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Abstract

Denoising is an essential step prior to any higher-level image-processing tasks such as
segmentation or object tracking, because the undesirable corruption by noise is inherent to
any physical acquisition device. When the measurements are performed by photosensors,
one usually distinguish between two main regimes: in the first scenario, the measured
intensities are sufficiently high and the noise is assumed to be signal-independent. In the
second scenario, only few photons are detected, which leads to a strong signal-dependent
degradation. When the noise is considered as signal-independent, it is often modeled
as an additive independent (typically Gaussian) random variable, whereas, otherwise,
the measurements are commonly assumed to follow independent Poisson laws, whose
underlying intensities are the unknown noise-free measures.

We first consider the reduction of additive white Gaussian noise (AWGN). Contrary
to most existing denoising algorithms, our approach does not require an explicit prior
statistical modeling of the unknown data. Our driving principle is the minimization of
a purely data-adaptive unbiased estimate of the mean-squared error (MSE) between the
processed and the noise-free data. In the AWGN case, such a MSE estimate was first
proposed by Stein, and is known as “Stein’s unbiased risk estimate” (SURE). We further
develop the original SURE theory and propose a general methodology for fast and efficient
multidimensional image denoising, which we call the SURE-LET approach. While SURE
allows the quantitative monitoring of the denoising quality, the flexibility and the low
computational complexity of our approach are ensured by a linear parameterization of the
denoising process, expressed as a linear expansion of thresholds (LET). We propose several
pointwise, multivariate, and multichannel thresholding functions applied to arbitrary (in
particular, redundant) linear transformations of the input data, with a special focus on
multiscale signal representations.

We then transpose the SURE-LET approach to the estimation of Poisson intensities
degraded by AWGN. The signal-dependent specificity of the Poisson statistics leads to
the derivation of a new unbiased MSE estimate that we call “Poisson’s unbiased risk
estimate” (PURE) and requires more adaptive transform-domain thresholding rules. In
a general PURE-LET framework, we first devise a fast interscale thresholding method
restricted to the use of the (unnormalized) Haar wavelet transform. We then lift this
restriction and show how the PURE-LET strategy can be used to design and optimize
a wide class of nonlinear processing applied in an arbitrary (in particular, redundant)
transform domain.

We finally apply some of the proposed denoising algorithms to real multidimensional
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fluorescence microscopy images. Such in vivo imaging modality often operates under
low-illumination conditions and short exposure time; consequently, the random fluctu-
ations of the measured fluorophore radiations are well described by a Poisson process
degraded (or not) by AWGN. We validate experimentally this statistical measurement
model, and we assess the performance of the PURE-LET algorithms in comparison with
some state-of-the-art denoising methods. Our solution turns out to be very competitive
both qualitatively and computationally, allowing for a fast and efficient denoising of the
huge volumes of data that are nowadays routinely produced in biomedical imaging.

Keywords: image, video, denoising, thresholding, wavelets, multiscale, Stein’s unbiased
risk estimate (SURE), linear expansion of thresholds (LET), risk, MSE, estimation, ap-
proximation, Gaussian, Poisson, microscopy, fluorescence, multidimensional, nonlinear,
fast



Résumé

En traitement d’images, le débruitage est une étape essentielle préalablement à n’importe
quelles tâches de plus haut niveau telles que la segmentation ou le suivi d’objets, car les
dégradations dues au bruit sont inhérentes à tout système d’acquisition physique. Lorsque
les mesures sont accomplies par des capteurs photo-sensibles, on distingue principalement
deux régimes : dans le premier scénario, les intensités mesurées sont suffisamment élevées
et le bruit est considéré comme indépendant du signal. Dans le second scénario, seuls
quelques photons sont détectés, ce qui conduit à un bruit fortement dépendant du signal.
Lorsque le bruit ne dépend pas du signal, il est souvent modélisé par une variable aléatoire
(typiquement gaussienne) additive et indépendante du signal d’origine, alors que dans le
cas contraire, il est communément supposé que les mesures suivent des lois de Poisson
indépendantes, dont les données (inconnues) non-bruitées constituent les intensités sous-
jacentes.

Nous considérons tout d’abord la réduction du bruit additif, blanc et gaussien. Contrai-
rement à la plupart des algorithmes de débruitage existants, notre approche ne nécessite
pas explicitement de modélisation statistique a priori du signal inconnu. Notre principe
directeur est la minimisation d’un estimateur non-biaisé de l’erreur aux moindres carrés
(abrégé MSE en anglais) entre les données traitées et les données non-bruitées ; cet es-
timateur est exclusivement dérivé à partir des données (observées) bruitées. Dans le cas
d’un bruit additif, blanc et gaussien, une telle estimation du MSE fut initialement pro-
posée par Stein et connue sous le nom de “estimation de risque non-biaisée de Stein”
(abrégé SURE en anglais). Nous développons davantage la théorie originale du SURE
et proposons une méthodologie générale pour le débruitage rapide et efficace d’images
multi-dimensionnelles : l’approche SURE-LET. Tandis que le SURE permet un contrôle
quantitatif de la qualité du débruitage, la flexibilité et la faible complexité computa-
tionnelle de notre approche sont garanties par un paramétrage linéaire du processus de
débruitage, exprimé comme une combinaison linéaire de fonctions de seuillage (abrégé
LET en anglais). Nous proposons plusieurs fonctions de seuillage (ponctuelles, multi-
variées ou multi-canaux) applicables à des transformations linéaires arbitraires (en par-
ticulier, redondantes) des données bruitées ; les représentations multi-échelles retiennent
principalement notre attention.

Nous transposons ensuite l’approche SURE-LET à l’estimation des intensités d’un
processus poissonnien corrompu par du bruit additif, blanc et gaussien. La spécificité de
“signal-dépendance” des statistiques poissonniennes requiert la dérivation d’un nouvel es-
timateur non-biaisé du MSE que nous avons appelé “estimation de risque non-biaisée de
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Poisson” (abrégé PURE en anglais) et la mise au point de fonctions de seuillage plus adap-
tatives. Dans un cadre PURE-LET général, nous développons tout d’abord un algorithme
rapide de seuillage inter-échelle, restreint à l’utilisation de la transformation en ondelettes
de Haar (non-normalisées). Nous levons ensuite cette restriction et montrons comment
la stratégie PURE-LET peut être utilisée pour le design et l’optimisation d’une large
classe de traitements non-linéaires opérant dans le domaine de transformations linéaires
arbitraires (en particulier, redondantes).

Nous appliquons finalement quelques-uns des algorithmes de débruitage proposés sur
des images multi-dimensionnelles de microscopie à fluorescence. Cette modalité d’imagerie
in vivo opère souvent dans des conditions de faible illumination et de brefs temps d’expo-
sition ; en conséquence, les fluctuations aléatoires des mesures des radiations émises par
les fluorophores sont fidèlement décrites par un processus de Poisson dégradé (ou non)
par un bruit additif, blanc et gaussien. Après une validation expérimentale du modèle
statistique de mesure, nous évaluons la performance des algorithmes PURE-LET par
rapport aux meilleures méthodes de débruitage disponibles. La solution proposée s’avère
très compétitive, tant qualitativement que du point de vue de sa complexité computa-
tionnelle, garantissant un débruitage rapide et efficace des énormes volumes de données
qui, de nos jours, sont couramment produits en imagerie biomédicale.

Mots-clés : image, video, débruitage, seuillage, ondelettes, multi-échelles, estimation du
risque non-biaisée de Stein (SURE), combinaison linéaire de fonctions de seuillage (LET),
risque, MSE, estimation, approximation, gaussien, poissonnien, microscopie, fluorescence,
multi-dimensionnel, non-linéaire, rapide
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Chapter 1

Introduction

1.1 Denoising: A Key Step in Image Analysis

In image analysis, the extraction of information can be significantly altered by the presence
of random distortions called noise (see Figure 1.1). The type and energy of this noise
naturally depend on the way the images have been acquired or transmitted. The observed
image usually consists in a 2D array of pixels: for gray-level images, there is only one
channel of light intensity measurement, whereas multispecral (e.g. color) images can
have several channels (e.g. RGB: red, green and blue). In most imaging modalities, the
measurements are usually performed by a charge-coupled device (CCD) camera which
can be seen as a matrix of captors. The pixel value at a particular location is given
by the number of photons received by the corresponding captor for a fixed period of
time. Most of the noise arises from the fluctuation of the number of incoming photons,
but additional perturbations are generated by the thermal instabilities of the electronic
acquisition devices and the analog-to-digital conversion. Although the amount of noise
actually depends on the signal intensity, it is often modeled as an additive independent
(typically Gaussian) random variable, especially when the magnitude of the measured
signal is sufficiently high.

