,
S = nsr (because the conditional for S allows no other
choices).
In stage 2, we replace S by a (degenerate) chance

variable whose conditional distribution is the deci-
sion function just determined. Also, we replace 3
by 4 whose domain is �D�O� and whose values
are the maximum values (displayed in bold type) in
Table 2. Specifically, 4�d� so� = 5�035�51, 4�d�dr� =
4�d�we� = 4�nd�dr� = 4�nd�we� = 4�nd� so� = 0.
The resulting ID is shown in Figure 6.
In stage 2, the maximal decision variable is D. We

sample chance variables in �O�R� for all possible
states of variables in �T �D�. The sub-ID that is solved
in stage 2 is shown in Figure 7. Notice that variables S
and SR are barren and play no role in this stage. The
variables O and R are sampled using the sequence
O�R for each possible state of �T �D�. Notice that for
the state T = nt, R is degenerate so sampling for it is
not necessary in this state. Also, when D= nd, neither
2 nor 4 depends on O or R and, thus, no sampling
is necessary when D= nd.
The decision function for D is determined from

Table 3 as follows: If T = t and R = ns, then D =

Table 2 Results from Stage 1 of OWSR Simulation

State O = dr O = we O = so

D = d ∗ (2,891.07) 5,035.51
S= sr se= 46�94 se= 46�94

n= 145�600 n= 147�550

D = d 0 0 0
S= nsr se= 0 se= 0 se= 0

n= 0 n= 0 n= 0

D = nd ∗ ∗ ∗
S= sr

D = nd 0 0 0
S= nsr se= 0 se= 0 se= 0

n= 0 n= 0 n= 0

Note. Cell entries are estimated expected utility, standard error, and number
of iterations, respectively (∗ denotes there were no observations in these
cells).

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
414 Management Science 50(3), pp. 405–418, © 2004 INFORMS

Figure 6 OWSR ID After Stage 1

T D S

OR SR

υ1 υ2 υ4

Figure 7 OWSR Sub-ID Solved in Stage 2

D

OR

υ2 υ4

T

nd, and if T = t and R = os or R = cs, then D = d.
Also, if T = nt, then D = d. In stage 3, we replace
D by a degenerate variable whose conditional dis-
tribution is the decision function identified above.
Also, we replace 2 and 4 by 5 whose domain is
�T �R� and whose values are the maximum values in
Table 3. Specifically, 5�t�ns�= 0, 5�t� os�= 34�302�41,
5�t� cs� = 90�063�42, and 5�nt�nr� = 21�145�49. The
resulting ID is shown in Figure 8.
The sub-ID that is solved in stage 3 is shown in

Figure 9. Notice that variables D, S, and SR are barren
and play no role in this stage. For each possible
state of the maximal decision variable T , we sample

Table 3 Results from Stage 2 of OWSR Simulation

State R= nr R= ns R= os R= cs

T = t ∗ (30,229.97) 34,302.41 90,063.42
D = d se= 257�50 se= 409�69 se= 496�82

n= 79�286 n= 67�553 n= 46�211

T = t ∗ 0 0 0
D = nd se= 0 se= 0 se= 0

n= 0 n= 0 n= 0

T = nt 21,145.49 ∗ ∗ ∗
D = d se= 496�79

n= 45�200

T = nt 0 ∗ ∗ ∗
D = nd se= 0

n= 0

Note. Cell entries are average utility, standard error, and number of iterations,
respectively (∗ denotes there were no observations in these cells).

Figure 8 OWSR ID After Stage 2

T D S

OR SR

υ1 υ5

Figure 9 OWSR Sub-ID Solved in Stage 3

T

OR

υ1 υ5

for O and R using their conditionals in the sequence
O ↪→R. Because the conditional for R is degenerate
for the case T = nt and O is not in the domain of
the utility factors, no sampling is necessary for this
case. The decision function for T is determined from
Table 4 as follows: Do seismic test, which completes
the solution of the OWSR problem.
To investigate the behavior of our method, we used

the procedure described above to solve the OWSR
problem several times using independent runs. To test
the conservatism of our method, we set the limit of
the number of iterations per stage, N , at various lev-
els, then counted the number of times out of 100 inde-
pendent replications the MMC method identified a
strategy whose expected value is within -= $1�000 of
the optimal expected profit of $23,400. The results are
shown in Table 5, which indicates that our conserva-
tive method leads to more iterations than necessary,
but yields a near-optimal policy with a high degree of

Table 4 Results from Stage 3 of OWSR
Simulation

T = t T = nt

23,649.05 21,145.49
se= 106�10 se= 0
n= 109�300 n= 0

Note. Cell entries are average utility, standard
error, and number of iterations, respectively.

