44 research outputs found

    Denoising 3D microscopy images of cell nuclei using shape priors on an anisotropic grid

    Get PDF
    This paper presents a new multiscale method to denoise three-dimensional images of cell nuclei. The speci- ficity of this method is its awareness of the noise distribution and object shapes. It combines a multiscale representation called Isotropic Undecimated Wavelet Transform (IUWT) with a nonlinear transform, a statistical test and a variational method, to retrieve spherical shapes in the image. Beyond extending an existing 2D approach to a 3D problem, our algorithm takes the sampling grid dimensions into account. We compare our method to the two algorithms from which it is derived on a representative image analysis task, and show that it is superior to both of them. It brings a slight improvement in the signal-to-noise ratio and a significant improvement in cell detection

    Image Denoising in Mixed Poisson-Gaussian Noise

    Get PDF
    We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    A Multiscale Denoising Framework using Detection Theory with Application to Images from CMOS/CCD Sensors

    Get PDF
    Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory of hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson-Gaussian denoising. VST transforms signal dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets

    Improved synapse detection for mGRASP-assisted brain connectivity mapping

    Get PDF
    Motivation: A new technique, mammalian green fluorescence protein (GFP) reconstitution across synaptic partners (mGRASP), enables mapping mammalian synaptic connectivity with light microscopy. To characterize the locations and distribution of synapses in complex neuronal networks visualized by mGRASP, it is essential to detect mGRASP fluorescence signals with high accuracy

    Poisson Image Reconstruction With Hessian Schatten-Norm Regularization

    Full text link

    The SURE-LET approach to image denoising

    Get PDF
    Denoising is an essential step prior to any higher-level image-processing tasks such as segmentation or object tracking, because the undesirable corruption by noise is inherent to any physical acquisition device. When the measurements are performed by photosensors, one usually distinguish between two main regimes: in the first scenario, the measured intensities are sufficiently high and the noise is assumed to be signal-independent. In the second scenario, only few photons are detected, which leads to a strong signal-dependent degradation. When the noise is considered as signal-independent, it is often modeled as an additive independent (typically Gaussian) random variable, whereas, otherwise, the measurements are commonly assumed to follow independent Poisson laws, whose underlying intensities are the unknown noise-free measures. We first consider the reduction of additive white Gaussian noise (AWGN). Contrary to most existing denoising algorithms, our approach does not require an explicit prior statistical modeling of the unknown data. Our driving principle is the minimization of a purely data-adaptive unbiased estimate of the mean-squared error (MSE) between the processed and the noise-free data. In the AWGN case, such a MSE estimate was first proposed by Stein, and is known as "Stein's unbiased risk estimate" (SURE). We further develop the original SURE theory and propose a general methodology for fast and efficient multidimensional image denoising, which we call the SURE-LET approach. While SURE allows the quantitative monitoring of the denoising quality, the flexibility and the low computational complexity of our approach are ensured by a linear parameterization of the denoising process, expressed as a linear expansion of thresholds (LET).We propose several pointwise, multivariate, and multichannel thresholding functions applied to arbitrary (in particular, redundant) linear transformations of the input data, with a special focus on multiscale signal representations. We then transpose the SURE-LET approach to the estimation of Poisson intensities degraded by AWGN. The signal-dependent specificity of the Poisson statistics leads to the derivation of a new unbiased MSE estimate that we call "Poisson's unbiased risk estimate" (PURE) and requires more adaptive transform-domain thresholding rules. In a general PURE-LET framework, we first devise a fast interscale thresholding method restricted to the use of the (unnormalized) Haar wavelet transform. We then lift this restriction and show how the PURE-LET strategy can be used to design and optimize a wide class of nonlinear processing applied in an arbitrary (in particular, redundant) transform domain. We finally apply some of the proposed denoising algorithms to real multidimensional fluorescence microscopy images. Such in vivo imaging modality often operates under low-illumination conditions and short exposure time; consequently, the random fluctuations of the measured fluorophore radiations are well described by a Poisson process degraded (or not) by AWGN. We validate experimentally this statistical measurement model, and we assess the performance of the PURE-LET algorithms in comparison with some state-of-the-art denoising methods. Our solution turns out to be very competitive both qualitatively and computationally, allowing for a fast and efficient denoising of the huge volumes of data that are nowadays routinely produced in biomedical imaging

    Structure-aware image denoising, super-resolution, and enhancement methods

    Get PDF
    Denoising, super-resolution and structure enhancement are classical image processing applications. The motive behind their existence is to aid our visual analysis of raw digital images. Despite tremendous progress in these fields, certain difficult problems are still open to research. For example, denoising and super-resolution techniques which possess all the following properties, are very scarce: They must preserve critical structures like corners, should be robust to the type of noise distribution, avoid undesirable artefacts, and also be fast. The area of structure enhancement also has an unresolved issue: Very little efforts have been put into designing models that can tackle anisotropic deformations in the image acquisition process. In this thesis, we design novel methods in the form of partial differential equations, patch-based approaches and variational models to overcome the aforementioned obstacles. In most cases, our methods outperform the existing approaches in both quality and speed, despite being applicable to a broader range of practical situations.Entrauschen, Superresolution und Strukturverbesserung sind klassische Anwendungen der Bildverarbeitung. Ihre Existenz bedingt sich in dem Bestreben, die visuelle Begutachtung digitaler Bildrohdaten zu unterstützen. Trotz erheblicher Fortschritte in diesen Feldern bedürfen bestimmte schwierige Probleme noch weiterer Forschung. So sind beispielsweise Entrauschungsund Superresolutionsverfahren, welche alle der folgenden Eingenschaften besitzen, sehr selten: die Erhaltung wichtiger Strukturen wie Ecken, Robustheit bezüglich der Rauschverteilung, Vermeidung unerwünschter Artefakte und niedrige Laufzeit. Auch im Gebiet der Strukturverbesserung liegt ein ungelöstes Problem vor: Bisher wurde nur sehr wenig Forschungsaufwand in die Entwicklung von Modellen investieret, welche anisotrope Deformationen in bildgebenden Verfahren bewältigen können. In dieser Arbeit entwerfen wir neue Methoden in Form von partiellen Differentialgleichungen, patch-basierten Ansätzen und Variationsmodellen um die oben erwähnten Hindernisse zu überwinden. In den meisten Fällen übertreffen unsere Methoden nicht nur qualitativ die bisher verwendeten Ansätze, sondern lösen die gestellten Aufgaben auch schneller. Zudem decken wir mit unseren Modellen einen breiteren Bereich praktischer Fragestellungen ab
    corecore