There are two main approaches to deal with these unexpected, but also unavoidable,
degradations. These are often combined to get a safer solution. The first one is to
develop analysis tools that will be robust with respect to noise; the second one, which
will retain our attention in this thesis, is to perform a pre-processing step that will consist
in denoising the data. The trade-off which needs to be optimized is then to reduce the
noise level while preserving the key image features.

The vast majority of existing denoising algorithms is specifically designed for the
reduction of additive white Gaussian noise (AWGN) in 1D or 2D monochannel data;
this considerably reduces their range of application. In particular, denoising the huge
multidimensional datasets that are nowadays routinely produced by standard biomedical
imaging modalities (e.g. microscopy, magnetic resonance imaging (MRI), positron emis-
sion tomography (PET),...) remains a challenging task, because it calls for less generic
statistical measurement model and computationally more efficient solution.

1
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(A) (B)

(C) (D)

Figure 1.1: (A) A noise-free fMRI image. (B) A corrupted version of it. (C)
The result of a classical edge-detector applied on the noise-free image. (D) The
result of the same edge-detector applied on the noisy image.

1.2 Evaluating the Denoising Quality

Evaluating the denoising quality is essential to compare various denoising algorithms or
to validate a denoising procedure applied on real data. In this section, we discuss the
most popular approaches to image quality assessment.

1.2.1 Objective Quality Assessment

By objective quality assessment, we mean a mathematical measure that quantifies the
similarity between the denoised image x̂ ∈ R

N and the original noise-free image x ∈ R
N .

In this respect, the mean-squared error (MSE)

MSE =
1

N
‖x̂− x‖2 =

1

N

N∑
n=1

(x̂n − xn)
2 (1.1)
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is the most widely used measure of quality. It is often normalized by either the signal
energy or the square of the maximum value of the signal and represented in a logarithmic
scale yielding either the common signal-to-noise ratio (SNR)

SNR = 10 log10

( ‖x‖2
‖x̂− x‖2

)
(1.2)

or the popular peak signal-to-noise ratio (PSNR)

PSNR = 10 log10

(‖x‖2∞
MSE

)
. (1.3)

However, the MSE is considered as a poor visual quality metric [1], mainly due to its
non-adaptivity to local signal specificities (intensity, correlation,...). This has led some
researchers to design new measures of quality that better correlate with human visual
perception [2–6]. The most popular representative of these quality metrics is probably
the structural similarity index (SSIM) introduced in [5]. The SSIM between two images
x and y takes into account three types of similarities:

• the luminance similarity, which involves local measures of the mean of the noisy μy

and noise-free images μx;

• the contrast similarity, which involves local measures of the variance of the noisy
σ2
y and noise-free images σ2

x;

• the structural similarity, which also involves local measures of the standard deviation
of the noisy and noise-free images, as well as local measures of their correlation σxy.

These similarity measures are combined to yield the following expression of the SSIM:

SSIM(x,y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(1.4)

where the default values of the two constants C1 and C2 are C1 = (0.01L)2 and C2 =
(0.03L)2, L being the dynamic range of the pixel values (i.e. L = 255 for 8-bit images).
Practically, the SSIM is computed inside each M ×M (typically 8× 8) block of the two
compared images, yielding a SSIM map. A mean SSIM index can finally be obtained by
averaging all the local SSIM values1.

Perceptual-based quality criterions have two major practical drawbacks: first, none
of them is universally adopted by the image processing community; second, optimizing a
denoising algorithm based on such criterions is a challenging task, due to their intrinsic
structure (non-linear, adaptive and sometimes, parameterized). Yet, we will see through-
out this work that, at least in denoising applications, the image exhibiting the lowest
MSE is often the one with the highest SSIM score too.

1A Matlab code that computes the SSIM map and SSIM index is available at:
http://www.ece.uwaterloo.ca/~z70wang/research/ssim/.
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1.2.2 Subjective Quality Assessment

When the original noise-free image is not available (which is the case in real denoising
applications), it is not possible to have an objective measure of similarity. However, there
are several reference-free methods to assess the denoising quality:

• Human visual assessment: the simplest way to evaluate the denoising quality is
to rely on human judgment. The subjectivity decreases as the the number of human
subjects increases. To facilitate the evaluation, their attention is usually drawn to
the artifacts visibility and edges sharpness.

• Method noise [7]: the effect of a denoising algorithm can be evaluated by analyzing
the noise guessed by the method, i.e. the difference between the noisy image and the
denoised one. Ideally, this residual should have the same statistics as the noise and
should not reflect the structure of the original image. While such a requirement is
achievable under low noise conditions, it is rarely reached in real-world applications.

• Contrast-to-noise ratio (CNR): the contrast-to-noise ratio is a popular measure
of quality in biomedical applications [8, 9]. Its use is of less interest for natural
images, due to the high diversity of their content. CNR reflects the strength of a
feature of interest compared to its environment. Therefore, it gives an indication of
the effective spatial resolution, i.e. the smallest structure still detectable. It involves
the computation of the mean and variance inside a region of interest (ROI) and in
the background. Its subjectivity mainly comes from the choice of ROI.

Besides the above mentioned general criterions, other reference-free quality assessment
measures have been proposed, often bound to a specific type of distortion [10,11].

1.3 Survey of Denoising Approaches

A huge amount of literature is dedicated to image denoising in general, and to additive
white Gaussian noise (AWGN) reduction in particular. In this section, we propose a for-
mal classification of the various denoising approaches, based on their underlying working
principle. For each class, we further discuss some of its most popular representatives.
Note that many other relevant classifications can be envisaged (e.g [7, 12]), due to the
hybrid nature of some denoising approaches.

1.3.1 Filtering

Filtering is certainly the simplest way of reducing the noise level in a distorted image.
Its denoising efficiency comes from the particular energy distribution of natural images
in the frequency domain. Indeed, the noise-free signal spectrum is usually concentrated
in low frequencies. It is often assumed to decay like 1/fα [13–15], where f is the radial
frequency and α is the decay parameter, close to α = 2 for most images. In the case
of AWGN, the noise power spectrum is constant for all frequencies. Therefore, a mere
lowpass filtering of the noisy image can already improve the signal-to-noise ratio (SNR).
In this section, we discuss the most standard denoising filters.
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Wiener Filter

One of the oldest approach to the image restoration problem is probably the Wiener
filter [16]. Suppose that the observed noisy image y is given by

y = x+ b

where both the noise-free image x and the noise b are independent second-order stationary
random processes.

Specifically, the problem is to estimate x by x̂ = w ∗ y, and to search for the linear
filter w that minimizes the expected mean-squared error (MSE), i.e.

wopt = argminw E
{‖w ∗ y − x‖2} (1.5)

where E {·} stands for the mathematical expectation.
The solution of this equation is the Wiener filter. Its frequency response is given by:

W (ωωω) =
Sx(ωωω)

Sx(ωωω) + Sb(ωωω)
(1.6)

where Sx(ωωω) is the power spectral density of the noise-free signal x and Sb(ωωω) is the
power spectral density of the noise b.

The Wiener filter is the minimum mean-squared error (MMSE), space-invariant lin-
ear estimator of the signal for stationary images degraded by additive stationary noise.
However, when applied to real-world images, it suffers from two main weaknesses: first,
it does not make any distinctions between the treatment of edges and flat-regions due
to its space-invariance; second, its performance highly depends on the estimation of the
noise-free signal power spectrum. It is globally optimum for a Gaussian stationary random
signal only. The problem is that natural images do not belong to this particular class
of signals. There is a considerable amount of literature that investigates efficient way of
estimating the noise-free signal power spectral density in more general cases. The most
popular approaches impose some parameterized model (generalized Gaussian or Lapla-
cian, fractal-like, ...) depending on the class of signal to which the noise-free signal is
supposed to belong. Due to this difficulty, the Wiener filter is usually outperformed by
spatially adaptive and/or non-linear algorithms.

In the simplest pointwise space-domain, the equivalent of the Wiener filter amounts
to multiplying the centred noisy signal by a constant:

x̂ =
(
1− σ2

σ2
y

)
(y − μy) + μy (1.7)

where σ2, σ2
y and μy are respectively the noise variance, the noisy data variance and the

mean of the noisy data. This approach is obviously also transferable to a transformed
domain such as wavelet or local discrete cosine transforms (DCTs) [17,18]. Note that this
kind of pointwise linear estimator can be already efficient when applied over regions of
interest where the probability density function of the noise-free signal is well approximated
by a Gaussian distribution.
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A locally adaptive extension of (1.7) has been proposed by Lee in [19]. The idea is to
locally compute the mean and variance of the noisy data inside every M ×M overlapping
neighborhoods of the image. This adaptive version leads to significant improvements both
in terms of MSE and visual quality. This popular algorithm is implemented in the Matlab
wiener2 function.