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
Management Science 50(3), pp. 405–418, © 2004 INFORMS 415

Table 5 Results from Running 100 Independent Replications of the
OWSR Simulation when the Number of Iterations per Stage
was Limited to Each Value Shown in the Top Row

Limit on iterations 100 200 400 800 1�000 5�000 10�000
per stage, N

Number of approximate 56 62 63 67 76 90 96
optimal identifications

Note. Bottom row cell entries are the number of times the MMC method
identified a strategy whose true expected profit is within � = $1�000 of the
optimal expected profit of $23,400.

confidence. Once a near-optimal policy is identified,
we can obtain an unbiased estimate of the utility asso-
ciated with that policy by running a final set of itera-
tions in which the near-optimal decision functions are
embedded.
Note that future research could focus on refining the

estimates obtained by the MMC method. Much like
discrete event simulation, where independent repli-
cations of a simulation model are frequently used to
construct estimates of mean measures of performance,
one could set the maximum number of iterations, N ,
relatively low, but repeatedly run the estimation pro-
cedure through all stages to obtain independent, iden-
tically distributed (IID) observations from which a
confidence interval on the mean utility could be con-
structed using the IID observations. With some addi-
tional effort, one could also calculate estimates of the
variances and correlations between estimates of the
means at each stage. Although the bias will remain,
this information could be useful for gauging the con-
servatism of the method by estimating the magnitude
of the bias of the estimates obtained with the MMC
method.

5. Bermudan Put Option Valuation
A put option grants its owner the right, but not the
obligation, to sell stock shares in the future. Investors
are interested in determining fair values for puts and
other stock options for speculation and hedging.
Black and Scholes (1973) give an exact expression

for the value of a European put option, which grants
its holder the right, but not the obligation, to sell
shares of a common stock for the exercise price, X, at
expiration time T . An American put option grants its
holder the right, but not the obligation, to sell shares
of a common stock for the exercise price, X, at or
before expiration time T . The Black-Scholes (1973) solu-
tion for a European put yields an approximation for
the value of an American put option with the same
exercise price, but in practice numerical techniques
are used to obtain closer approximations of American
options values.
The fair value of an American put option is the

discounted expected value of its future cash flows.

The cash flows arise because the put can be exer-
cised at the next instant, dt, or the following instant,
2dt, if not previously exercised, � � �, ad inf. To demon-
strate its effectiveness for decision problems having
many stages, we use the MMC method to value a put
option that can be exercised at one of a large number
of times, k = 30, including its expiration at time T .
This type of financial instrument is called a Bermudan
put option. By choosing k large enough, the computed
value of a Bermudan option will be practically equal
to the value of an American option.
Geske and Johnson (1984) develop a numerical

approximation for the value of an American option
based on extrapolating values for Bermudan options
having small numbers (viz., k = 1, 2, and 3) of exer-
cise opportunities. They show their results to be exact
in the limit as k→�. Broadie and Glasserman (1997)
use simulation to price American options by generat-
ing two estimators, one biased high and one biased
low, both asymptotically unbiased and converging to
the true price. Our MMC algorithm yields an esti-
mate in a manner similar to Broadie and Glasser-
man’s (1997) high estimator, which uses a dynamic
programming algorithm applied to a tree of simulated
stock prices. However, Broadie and Glasserman (1997)
consider only a small number of exercise opportu-
nities, k = 3, because their method is exponential in
the number of exercise opportunities. Because we use
local computation, our method is linear in the number
of exercise opportunities, which makes our technique
tractable even when k is large.

5.1. Solving the Bermudan Put Option Problem
An influence diagram representation of the Bermudan
option problem is depicted in Figure 10. Following
standard practice in the financial literature, the stock
prices, S1� S2� � � � � Sk evolve according to the discrete
stochastic process

Sj = Sj−1 exp
[(
r − 0

2

2

)
$t+0√$tZj

]

for j = 1� � � � � k� (1)

Figure 10 Influence Diagram for the Bermudan Put Option

…S1

D1

υ1

D2

υ2

Dk-1

υk-1

Dk

υk

…

Ζ1

S2 Sk-1 Sk

Ζ2 Ζk−1 Ζk

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
416 Management Science 50(3), pp. 405–418, © 2004 INFORMS

