323 research outputs found

    Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions

    Full text link

    Skin texture features for face recognition

    Get PDF
    Face recognition has been deployed in a wide range of important applications including surveillance and forensic identification. However, it still seems to be a challenging problem as its performance severely degrades under illumination, pose and expression variations, as well as with occlusions, and aging. In this thesis, we have investigated the use of local facial skin data as a source of biometric information to improve human recognition. Skin texture features have been exploited in three major tasks, which include (i) improving the performance of conventional face recognition systems, (ii) building an adaptive skin-based face recognition system, and (iii) dealing with circumstances when a full view of the face may not be avai'lable. Additionally, a fully automated scheme is presented for localizing eyes and mouth and segmenting four facial regions: forehead, right cheek, left cheek and chin. These four regions are divided into nonoverlapping patches with equal size. A novel skin/non-skin classifier is proposed for detecting patches containing only skin texture and therefore detecting the pure-skin regions. Experiments using the XM2VTS database indicate that the forehead region has the most significant biometric information. The use of forehead texture features improves the rank-l identification of Eigenfaces system from 77.63% to 84.07%. The rank-l identification is equal 93.56% when this region is fused with Kernel Direct Discriminant Analysis algorithm

    Computer analysis of face beauty: a survey

    Get PDF
    The human face conveys to other human beings, and potentially to computer systems, information such as identity, intentions, emotional and health states, attractiveness, age, gender and ethnicity. In most cases analyzing this information involves the computer science as well as the human and medical sciences. The most studied multidisciplinary problems are analyzing emotions, estimating age and modeling aging effects. An emerging area is the analysis of human attractiveness. The purpose of this paper is to survey recent research on the computer analysis of human beauty. First we present results in human sciences and medicine pointing to a largely shared and data-driven perception of attractiveness, which is a rationale of computer beauty analysis. After discussing practical application areas, we survey current studies on the automatic analysis of facial attractiveness aimed at: i) relating attractiveness to particular facial features; ii) assessing attractiveness automatically; iii) improving the attractiveness of 2D or 3D face images. Finally we discuss open problems and possible lines of research

    Feature extraction using two dimensional (2D) legendre wavelet filter for partial iris recognition

    Get PDF
    An increasing need for biometrics recognition systems has grown substantially to address the issues of recognition and identification, especially in highly dense areas such as airports, train stations, and financial transactions. Evidence of these can be seen in some airports and also the implementation of these technologies in our mobile phones. Among the most popular biometric technologies include facial, fingerprints, and iris recognition. The iris recognition is considered by many researchers to be the most accurate and reliable form of biometric recognition because iris can neither be surgically operated with a chance of losing slight nor change due to aging. However, presently most iris recognition systems available can only recognize iris image with frontal-looking and high-quality images. Angular image and partially capture image cannot be authenticated with the existing method of iris recognition. This research investigates the possibility of developing a technique for recognition partially captured iris image. The technique is designed to process the iris image at 50%, 25%, 16.5%, and 12.5% and to find a threshold for a minimum amount of iris region required to authenticate the individual. The research also developed and implemented two Dimensional (2D) Legendre wavelet filter for the iris feature extraction. The Legendre wavelet filter is to enhance the feature extraction technique. Selected iris images from CASIA, UBIRIS, and MMU database were used to test the accuracy of the introduced technique. The technique was able to produce recognition accuracy between 70 – 90% CASIA-interval with 92.25% accuracy, CASIA-distance with 86.25%, UBIRIS with 74.95%, and MMU with 94.45%

    Probability-Possibility Theories Based Iris Biometric Recognition System

    Get PDF
    The performance and robustness of the iris-based recognition systems still suffer from imperfection in the biometric information. This paper makes an attempt to address these imperfections and deals with important problem for real system. We proposed a new method for iris recognition system based on uncertainty theories to treat imperfection iris feature. Several factors cause different types of degradation in iris data such as the poor quality of the acquired pictures, the partial occlusion of the iris region due to light spots, or lenses, eyeglasses, hair or eyelids, and adverse illumination and/or contrast. All of these factors are open problems in the field of iris recognition and affect the performance of iris segmentation, its feature extraction or decision making process, and appear as imperfections in the extracted iris feature. The aim of our experiments is to model the variability and ambiguity in the iris data with the uncertainty theories. This paper illustrates the importance of the use of this theory for modeling or/and treating encountered imperfections. Several comparative experiments are conducted on two subsets of the CASIA-V4 iris image database namely Interval and Synthetic. Compared to a typical iris recognition system relying on the uncertainty theories, experimental results show that our proposed model improves the iris recognition system in terms of Equal Error Rates (EER), Area Under the receiver operating characteristics Curve (AUC) and Accuracy Recognition Rate (ARR) statistics

    Unfamiliar facial identity registration and recognition performance enhancement

    Get PDF
    The work in this thesis aims at studying the problems related to the robustness of a face recognition system where specific attention is given to the issues of handling the image variation complexity and inherent limited Unique Characteristic Information (UCI) within the scope of unfamiliar identity recognition environment. These issues will be the main themes in developing a mutual understanding of extraction and classification tasking strategies and are carried out as a two interdependent but related blocks of research work. Naturally, the complexity of the image variation problem is built up from factors including the viewing geometry, illumination, occlusion and other kind of intrinsic and extrinsic image variation. Ideally, the recognition performance will be increased whenever the variation is reduced and/or the UCI is increased. However, the variation reduction on 2D facial images may result in loss of important clues or UCI data for a particular face alternatively increasing the UCI may also increase the image variation. To reduce the lost of information, while reducing or compensating the variation complexity, a hybrid technique is proposed in this thesis. The technique is derived from three conventional approaches for the variation compensation and feature extraction tasks. In this first research block, transformation, modelling and compensation approaches are combined to deal with the variation complexity. The ultimate aim of this combination is to represent (transformation) the UCI without losing the important features by modelling and discard (compensation) and reduce the level of the variation complexity of a given face image. Experimental results have shown that discarding a certain obvious variation will enhance the desired information rather than sceptical in losing the interested UCI. The modelling and compensation stages will benefit both variation reduction and UCI enhancement. Colour, gray level and edge image information are used to manipulate the UCI which involve the analysis on the skin colour, facial texture and features measurement respectively. The Derivative Linear Binary transformation (DLBT) technique is proposed for the features measurement consistency. Prior knowledge of input image with symmetrical properties, the informative region and consistency of some features will be fully utilized in preserving the UCI feature information. As a result, the similarity and dissimilarity representation for identity parameters or classes are obtained from the selected UCI representation which involves the derivative features size and distance measurement, facial texture and skin colour. These are mainly used to accommodate the strategy of unfamiliar identity classification in the second block of the research work. Since all faces share similar structure, classification technique should be able to increase the similarities within the class while increase the dissimilarity between the classes. Furthermore, a smaller class will result on less burden on the identification or recognition processes. The proposed method or collateral classification strategy of identity representation introduced in this thesis is by manipulating the availability of the collateral UCI for classifying the identity parameters of regional appearance, gender and age classes. In this regard, the registration of collateral UCI s have been made in such a way to collect more identity information. As a result, the performance of unfamiliar identity recognition positively is upgraded with respect to the special UCI for the class recognition and possibly with the small size of the class. The experiment was done using data from our developed database and open database comprising three different regional appearances, two different age groups and two different genders and is incorporated with pose and illumination image variations
    • …
    corecore