Other Linear Filters

When there is no information on the noise nor on the noise-free signal statistics, one can
still rely on two popular denoising filters: the moving average and the Gaussian smoothing.
The level of noise reduction is adjusted via the spatial size of the filter support or the
variance of the Gaussian filter. The main drawback of linear filters in general is the
blurring of edges.

Non-Linear Filters

Non-linear filters consitute a possible alternative to the standard aforementioned linear
filters, the most popular being the median filter. The latter is especially efficient at
removing impulsive noise, while giving similar results than linear filters for AWGN re-
moval. Combinations of morphological operators have been also considered for image
denoising [20], in particular when various types of noise are present (e.g. AWGN, salt-
and-pepper, speckle,...).

Bilateral Filter

The idea behind the bilateral filtering introduced by Tomasi and Manduchi [21] is to
combine domain filtering with range filtering. Domain filtering is the traditional fil-
tering framework that takes advantage of the similarity of spatially close pixels which
are assumed to be more correlated to the centered pixel than more distant pixels. As
a consequence, a weighted-averaging of close pixels considerably reduces the noise level.
However, in the vicinity of edges, this solution is not satisfying. A better approach for the
handling of image discontinuities is adopted by range filtering, which consists in treating
together similar pixels, i.e. close in the range (intensity) value, without regard to their
relative spatial locations. More precisely, Tomasi and Manduchi define range filtering as
the averaging of image values with weights that decay with dissimilarity. The bilateral
filter computes a normalized weighted average of a neighborhood of samples around a
central pixel, where the underlying weights are the products of the spatial domain and
the range domain weights. The choice of particular decaying functions for the two weights
is quite free: the solution proposed by Tomasi and Manduchi is to use Gaussian functions
which involve the Euclidian distance for the spatial domain weights and the difference
of intensities for the range domain weights. Thus, three parameters control the bilateral
filter: the neighborhood size and two parameters setting the decay of the two weight
factors. Up to our knowledge, there is no rigorous method for an optimal selection of
these parameters.
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1.3.2 Patch-based Approaches

The principle of patch-based image denoising is to take advantage of the redundancy of the
various structural features present in natural images. Some examples of such redundancy
are displayed in Figure 1.2. For instance, an edge can be seen as a succession of similar
nearly binary patches. The way of measuring the similarity between image patches and
its robustness with respect to noise is at the core of the patch-based approaches.

Figure 1.2: Three examples of patches redundancy in the standard Cameraman
image. Each reference patch is numbered: for clarity, only a few non-overlapping
similar patches have been considered here.

At a given location n, the estimate x̂n of the noisy pixel yn = xn + bn, is computed
as follows:

x̂n =
1

C

∑
k∈V(n)

Hh(yn,yk)Gg(n,k)yk (1.8)

where C =
∑

k∈V(n)

Hh(yn,yk)Gg(n,k) is a normalizing factor.

yn is a vector of pixels (patch) taken from a neighborhood centered around the location
n. k can be the indice of any pixels belonging to the neighborhood V(n) of the current
pixel location n.

The function Hh(yn,yk) measures the photometric similarity between the patches yn

and yk. It is usually related to the Euclidian distance between the two patches, as

Hh(yn,yk) = exp

(
−‖yn − yk‖2

2h2

)
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where the parameter h is a threshold parameter, often proportional to the standard
deviation of the additive noise.

The function Gg(n,k) weights the neighboring pixels based on their Euclidian distance
to the current pixel location n. It is often a Gaussian kernel with smoothing parameter
g.

In the particular case where the patches are reduced to a single pixel, one recovers
the Bilateral Filter discussed in Section 1.3.1. The Nonlocal Means Filter of Buades et.
al [22, 23] is another famous instance of this class of denoising algorithms.

One of the major challenges in these patch-based approaches is to efficiently fix the
various degrees of freedom involved, i.e. the size and shape of the patches (a tradeoff
between denoising quality and computational efficiency has to be found), the design of
the two weighting functions Hh and Hg, as well as the value of their respective smoothing
parameters h and g. Several works along this line have been quite recently undertaken
[24,25].

1.3.3 PDE and Variational Approaches

Anisotropic Diffusion

In the linear formulation of diffusion filtering, the goal is to produce successive version
of an original image I0(x, y) at different resolutions. This is achieved by convolving the
original image with Gaussian kernels of increasing variance. It has been shown that this
subset of filtered images can be viewed as the solution of the diffusion equation, which
can be formulated as:

∂

∂t
I(x, y, t) = div {c(x, y, t)∇I(x, y, t)} (1.9)

with the initial condition: I(x, y, 0) = I0(x, y). ∇ =
[

∂
∂x

∂
∂y

]T
is the spatial gradient

operator.
In the simple case where the diffusion conductance c(x, y, t) is a constant C, we talk

about linear diffusion with homogenous diffusivity (known as the heat equation). This so-
lution leads to a mere Gaussian smoothing of the noisy image. In that case, no distinction
is made between the treatment of edges and flat regions of the image.

The solution proposed by Perona and Malik [26] is to use an image-dependent diffu-
sivity c(x, y, t) = h(|∇I(x, y, t)|). The diffusion is then controlled by the magnitude of
the image gradient at time t:

|∇I(x, y, t)| =
√

∂I(x, y, t)2

∂x
+

∂I(x, y, t)2

∂y

Consequently, the edges are better preserved, while flat regions can be heavily smoothed.
Their approach is referred to as non-linear anisotropic diffusion and is a considerable
improvement over conventional Gaussian smoothing. Note that some researchers of the
partial differential community call this solution non-homogenous non-linear isotropic dif-
fusion, while reserving the terminology of anisotropy for the case where the diffusivity is
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a diffusion tensor. This approach has been exploited by Weickert in [27] and allows for
smoothing along the edges as well.

The delicate aspect of these diffusion-based methods is the choice of an appropriate
diffusivity function. Several analytical expressions have been proposed which often in-
volve a conductance parameter. In addition to the type of diffusivity functions and their
corresponding conductance, the user has to fix at least two other degrees of freedom: the
diffusion speed and the number of iterations. Therefore, the weakest point of the diffusion
approach is that it requires the adjustment of several parameters; we are not aware of
any rigorous procedure to select the best ones for a given class of images.

Total Variation Minimization

The original total variation (TV) algorithm proposed by Rudin, Osher and Fatemi [28]
generated a new trend of research in image denoising. In their approach, denoising is
reformulated as a constrained minimization problem. Let I0(x, y) denote the noisy image
observed on the domain Ω of area |Ω|, and described as:

I0(x, y) = I(x, y) +B(x, y) (1.10)

where I(x, y) is the original noise-free image and B(x, y) is an additive perturbation
independent from I(x, y), such that E {B} = 0 and E

{
B2
}
= σ2.

The denoised image is then the solution of

argminU

∫
Ω

|∇U(x, y)| dx dy, subject to
1

|Ω| ‖U − I0‖2 = σ2 (1.11)

where

‖U − I0‖2 =

∫
Ω

(U(x, y)− I0(x, y))
2
dx dy

Introducing the Lagrange multiplier λ, the problem (1.11) is equivalent to the following
(unconstrained) cost functional minimization:

J(U) =

∫
Ω

|∇U(x, y)| dx dy +
λ

2

∫
Ω

(U(x, y)− I0(x, y))
2
dx dy (1.12)

with a suitable choice of λ.
∇J can be computed via the Euler-Lagrange equation of (1.12), i.e.

∇J = λ (U(x, y)− I0(x, y))− div

{ ∇U(x, y)

|∇U(x, y)|
}

(1.13)

and the minimizer of the functional (1.12) is finally obtained by gradient descent [29]:

∂

∂t
U(x, y, t) = div

{ ∇U(x, y, t)

|∇U(x, y, t)|
}
+ λ (I0(x, y)− U(x, y, t)) (1.14)

TV makes a bridge between the pure PDE-based approaches, such as anisotropic
diffusion, and the generic class of regularized cost functional discussed in the next section.
Indeed, setting λ = 0 in Equ. (1.14) gives a particular case of anisotropic diffusion, with
diffusivity c(x, y, t) = 1/|∇U(x, y, t)|.
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Regularized Cost Functional

The principle here is to find an estimate x̂ ∈ R
N of an original signal x ∈ R

N from noisy
data y ∈ R

N by minimizing a regularized cost-functional J(u,y), i.e. x̂ = argminu J(u,y).
The cost functional is usually of the following generic form:

J(u,y) = Ψ(u,y) + λΦ(u) (1.15)

where Ψ is a data-fidelity term, Φ a regularization term and λ > 0 a regularization
parameter.