Figure 11 Conditionals for the Bermudan Put Option Decision Nodes

D1

h1

e1

D1

h1

e1

D2

D2

e2

h2

nc2

Di

hi

ei, nci

Di+1

Di+1

ei+1

hi+1

nci+1

where Sj is the stock price at time j$t, r is the risk-
less interest rate, 0 is the stock’s volatility, $t = T /k,
and the Zj are IID standard normal random variables.
See Glasserman (2003) for more details about using
simulation to value financial options.
The conditionals for the decision nodes in the prob-

lem are shown in Figure 11, where ei, hi, and nci
indicate the alternatives exercise, hold, or no choice,
respectively, for decision i. Because the option can be
exercised only once, if it is exercised at node j , then no
choice becomes the only alternative available for nodes
j + 1� � � � � k. As the chance variables Z1�Z2� � � � �Zk
are independent, their conditionals are not shown.
The additive factors of the utility function are: j =
exp�−rj$t�max�X − Sj�0� if Dj = ej ; j = 0 if Dj = hj
or ncj . This function reflects the asymmetric payoff of
a put option—if the stock price Sj is greater than the
exercise price X, then the option will not be exercised.
Thus, the owner’s potential loss is limited to the put’s
purchase price.
Figure 12 shows the sub-ID that is solved in the ith

stage. The chance nodes for this problem represent
continuous variables. We discretize the stock price
variables to obtain a finite number of states for the
simulation, and use linear interpolation to obtain val-
ues falling between finite states when we require con-
tinuity. The algorithm for a (0.10, 0.10) approximate
strategy is shown in Table 6. Following the number
of iterations discussion in §4.3, we require in each
stage only one estimate, H�Si�, the value at time i+ 1
of holding the option when the stock price is Si at

Table 6 MMC Algorithm for Valuing a Bermudan Put Option Using Local Computation

Step 1. For stage k, set Sk ∈ �0�0�25� � � � �2X�. Create a table that lists �̄′k �Sk �=max�X −Sk�0� as a function of Sk .
Step 2. For stage i = k − 1� k − 2� � � � �1, set Si ∈ �0�0�25� � � � �2X�. For each Si , generate a value Si+1 according to Expression (1) in the text. Look up

the value �̄′i+1�Si+1� in the table created in the previous stage. Use linear interpolation to obtain values for prices falling between table elements. Iterate as
many times necessary to estimate H�Si �, the average value of holding one more period at price Si , with a standard error of �/�!−1�1− "�

√
k�, where !�·� is

the standard normal cumulative distribution function, or the number of iterations has reached a prespecified limit, N . Compute �̄′i �Si �=max�X −Si ,
exp�−r#t��H�Si ��� Create a table that lists each �̄′i �Si �, the estimated expected value of the option at stage i, as a function of observed price Si .
Step 3. To price the option at time 0, use S0 to generate a value S1 according to (1). Look up the value �̄′1�S1� in the table created during stage k − 1.

Iterate as many times as needed to estimate H�S1�, the average value of holding until time 1, with a 100�1− "�% confidence interval having half-width less
than �/k, or the number of iterations has reached a prespecified limit, N . Compute �′0 = exp�−r#t�H�S0�, which is the estimated price of the option.

Figure 12 Bermudan Put Option Sub-ID for Stage i

Dk-i+1

υk-i+1

Ζk-i+2

Sk-i+2Sk-i+1

_
υk-i+2′

stage i. Thus, in each stage, we simulate long enough
to obtain a standard error of 0�10/�1�645

√
30�= 0�011

or we reach N = 100 iterations. The results of our
experiment (using antithetic variates) are shown in
Table 7.
For each exercise opportunity, j = 1� � � � � k, the stock

price S∗j below which the expected value of exercis-
ing at opportunity j exceeds the discounted expected
value of holding, is on the optimal exercise bound-
ary. To use our procedure, we need not identify the
optimal exercise boundary unless we wish to estimate
the put value with global simulation. For any exercise
opportunity j , we determine the boundary price as
the stock price S∗j such that X− S∗j ≈ exp�−r$t�H�S∗j �.
The optimal exercise boundary is the plot of S∗j ver-
sus j , which is sufficiently smooth to allow the use
of linear interpolation to obtain good estimates of the
boundary prices at times between each �j − 1�$t and
j$t in the local simulation.