The relevant data-fidelity term takes the form:

Ψ(u,y) =

N∑
n=1

ψ(un − yn) (1.16)

where the function ψ: R → R is typically of the form ψ(t) = |t|p, p > 0. The data-
fidelity term can also be a more general log-likelihood corresponding to the considered
noise model.

The regularization term is commonly of the form:

Φ(u) =

N∑
n=1

ϕ([L1u]n, . . . , [LKu]n) (1.17)

where Lk are N ×N matrices, corresponding to discrete versions of some linear operators
(e.g. gradient or Laplacian) and ϕ : RK → R+ is a possibly non-linear differentiable
function.

Depending on the choice of particular Ψ and Φ, one recovers a large variety of popular
algorithms [30–34]. For instance, the discrete version of the TV algorithm previously
introduced can be cast as a representative of this wide class of regularized cost functional.
In that case,

• L1 and L2 are respectively discrete gradients (finite differences) along the horizontal
and vertical directions;

• ψ(t) = t2;

• ϕ(t1, t2) =
√
t21 + t22.

When statistical knowledge about the noise and the original noise-free signal are avail-
able or assumed, one can adopt a Bayesian formulation which leads to the same general
form of cost-functional presented in (1.15). Indeed, maximizing the posterior distribution

p(x|y) = p(y|x)p(x)
p(y)

(1.18)

amounts to minimizing the following log-likelihod functional:

J(u,y) = − log p(y|u)− log p(u) (1.19)
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The minimizer of (1.19) is known as the maximum a posteriori (MAP) estimator. It is
one of the most widely used solution in transform-domain approaches (see Section 1.3.4).
Note that there is also a penalized likelihood framework [35, 36], where the probability
term − log p(u) is replaced by a more general penalty λΦ(u).

1.3.4 Transform-Domain Approaches

The transform-domain approach constitutes another wide class of denoising algorithms.
Initially, the Fourier transform was naturally considered, but the potential of other trans-
forms, such as the DCT early chosen by Yaroslavsky [17], has been soon exploited for
image denoising. The advent of powerful multiresolution tools such as the wavelet trans-
form [37–39] has then contributed a lot to the popularity of this denoising strategy. A
“good” transform candidate for denoising applications should enjoy (at least some of) the
following properties:

• Invertibility: Since the denoising output will be usually visualized and/or further
analysed, it must be represented in the same domain as the input. Hence, the
transform must be perfectly invertible; i.e. the inversion procedure should not add
any distortions.

• Linearity: A linear transformation is highly preferable for the tractability of the
signal and noise dependencies in the transform-domain. Linearity also facilitates
the perfect invertibility of the transformation and usually lowers its computational
complexity. Non-linearities are preferably reserved for the processing itself.

• Computational efficiency: In most applications, denoising is routinely performed
prior to higher-level image processing. Therefore, its computational cost must be
ideally negligible compared to that of more evolved operations such as segmentation,
detection or tracking. For fast denoising, the following scenarios are usually con-
sidered: either a low-cost transform precedes a sophisticated processing or a simple
(i.e. often pointwise) operation follows a more involved transformation. Combin-
ing complicated processing with high-complexity transforms is often prohibitive in
real-world applications.

• Decorrelation ability: One of the main reasons for processing the noisy data
in a transform-domain is to remove inter-pixel dependencies. Hence, for certain
class of signals, pointwise operations in an appropriate transform-domain can be
already very efficient (e.g. Wiener filter for stationary processes). The decorrelation
ability of the transform is also crucial for Bayesian denoising approaches: it often
allows an easier explicit description of the prior on the noise-free data. However,
one should keep in mind that “decorrelation” is only statistically synonymous with
“independence” in the case of a Gaussian distribution.

• Energy compaction: It is highly desirable that the transform concentrates the en-
ergy of the significant image features in a small number of high-magnitude transform
coefficients. This property is primordial in image compression. In this field, popular
transforms are the 8×8 block discrete cosine transform (BDCT) [40] used in JPEG,
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and the Cohen-Daubechies-Feauveau 9/7 biorthogonal wavelet transform [39], ex-
ploited in JPEG2000.

Energy compaction is closely linked to the sparsity power of the transform. A linear
transform A ∈ R

M×N is said to yield a sparse representation of a vector x ∈ R
N ,

if ‖Ax‖0 = # {m : [Ax]m �= 0} 	 M . However, in practice, a strict sparse
representation is very difficult (if not impossible) to achieve for natural images [41].
Therefore, the 	0 norm is usually replaced by a 	p norm, 0 < p ≤ 1. Since 0 < p < 1
leads to non-convex norms, only the 	1 norm is considered as sparsity promoter in
practical denoising applications. If some technical constraints (e.g. related to the
mutual coherence of the columns of A) are satisfied, then the 	1 norm minimization
also leads to the sparsest solution [42].

To achieve a good energy compaction of the input signal, the transform basis func-
tions must efficiently occupy the time-frequency plan (see Figure 1.3). The two
extreme representations are the image-domain (perfect spatial localization) and the
Fourier-domain (perfect frequency localization). Due to the Heisenberg uncertainity
principle, simultaneous perfect time-frequency localization is unachievable. There-
fore, the design of any transforms requires a trade-off between accuracy in time and
frequency localization. For instance, the basis functions of the BDCT uniformly
cover the time-frequency plan, while the wavelet transform offers a multiresolution
representation, thanks to a non-uniform tilling of the time-frequency plan.

• Shift Invariance: Shift invariance refers to the commutativity of the transform
with respect to translation of the input signal. The major drawback of the standard
transforms early considered for image denoising (DCT, non-overlapping BDCT,
basis of wavelets) is their sensitivity to spatial shifts of the input data. The resulting
artifacts (local Gibbs-like phenomenon) are predominant near image discontinuities
such as edges. The so-called blocking artifacts (visibility of the boundaries between
processed blocks) are typical to non-overlapping block-transforms.

Shift invariance can be achieved by a general procedure introduced by Donoho and
Coifman [43] coined cycle-spinning. It consists of the following steps:

1. Shift the input signal.

2. Apply the transform.

3. Denoise the shifted transformed coefficients.

4. Apply the inverse transform.

5. Shift back the denoised output.

6. Repeat steps 1 to 5 for a range of shifts and average the various denoised
outputs.

Perfect shift-invariance can be achieved if all cyclic shifts are considered. Since this
procedure is relatively time-consumming, only a small number of shifts (∼ 20) are
performed in practice.

There are naturally other transform-specific ways of increasing or achieving shift-
invariance: for instance, by considering overlapping blocks for block-transforms (e.g.
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Figure 1.3: Schematic time-frequency occupation of the basis functions of some
popular transforms.

sliding window DCT [17]). In the case of wavelets, better shift-invariance can be
obtained with:

– sharper bandpass filters, the optimal case being the use of ideal filters, i.e.
Shannon wavelets;

– complex or dual-tree wavelets;

– undecimated wavelet transform.

We refer the reader to [44] for a more comprehensive study on how to increase the
shift-invariance of the discrete wavelet transform.

• Rotation Invariance: Textures and edges are usually present in natural images at
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various orientations. Rotation invariance can be useful in image denoising to better
capture and more efficiently represent these oriented features. Unfortunately, rota-
tion invariance is more difficult to achieve than shift-invariance. Indeed, a general
procedure similar to cycle-spinning would require interpolation of the input image
sampling grid, and thus introduce artificial correlations between neighboring pixels.
One way of avoiding interpolation, is to consider rotation along concentric rectan-
gles: this solution has been described in [45] and coined quasi-circular rotation.

In the wavelet community, rotation-invariance is often related to directional sensi-
tivity/selectivity. The standard critically-sampled wavelet transform is sensitive to
only two preferential orientations (higher response for horizontal and vertical fea-
tures), due to the use of a separable basis. Higher directional sensitivity can be
achieved by the so-called shiftable or steerable multiscale transforms [46, 47]. The
key ingredients of such transforms are the steerable filters [48–50], which are essen-
tially directional derivatives operators. Since the early work of Simoncelli et. al.,
numerous directional wavelet transforms have been designed, stemming from either
real (e.g. [51], Curvelets [52, 53], Directionlets [54], Contourlets [55]) or complex
basis functions (e.g. [56–59]). Instead of increasing the directional selectivity, one
can envisage the exact opposite, i.e. considering transforms which do not favor any
particular orientations, such as isotropic wavelets [60]. Yet, isotropic transforms are
usually outperformed by the directional ones, except for some particular datasets,
such as the ones encountered in astronomy [61].

Some of the properties evoked above can be enhanced by considering data-adaptive
transformations. For instance, the Karhunen-Loève transform can perfectly decorrelate
the data. Its empirical equivalent, principal component analysis (PCA), has been there-
fore exploited in some denoising algorithms (e.g. [62, 63]). Recently, a shape-adaptative
BDCT [64] has been efficiently used for image denoising by Foi et. al. [65]. Adaptive
wavelet transforms (e.g. Bandelets [66], Grouplets [67]) have been designed to better rep-
resent the specific geometry of a given image. Adaptive partitioning of images has been
also considered for a sparser representation of edges in [68](Wedgelets) and [69](Platelets).

1.4 Contributions

The general goal of this thesis is to design denoising algorithms that satisfy the following
requirements:

• Efficiency: the proposed solutions have to be competitive with the state-of-the-art
denoising methods, with respect to an objective measure of quality (e.g. PSNR).

• Computational cost: the proposed algorithms should be faster than (or at least as
fast as) the most efficient denoising algorithms available. A modest computational
memory usage is also highly desirable in order to process large datasets.

• User intervention: the proposed algorithms should request a minimal intervention
from the user; ideally, the whole denoising procedure should be fully automated.
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• Aimed application: the main field of application is the denoising of biomedical
volumes, with a special focus on multidimensional fluorescence microscopy data.

Along the lines leading to the fulfillment of the above requirements, this thesis brings
the following contributions:

• Theoretical contributions: To come up with efficient denoising algorithms, we
need to achieve optimal performances with respect to an objective measure of qual-
ity. Therefore, the driving force behind our approach is the minimization of the
mean-squared error (MSE). Since the computation of the MSE requires the knowl-
edge of the unknown noise-free signal, this criterion can not be optimized in real
applications. Instead, we propose to minimize a robust unbiased estimate of the
MSE. For AWGN, such an estimate has been established in the 1980’s by Charles
Stein and is nowadays known as Stein’s unbiased risk estimate (SURE) [70]. In the
denoising community where the performance is almost universally measured in term
of MSE, SURE has surprisingly remained under-exploited, the Bayesian approach
being adopted by the vast majority of researchers (to the noteworthy exceptions of
Donoho et. al. in [71], Pesquet et. al. in [72–74] and Zhang et. al. in [75]). Re-
markably, and contrary to Bayesian approaches, the derivation of unbiased estimates
of the MSE does not require the statistical modeling of the underlying noise-free
signal. The latter can even be considered as deterministic.

In this work, we propose to revitalize the SURE theory. We derive several expres-
sions of SURE bound to a type of processing (pointwise or multivariate) and a type
of transformation (orthogonal or not). We then show that unbiased estimates of the
MSE can be obtained beyond the original framework of AWGN defined by Stein.
In particular, we give the expressions of an exact and an approximated unbiased
estimate of the MSE for a Poisson process degraded by an AWGN, a quantity that
we named PURE in reference to Poisson unbiased risk estimate.

• Algorithmic contributions: Most of the existing denoising algorithms require
the optimization of several non-linear parameters and/or involve sophisticated re-
dundant transforms. Consequently, their computational burden is usually quite
heavy. To achieve a high-quality denoising in a low computation time, we propose a
generic form of denoising process, expressed as a transform-domain linear expansion
of thresholds (LET). The optimal linear parameters of this expansion are then the
ones that minimize an unbiased estimate of the MSE. Thanks to the quadratic form
of such MSE estimates, the whole parameters optimization boils down to the solu-
tion of a linear system of equations. In this LET framework, fast transform-domain
denoising algorithms can then be devised.

• Practical contributions: Our practical contributions are twofold. First, by
running a comprehensive set of denoising experiments for grayscale/multichannel
images/multi-dimensional data, we show that SURE-LET approaches constitute a
competitive alternative to the main stream generated by the Bayesian standpoint.
Second, by deriving PURE-LET estimators based on a realistic observation model
(i.e. related to the physic of the acquisition process), we provide a fast and efficient
tool for denoising real fluorescence microscopy volumes.
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1.5 Organization

The first part of this thesis is dedicated to additive white Gaussian noise (AWGN) reduc-
tion. Although numerous works have been already undertaken in this (yet still active) field
of research, we present in Chapter 2 an innovative data-driven procedure (SURE-LET )
that constitutes a competitive alternative to the state-of-the-art denoising strategies.

In Chapter 3, we show how this general SURE-LET denoising procedure can be effi-
ciently applied to orthonormal wavelet thresholding. In particular, we propose an origi-
nal way of considering and integrating the inter- and intrascale wavelet dependencies. A
natural vector/matrix generalization of the SURE-LET strategy is also devised for the
denoising of multichannel images.

In Chapter 4, we extend the SURE-LET strategy to arbitrary (included redundant)
transform-domain denoising. We point out that, contrary to the particular case of or-
thogonal transform, the SURE-based parameters optimization has to be performed in
the image domain, to ensure a global SURE optimum. Some examples of redundant
transformed-domain thresholding are presented for both mono- and multichannel image
denoising.

In Chapter 5, we devise a low-complexity, yet remarkably efficient, SURE-LET al-
gorithm for video denoising. In particular, we propose a simple motion-compensation
procedure that can be well-integrated into our SURE-LET framework. Extensive com-
parisons with the state-of-the-art redundant wavelet-based video denoising schemes show
that the proposed non-redundant solution is already competitive.

In the second part of this thesis, we take up the problem of estimating Poisson in-
tensities degraded by AWGN. Following the same philosophy as in the AWGN case, we
derive in Chapter 6 a generic procedure that we named PURE-LET.

Chapter 7 is dedicated to the adaptation of the PURE-LET strategy to Haar wavelet-
domain thresholding, because this is the only case where a rigorous independent wavelet
subband parameters optimization is possible. We show that, although restricted to the
non-redundant Haar wavelet representation, the proposed PURE-based denoising algo-
rithms are already competitive with most state-of-the-art approaches, in particular those
that combine a variance-stabilizing transform with an AWGN denoiser.

Unfortunately, PURE turns out to be impractical to use in arbitrary transform-domain
denoisng. In Chapter 8, we thus give the expression of an approximated PURE, which
can be effectively used in practice. We demonstrate that this approximation remains close
to the actual MSE. A novel undecimated Haar wavelet thresholding is then devised; it
is found to compare favorably to the state-of-the-art techniques for Poisson intensities
estimation.

Several experiments on real multidimensional fluorescence microscopy data are pre-
sented in Chapter 9. A simple procedure to estimate the various parameters involved in
the considered measurement model is also proposed, and validated using multiple acqui-
sitions of the same fixed sample. Our concluding remarks, as well as some perspectives,
are finally reported in Chapter 10.
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AWGN Reduction
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Chapter 2

SURE-LET: a Toolkit for
AWGN Reduction

2.1 Motivations

Given some noisy measurements, the goal of any denoising algorithm is to find the best
estimate of the underlying noise-free signal. The key point is then to quantify how close
to the original signal a given estimate is. We have already discussed in Chapter 1 several
measures of quality assessment. From a practical point of view, the mean-squared error
(MSE) clearly emerges as the best candidate, due to its appealing mathematical properties
(quadratic, symmetric, differentiable, invariant to unitary transforms). In this chapter,
we thus propose to consider the minimization of the MSE as the driving principle of our
denoising strategy.

2.2 Related Work

The toolkit that will be introduced in this chapter is essentially meant for transform-
domain denoising in general, and wavelet-based in particular. In this section, we thus
briefly review the most standard, as well as the most efficient, wavelet-domain techniques
designed for additive white Gaussian noise (AWGN) reduction.