6. Summary and Conclusions
Monte Carlo methods for solving decision prob-
lems are not new. One of the first global methods
was described by Hertz (1964) for decision trees.
However, in the MMC method proposed here, we
use information about the domains of probability
conditionals and utility functions that is coded
explicitly in influence diagrams to obtain a solution
using local computation. Thus, like the exact methods,
this will sometimes allow us to solve large decision

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
Management Science 50(3), pp. 405–418, © 2004 INFORMS 417

Table 7 Results of Applying the MMC Algorithm with a �0�10�0�10�
Approximate Strategy to Determine the Value P , of a
Bermudan Put Option with Selected Values of Strike Price X

and Volatility %

P P Number of
X % (Analytic) (MMC) Std. Dev. iterations/stage

35 0.3 1.2194 1.2236 0.0063 28,000
35 0.4 2.1568 2.1571 0.0090 28,000

40 0.3 3.1733 3.1715 0.0090 32,000
40 0.4 4.3556 4.3525 0.0101 32,000

45 0.3 6.2365 6.2418 0.0080 36,000
45 0.4 7.3831 7.3806 0.0093 36,000

Note. For each option, the initial stock price equals $40 (S0 = $40), the time
to exercise T = 7 months, and the number of possible exercise instants
(stages) k = 30. The P (Analytic) values are from Table I of Geske and
Johnson (1984). The P (MMC) values are the means of estimates from 100
independent runs of the algorithm for each put option. Std. Dev. is the stan-
dard deviation of the estimates across runs.

problems that would be intractable using decision
trees. It also allows us to obtain, with less compu-
tation, the same degree of precision resulting from
global simulation (Hertz 1964).
If all variables are discrete and the problem is

tractable, we could use exact methods for solving
large problems. If either all variables are not dis-
crete or the problem is not tractable, then the method
described here may be useful. Because we are using
Monte Carlo sampling, variables need not be discrete.
For example, in the OWSR problem, the conditional
distribution for SR could have been modeled with a
continuous density function. This poses no problem
as long as we can sample from such density functions.
Notice that our method cannot easily handle contin-
uous variables that are information predecessors of
decision variables. In such cases, finding the optimal
decision function is more complex and requires dis-
cretization of the continuous chance variables that are
in the relevant domain of the decision variables, as
we do in the Bermudan put option. If a problem is
intractable by exact methods, then the problem may
be tractable using our method if one is willing to set-
tle for a crude approximation, i.e., a high - and low
level of confidence 100�1−.�%.
Some limitations of our method are as follows.

First, our method is not designed to compute an opti-
mal strategy. Instead, it is designed to compute an
approximately optimal strategy. The quality of the
approximation can be improved but at the computa-
tional cost of doing more sampling. Second, although
our method is designed to use local computation,
it is not as localized as exact methods that com-
pute the requisite conditionals for chance variables.
In problems with all discrete variables, such requisite
conditionals can be easily computed. This is not true

in problems with a mixture of continuous and dis-
crete variables. In our method, we have opted for
ease of sampling of the chance variables (whether dis-
crete or continuous) at the expense of computation in
the form of more extensive sampling. Thus, in our
multistage sampling process, not only do we sam-
ple for variables in DRU�M� ∪ P�M�, we also sam-
ple for variables in B�M�. We can imagine a Markov
chain Monte Carlo method that samples only the vari-
ables in DRU�M� ∪ P�M�, but the distributions from
which these variables are sampled will have to be
computed from those specified in the influence dia-
gram representation. One of the advantages of our
sampling method is that observations are IID. This
allows us to devise rules for stopping the simulation
as functions of the easily computed standard errors of
the estimated mean utility values. Third, the method
given here for selecting the number of iterations is
quite conservative. Further refinement of the method
will lead to a reduction in the number of iterations
required for practical applications of the method.
An electronic appendix is available for this paper

at mansci.pubs.informs.org/ecompanion.html.

Acknowledgments
The authors are grateful to the Decision Sciences Group at
the University of Kansas School of Business for helpful com-
ments. Insightful discussions with Department Editor Jim
Smith, Jean-Yves Jaffray, Steffen Lauritzen, and Barry Nel-
son led to many improvements. This work was partially
supported by research grants from Sprint and Nortel Net-
works to the first author and from Sparta, Inc. to the second
author.