The most straightforward way of distinguishing information from noise in the wavelet
domain consists in thresholding the wavelet coefficients. Of the various thresholding
strategies, soft-thresholding is the most popular and has been theoretically justified by
Donoho and Johnstone [71]. These authors have shown that the shrinkage rule is near-
optimal in the minimax sense; they also provided the expression of the optimal threshold
value T , called the “universal threshold”, as a function of the noise power σ2 when the
number of samples N is large: T =

√
2σ2 logN . The use of the universal threshold to

denoise images in the wavelet domain is known as VisuShrink [76].
Yet, despite its theoretical appeal, minimax is different from MSE as a measure of

error. A lot of work has been gone into proposing alternative thresholding strategies that
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behave better in terms of MSE than VisuShrink [56,77–79]. Donoho and Johnstone them-
selves acknowledged the poor MSE performance of VisuShrink and suggested to choose
the optimal threshold value T by minimizing Stein’s unbiased risk estimator (SURE) [70]
when the data fail to be sparse enough for the minimax theory to be valid. This hybrid
approach has been coined SUREshrink by their authors [71]. Without challenging the
soft-thresholding strategy, alternative threshold value selections have been proposed as
well. One of the most popular was introduced by Chang et al., who derived their threshold
in a Bayesian framework, assuming a generalized Gaussian distribution for the wavelet
coefficients. This solution to the wavelet denoising problem is known as BayesShrink [80]
and has a better MSE performance than SUREshrink.

Beyond the pointwise approach, more recent investigations have shown that substan-
tially larger denoising gains can be obtained by considering the intra- and interscale
correlations of the wavelet coefficients. In addition, increasing the redundancy of the
wavelet transform is strongly beneficial to denoising performance, a point to which we
will come back later in this work. Among the many denoising algorithms to date, we
would like to emphasize the following ones:

• Portilla et al. [81]1: The authors’ main idea is to model the neighborhoods of
coefficients at adjacent positions and scales as a Gaussian scale mixture (GSM); the
wavelet estimator is then a Bayesian least squares (BLS). The resulting denoising
method, consequently called BLS-GSM, is the most efficient multiresolution-based
approach in terms of peak signal-to-noise ratio (PSNR).

• Pǐzurica et al. [82]2: Assuming a generalized Laplacian prior for the noise-free data,
the authors’ approach called ProbShrink is driven by the estimation of the proba-
bility that a given coefficient contains significant information (notion of “signal of
interest”).

• Sendur et al. [83,84]3: The authors’ method, called BiShrink, is based on new non-
Gaussian bivariate distributions to model interscale dependencies. A non-linear
bivariate shrinkage function using the maximum a posteriori (MAP) estimator is
then derived. In a second paper, these authors have extended their approach by
taking into account the intrascale variability of wavelet coefficients.

These techniques have been devised for both redundant and non-redundant transforms.
Throughout this work, we will compare our results with those obtained by these methods,
which are representative of the state-of-the-art in wavelet denoising.

2.3 Stein’s Unbiased Risk Estimate (SURE)

We consider here the following standard denoising problem. Suppose we observe a noisy
realization y = [yn]n=1...N of an original signal x = [xn]n=1...N distorted by an additive

1available at http://www.io.csic.es/PagsPers/JPortilla/denoise/software/index.htm.
2available at http://telin.ugent.be/~sanja/.
3available at http://taco.poly.edu/WaveletSoftware/denoise2.html.
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white Gaussian noise (AWGN) b = [bn]n=1...N of variance σ2, i.e.

y = x+ b, with b ∼ N (0, σ2Id) (2.1)

Our goal is to find an estimate x̂ = F(y) = [fn(y)]n=1,...N that minimizes the mean-
squared error (MSE) defined by:

MSE =
1

N
‖x̂− x‖2 =

1

N

N∑
n=1

(x̂n − xn)
2 (2.2)

Since we do not have access to the original signal x, we cannot compute the above
Oracle MSE. However, without any assumptions on the noise-free data, we will see that it
is possible to replace this quantity by an unbiased estimate which is a function of y only.
This has an important consequence: contrary to what is frequently done in the denoising
literature (Bayesian approaches), the noise-free signal is not modeled as a random process
in our framework (we do not even require x to belong to a specific class of signals). Thus,
the observed randomness of the noisy data only originates from the AWGN b.

The following lemma, which states a version of Stein’s lemma [70], shows how it is
possible to replace an expression that contains the unknown data x by another one with
the same expectation, but involving the known data y only:

Lemma 1. Let F(y) = [fn(y)]1≤n≤N be an N -dimensional vector function such that, for
n = 1 . . . N ,

• fn(y) is (weakly) differentiable w.r.t. yn;

• fn(y) is bounded by some fast increasing function, typically such that:
|fn(y)| ≤ cst · exp(‖y‖2/2α2), where α > σ.

Then, under the AWGN assumption, the expressions F(y)Tx and F(y)Ty−σ2div {F(y)}
have the same expectation:

E

{
N∑

n=1

fn(y)xn

}
= E

{
N∑

n=1

fn(y)yn

}
− σ2E

{
N∑

n=1

∂fn(y)

∂yn︸ ︷︷ ︸
div{F(y)}

}
(2.3)

where E {·} stands for the mathematical expectation operator.

Proof. We use the fact that a white Gaussian probability density q(bn) satisfies bnq(bn) =
−σ2q′(bn). Thus, denoting by Ebn{·} the partial expectation over the nth component of
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the noise, we have the following sequence of equalities:

Ebn{fn(y)xn} = Ebn{fn(y)yn} − Ebn{fn(y)bn}
= Ebn{fn(y)yn} −

∫
R

fn(y)bnq(bn)dbn

= Ebn{fn(y)yn}+ σ2

∫
R

fn(y)q
′(bn)dbn

= Ebn{fn(y)yn} − σ2

∫
R

∂fn(y)

∂yn
q(bn)dbn (by parts4)

= Ebn{fn(y)yn} − σ2Ebn

{
∂fn(y)

∂yn

}
Now, taking the expectation over the remaining components of the noise, we get

E {fn(y)xn} = E {fn(y)yn} − σ2E

{
∂fn(y)

∂yn

}
Since the expectation is a linear operator, (2.3) follows directly. �

By applying Lemma 1 to the expression of the MSE, we then get Stein’s Unbiased
Risk (or expected MSE) Estimate (SURE):

Theorem 1. Under the same hypotheses as Lemma 1, the random variable

ε =
1

N
‖F(y)− y‖2 + 2σ2

N
div {F(y)} − σ2 (2.4)

is an unbiased estimator of the expected MSE, i.e.

E {ε} =
1

N
E
{‖F(y)− x‖2}

Proof. By expanding the expectation of the MSE, we have that

E
{‖F(y)− x‖2} = E

{‖F(y)‖2}− 2E
{
F(y)Tx

}
+ E

{‖x‖2}
= E

{‖F(y)‖2}− 2E
{
F(y)Ty

}
+ 2σ2E {div {F(y)}}

+‖x‖2

where we have applied Lemma 1. Using the statistical independence between x and b,
we can estimate the constant energy term ‖x‖2 as

‖x‖2 = E
{‖y − b‖2}

= E
{‖y‖2}+ E

{‖b‖2}︸ ︷︷ ︸
Nσ2

−2 E
{
yTb

}︸ ︷︷ ︸
E{xTb}+E{‖b‖2}

= E
{‖y‖2}−Nσ2

A rearrangement of the y-terms then provides the result of Theorem 1. �
3The integrated term [fn(y)q(yn − xn)]

+∞
−∞ vanishes by hypothesis.
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Note that the estimate of the constant energy term ‖x‖2 is irrelevant to the SURE-
based optimization of the denoising process F.

In the following propositions, we derive two natural extensions to the standard SURE
result given in Theorem 1, as well as a more general way of of obtaining Stein-like lemmas.

Proposition 1. Let W be an arbitrary N × N matrix and define the weighted norm
‖ · ‖W as ‖y‖W = ‖Wy‖2. Then, under the same hypothesis as Lemma 1, the following
random variable

ε =
1

N

(‖F(y)− y‖2W + 2σ2div
{
WTWF(y)

}− σ2trace
{
WWT

})
(2.5)

is an unbiased estimate of the expected weighted MSE, i.e.

E {ε} =
1

N
E
{‖F(y)− x‖2W

}
Proof. We can expand the expected weighted squared error as

E
{‖F(y)− x‖2W

}
= E

{‖F(y)‖2W}
+ ‖x‖2W︸ ︷︷ ︸

(I)

−2E
{
xTWTWF(y)

}︸ ︷︷ ︸
(II)

We can then further develop the two quantities (I) and (II) which involve the unknown
data x:

(I) ‖x‖2W = E
{‖y − b‖2W

}
= E

{‖y‖2W}− E
{‖b‖2W}

= E
{‖y‖2W}− trace

{
WE

{
bbT

}
WT

}
= E

{‖y‖2W}− σ2trace
{
WWT

}
(II) E

{
xTWTWF(y)

}
=

∑
i,j,k

wi,jwi,kE {xjfk(y)}

Lemma 1
=

∑
i,j,k

wi,jwi,k

(
E {yjfk(y)} − σ2E

{
∂fk(y)

∂yj

})
= E

{
yTWTWF(y)

}− σ2div
{
WTWF(y)

}
A rearrangement of the y-terms finally provides the desired result. �

Proposition 2 (Generalization of Stein’s Lemma). Let b ∼ N (0,Γ) be an N -dimensional
Gaussian random vector and λ ∈ R

N an arbitrary N -dimensional deterministic vector.
Then, for any k ∈ N, we have the following equality:

E
{
bknfn(y)

}
= E

{[
∂k

∂λk
n

(
exp

(‖λ‖2
Γ1/2

2

)
fn(y + Γλ)

)]
λ=0

}
(2.6)
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Proof. We begin by noticing that:

E
{
bknfn(y)

}
= E

{[
∂k

∂λk
n

exp(λTb)fn(y)

]
λ=0

}
=

[
∂k

∂λk
n

E
{
exp(λTb)fn(y)

}]
λ=0

(2.7)

To be fully rigorous, one has to assume that E
{∣∣∣ ∂k

∂λk
n
exp(λTb)fn(y)

∣∣∣
λ=0

}
< +∞ to

switch the expectation and the partial derivative operators.
Since b follows a zero-mean multivariate Gaussian distribution with covariance matrix

Γ, its probability density function is given by:

q(b) = cst · exp
(
− bTΓ−1b

2

)
= cst · exp

(
− ‖b‖2

Γ−1/2

2

)
Consequently, we have the following equality:

exp(λTb)q(b) = cst · exp
(
− 1

2
(bTΓ−1b− 2λTb+ λTΓλ) +

λTΓλ

2

)
= exp

(‖λ‖2
Γ1/2

2

)
· cst · exp

(
− ‖b− Γλ‖2

Γ−1/2

2

)
︸ ︷︷ ︸

q(b−Γλ)

(2.8)

We can then successively write:

E
{
exp(λTb)fn(y)

}
=

∫
RN

fn(y) exp(λ
Tb)q(b)db

(2.8)
= exp

(‖λ‖2
Γ1/2

2

)∫
RN

fn(y)q(b− Γλ)db

= exp
(‖λ‖2

Γ1/2

2

)∫
RN

fn(y + Γλ)q(b)db

= E

{
exp

(‖λ‖2
Γ1/2

2

)
fn(y + Γλ)

}
(2.9)

The desired result (2.6) is finally demonstrated by substituting (2.9) into (2.7). �

Stein’s lemma, i.e. E {bnfn(y)} = σ2E {∂fn(y)/∂yn} can be directly obtained from
Proposition 2, by considering Γ = σ2Id and k = 1.

Proposition 3. In the case of additive colored Gaussian noise, i.e. b ∼ N (0,Γ), the
unbiased estimator of the MSE given in Theorem 1 becomes:

ε =
1

N

(‖F(y)− y‖2 + 2 div {ΓF(y)} − trace {Γ}) (2.10)

where Γ is the N ×N covariance matrix of the colored noise b.
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Proof. Using the fact that x = y − b, as well as the standard result E
{‖y‖2} = ‖x‖2 +

trace {Γ} allows us to rewrite the expected MSE as:

E
{‖F(y)− x‖2} = E

{‖F(y)− y‖2}+ 2E
{
bTF(y)

}− trace {Γ}
The result of Proposition 2 (for k = 1) can then be used to evaluate the second expectation
as:

E
{
bTF(y)

}
=

[
E
{
divλ{exp(λTb)F(y)}

}]
λ=0

=

[
E

{
divλ{exp

(‖λ‖2
Γ1/2

2

)
F(y + Γλ)}

}]
λ=0

= E {div {ΓF(y)}}
which finally leads to the desired result (2.10). �

2.4 Reliability of the SURE Estimate

In the previous section, we showed that SURE is a random variable that has the same ex-
pectation as the MSE. We now evaluate its reliability by computing the expected squared
error between SURE and the actual MSE5. For the sake of simplicity, we consider the
AWGN model described in (2.1) and we do not take into account the error induced by
the estimation of the noise-free signal energy ‖x‖2, because this term does not appear in
the minimization of SURE/MSE.

Property 1. In the case of AWGN, the expected squared error between the effective part
of SURE (2.4) and the actual MSE (2.2) is given by:

E
{
(ε−MSE)2

}
=

4σ2

N2
E
{‖F(y)‖2 + σ2trace

{
JF(y)

2
}}

(2.11)

where JF(y) =
[
∂fi(y)
∂yj

]
1≤i,j≤N

is the Jacobian matrix of the vector-valued function F(y).

Proof. By definition of the MSE, we can expand the expected squared error as:

E
{
(ε−MSE)2

}
=

4

N2
E
{(

σ2div{F(y)− (y − x︸ ︷︷ ︸
b

)TF(y)}
)2}

=
4

N2

(
σ4E

{
div {F(y)}2

}
− 2σ2 E

{
div {F(y)}bTF(y)

}︸ ︷︷ ︸
(I)

+E
{
(bTF(y))2

}︸ ︷︷ ︸
(II)

)
(2.12)

5Note that a study on the reliability of SURE as an estimate of the MSE for applications in deconvo-
lution has been recently proposed by Pesquet in [85].
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Only the expectations (I) and (II) contain the unknown noise component b. Using inte-
gration by parts, we rewrite them as:

(I) E
{
div {F(y)}bTF(y)

}
=

∑
i,j

E

{
∂fi(y)

∂yi
bjfj(y)

}
= σ2

∑
i,j

E

{
∂fi(y)

∂yi

∂fj(y)

∂yj
+

∂2fi(y)

∂yi∂yj
fj(y)

}

(II) E
{
(bTF(y))2

}
=

∑
i,j

E {bibjfi(y)fj(y)}

= σ2
∑
i

E
{
f2
i (y)

}
+ σ4

∑
i,j

E

{
∂fi(y)

∂yj

∂fj(y)

∂yi

}
+σ4

∑
i,j

E

{
2
∂2fi(y)

∂yi∂yj
fj(y) +

∂fi(y)

∂yi

∂fj(y)

∂yj

}
where we have used the result of Proposition 2 to derive

E
{
b2i f

2
i (y)

}
= σ2E

{
f2
i (y)

}
+ σ4E

{
∂2f2

i (y)

∂y2i

}
.

Now computing:

(II)− 2σ2(I) = σ2
∑
i

E
{
f2
i (y)

}
+ σ4

∑
i,j

E

{
∂fi(y)

∂yj

∂fj(y)

∂yi

}

−σ4
∑
i,j

E

{
∂fi(y)

∂yi

∂fj(y)

∂yj

}
= σ2E

{‖F(y)‖2}+ σ4E
{
trace

{
JF(y)

2
}}

−σ4E
{
div {F(y)}2

}
(2.13)

and putting back (2.13) into (2.12) finally leads to the desired result (2.11). �

As it can be observed in Equ. (2.11), the squared error between SURE and MSE
depends on three parameters: the number of samples N , the variance of the AWGN and
the design of the denoising process. As an illustrative example, we propose to derive an
upper bound of this squared error in the particular case where F is a linear processing, i.e.
F(y) = Ay, where A is a N ×N matrix. We further assume that A can be diagonalized
in an orthonormal basis, i.e. A = USUH, where UUH = UHU = Id. In denoising,
the diagonal matrix S = [si,j ]N≤i,j≤N can be interpreted as a pointwise shrinkage, i.e.
0 ≤ si,i ≤ 1, i = 1 . . . N . We denote the transformed coefficients by w = UHy and
we have ‖w‖2 = ‖y‖2. In the considered framework, we can derive the following upper
bounds:

1. ‖F(y)‖2 = yTUS2UHy = wHS2w ≤ ‖y‖2

2. trace
{
JF(y)

2
}
= trace

{
A2
}
= trace

{
US2UH

}
= trace

{
S2
} ≤ N



SECTION 2.5 27

and thus:

E
{
(ε−MSE)2

} ≤ 4σ2

N2

(
E
{‖y‖2}+Nσ2

)
Now introducing the mean μy and the variance σ2

y of the noisy data y defined as:⎧⎪⎨⎪⎩
μy =

1

N
E
{
1Ty

}
σ2
y =

1

N
E
{‖y‖2}− μ2

y

allows us to finally conclude that:

E
{
(ε−MSE)2

} ≤ 4σ2

N

(
σ2
y + μ2

y + σ2
)

In the particular case of a pointwise shrinkage in an orthonormal transform domain,
the squared error between SURE and MSE thus decreases as the number of samples N
increases.