References
Bielza, C., P. Müller, D. Rios Insua. 1999. Decision analysis by aug-

mented probability simulation.Management Sci. 45(7) 995–1007.
Black, F., M. Scholes. 1973. The pricing of options and corporate

liabilities. J. Political Econom. 81 637–659.
Broadie, M., P. Glasserman. 1997. Pricing American-style securities

using simulation. J. Econom. Dynam. Control 21 1323–1352.
Geske, R., H. E. Johnson. 1984. The American put option valued

analytically. J. Finance 39(5) 1511–1524.
Gilks, W. R., S. Richardson, D. B. Spiegelhalter, eds. 1996. Markov

Chain Monte Carlo in Practice. CRC Press, London, U.K.
Glasserman, P. 2003. Monte Carlo Methods in Financial Engineering.

Springer-Verlag, New York.
Goldsman, D., B. L. Nelson. 1998. Comparing systems via simula-

tion. Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice. John Wiley and Sons, New York.

Hertz, D. B. 1964. Risk analysis in capital investment. Harvard Bus.
Rev. 42(1) 95–106. Reprinted in Harvard Bus. Rev. 1979. 57(5)
169–181.

Howard, R. A. 1971. Proximal decision analysis. Management Sci.
19(9) 507–541.

Howard, R. A., J. E. Matheson. 1984. Influence diagrams. R. A.
Howard, J. E. Matheson, eds. Readings on the Principles and
Applications of Decision Analysis, Vol. 2. Strategic Decisions
Group, Menlo Park, CA, 719–762.

Charnes and Shenoy: Multistage Monte Carlo Method for Solving Influence Diagrams
418 Management Science 50(3), pp. 405–418, © 2004 INFORMS

Jenzarli, A. 1995. Modeling dependence in project manage-
ment. Ph.D. thesis, University of Kansas Business School,
Lawrence, KS.

Keefer, D. L. 1994. Certainty equivalents for three-point discrete-
distribution approximations. Management Sci. 40(6) 760–773.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis,
3rd ed. McGraw-Hill, New York.

Miller, A. C. III, T. R. Rice. 1983. Discrete approximations of prob-
ability distributions. Management Sci. 29 352–362.

Niederreiter, H. 1992. Random number generation and quasi-Monte
Carlo methods. SIAM, CBMS-NSF, Philadelphia, PA.

Nielsen, T. D., F. V. Jensen. 1999. Well-defined decision scenarios.
K. B. Laskey, H. Prade, eds. Uncertainty in Artificial Intelligence:
Proc. Fifteenth Conf., Morgan Kaufmann, San Francisco, CA,
502–511.

Olmsted, S. M. 1983. On representing and solving decision prob-
lems. Ph.D. thesis, Department of Engineering-Economic Sys-
tems, Stanford University, Stanford, CA.

Ortiz, L. E., L. P. Kaelbling. 2000. Sampling methods for action
selection in influence diagrams. Proc. Seventeenth National
Conf. Artificial Intelligence (AAAI-2000). AAAI Press, Menlo
Park, CA.

Poland III, W. B., 1994. Decision analysis with continuous and dis-
crete variables: A mixture distribution approach. Ph.D. thesis,
Department of Engineering-Economic Systems, Stanford Uni-
versity, Stanford, CA.

Raiffa, H. 1968. Decision Analysis: Introductory Lectures on Choices
Under Uncertainty. Addison-Wesley, Reading, MA.

Shachter, R. D. 1986. Evaluating influence diagrams. Oper. Res. 34(6)
871–882.

Shachter, R. D., C. R. Kenley. 1989. Gaussian influence diagrams.
Management Sci. 35(5) 527–550.

Shachter, R. D., M. A. Peot. 1990. Simulation approaches to gen-
eral probabilistic inference on belief networks. M. Henrion,
R. D. Shachter, L. N. Kanal, J. F. Lemmer, eds. Uncertainty
in Artificial Intelligence, Vol. 5. North-Holland, Amsterdam,
The Netherlands, 221–231.

Shenoy, P. P. 1992. Valuation-based systems for Bayesian decision
analysis. Oper. Res. 40(3) 463–484.

Shenoy, P. P. 1998. Game trees for decision analysis. Theory Decision
44 149–171.

Smith, J. E. 1993. Moment methods for decision analysis. Manage-
ment Sci. 39(3) 340–358.

Smith, J. E., S. Holtzman, J. E. Matheson. 1993. Structuring con-
ditional relationships in influence diagrams. Oper. Res. 41(2)
280–297.

Tatman, J. A., R. D. Shachter. 1990. Dynamic programming and
influence diagrams. IEEE Trans. Systems, Man, Cybernetics 20(2)
365–379.

von Neumann, J., O. Morgenstern. 1944. Theory of Games and Eco-
nomic Behavior, 1st ed. Princeton University Press, Princeton,
NJ.