2.5 Optimal Estimator

When looking at the MSE estimate given in (2.4), a natural question arises: which pro-
cessing F of the observed data y, is the minimizer of the expected MSE ? To answer this
question, one has to assume that the underlying noise-free signal x is a random variable
with probability density function (PDF) p(x). In that case, the PDF of the observed data
y is the convolution between p(x) and the PDF of the AWGN q(b), i.e.

y ∼ r(y) = (p ∗ q)(y) (2.14)

We can then state the following theorem6:

Theorem 2. The optimal, in the minimum expected MSE sense, estimate of a signal
degraded by an AWGN of variance σ2 is given by:

Fopt(y) = y + σ2∇ log r(y) (2.15)

where r(y) is the probability density function of the observed noisy data y.

Proof. Taking the expectation of SURE (which is equivalent to the expectation of the
MSE) w.r.t. y leads to:

NEy{ε} =

∫
RN

(‖F(y)− y‖2 + 2σ2div {F(y)}) r(y)dy −Nσ2

=
N∑

n=1

(∫
RN

(fn(y)− yn)
2r(y)dy + 2σ2

∫
RN

∂fn(y)

∂yn
r(y)dy

)
−Nσ2

6A similar result can be found in [70,86].
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Assuming lim
y→±∞ fn(y)r(y) = 0, the integration by parts of the second integral gives:

∫
RN

∂fn(y)

∂yn
r(y)dy = −

∫
RN

fn(y)
∂r(y)

∂yn
dy

The expectation of SURE can be thus rewritten as:

NEy{ε} =
N∑

n=1

∫
RN

(
(fn(y)− yn)

2r(y)− 2σ2fn(y)
∂r(y)

∂yn

)
dy︸ ︷︷ ︸

J(fn)

−Nσ2 (2.16)

Now denoting by fopt
n the global optimum of the quadratic functional J(fn) and consid-

ering an arbitrary function h(y) ∈ C∞
0 (RN )7, we must have ∀n ∈ [1;N ] and t ∈ R,

d

dt
J(fopt

n + th)
∣∣∣
t=0

= 0

�∫
RN

h(y)

(
(fopt

n (y)− yn)r(y)− σ2 ∂r(y)

∂yn

)
dy = 0 (2.17)

A fundamental lemma of the calculus of variations8 allows us to conclude that the equal-
ity (2.17) implies

(fopt
n (y)− yn)r(y)− σ2 ∂r(y)

∂yn
= 0

and thus ∀n ∈ [1;N ], fopt
n (y) = yn + σ2 ∂

∂yn
log r(y), which finally leads to the desired

result:
Fopt(y) = y + σ2∇ log r(y)

�

The result of Theorem 2 can be extended to additive colored noise b ∼ N (0,ΓΓΓ). In
that case, the optimal denoising function is given by:

Fopt(y) = y + Γ∇ log r(y) (2.18)

The use of the optimal estimator requires the evaluation of the PDF of the noisy
observations. Two strategies are then conceivable:

1. Prior-free approach: In this case, the PDF is directly estimated from the data.
This can be achieved by interpolating the histogram of the noisy samples or approx-
imating the PDF by linear combination of smoothing kernels centered around each
sample (Parzen method [88]). There are numerous other methods for estimating

7Here, C∞
0 (RN ) is the space of all infinitely differentiable functions defined on R

N whose support is
a compact set contained in R

N .
8Known as the “du Bois-Reymond” lemma [87].
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PDF; some of them are reviewed in [89]. The estimated PDF has to be very accu-
rate, because small errors on the PDF estimation might yield large errors on the
derivative of its logarithm, and consequently lead to unreliable denoising function.
While estimating PDF is reasonably feasible for univariate PDF, it becomes much
more involved for multivariate PDF.

2. Bayesian approach: In the Bayesian framework, the optimal (in the MMSE sense)
estimator is known as the Bayesian least-square, i.e.

Fopt(y) = E {x|y}
To derive its explicit expression, a prior on the PDF of the underlying noise-free
signal is formulated. As recalled at the beginning of this section, its convolution
with the noise PDF gives the PDF of the noisy data (2.14). For instance, let us
assume that, in a given transform-domain, x ∼ N (0,ΓΓΓx) and b ∼ N (0,ΓΓΓb). Then

the PDF of the noisy data is given by r(y) = cst× exp

(
−1

2
yT(Γx + Γb)

−1y

)
and

the corresponding optimal processing is nothing but the classical Wiener filter that
we briefly discussed in Section 1.3.1:

Fopt(y) = Γx(Γx + Γb)
−1y

There are two main drawbacks with the Bayesian approach. First, it might be
difficult to derive an analytical expression for F(y) when assuming a sophisticated
prior on the noise-free data. Moreover, such prior usually involves some non-linear
parameters that have to be numerically optimized based on the observed noisy data.
Second, if the prior does not properly reflect the statistics of the noise-free data, the
resulting denoising function will not be efficient in removing the noise component
and/or preserving the underlying noise-free signal.

Nevertheless, as shown in Theorem 2, the derivation of the so-called Bayesian least-
square estimator does not require the explicit statistical modeling of the underlying
noise-free signal. This observation has been recently emphasized by Raphan and
Simoncelli [86], who consider SURE as a “prior-free” Bayesian approach.

2.6 Linear Expansion of Thresholds (LET)

In the previous section, we have pointed out that the optimal minimum MSE estimator
is difficult to implement in practice, because it requires an accurate estimation of the
PDF of the noisy data. In this section, we adopt another point of view: instead of
parametrizing the noisy data PDF and then deriving the corresponding estimator, we
directly parametrize the estimator. More precisely, we propose to describe the denoising
process F as a linear combination of K possibly non-linear processing Fk, i.e.

F(y) =
K∑

k=1

akFk(y) (2.19)
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Since the effective part of the processing is usually a thresholding performed in a
transform-domain, we have coined the above formulation of the denoising process a linear
expansion of thresholds (LET). As in every estimation problems, the number of parameters
K used to describe the estimator F(y) must remain much lower than the number of
observations N to preserve the “smoothing” effect of F and avoid fitting of the noisy
data.

The LET approach has two main advantages. First, it does not require any statistical
assumptions on the unknown noise-free data in order to design the thresholding functions.
Second, the search for the optimal (in the minimum SURE/MSE sense) parameters ak’s
boils down to the solution of a linear system of equations, thanks to the quadratic form of
the unbiased MSE estimate. Indeed, introducing Equ. (2.19) into the result of Theorem 1
and performing differentiation over ak leads to

N

2

∂ε

∂ak
=

K∑
l=1

Fk(y)
TFl(y)︸ ︷︷ ︸

[M]k,l

al −
(
Fk(y)

Ty − σ2div {Fk(y)}︸ ︷︷ ︸
[c]k

)
= 0, ∀k ∈ [1;K]

�
Ma = c (2.20)

Since the minimum of ε always exists, we are ensured that there will always be a solu-
tion to the above linear system. When rank(M) < K, the function F is over-parameterized
and consequently, several sets of parameters ak yield equivalent minimum SURE results.
In that case, we can simply consider the solution provided by the pseudoinverse of M. Of
course, it is also possible to reduce the parametrization order K so as to make the matrix
M full rank (at no SURE quality loss).

Note that, in the context of image denoising, a univariate linear parameterization
combined with an implicit SURE minimization was already evoked in [72] (sigmoidal
filtering), although not much promoted.

What this SURE-LET approach suggests is that the practitioner may choose at will
(restricted only by the differentiability constraint of Theorem 1) a set of K different
denoising algorithms (ideally with complementary denoising behaviors) and optimize a
weighting of these algorithms to get the best of them at once.

Among the potentially interesting algorithms are those that work in a transformed
domain such as

• the non-redundant wavelet transforms, either orthogonal or bi-orthogonal [38, 39];

• the classical undecimated wavelet transform [90];

• the curvelet [52] transform;

• the contourlet [55] transform;

• the steerable pyramids [46, 48];
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• the discrete cosine transform (DCT) or its overcomplete variant: the overlapping
block discrete cosine transform (BDCT).

In the two forthcoming chapters, we will further discuss the application of the SURE-
LET paradigm to some transformed domain denoising.

2.7 Summary

In this chapter, we have devised a general procedure (SURE-LET) for denoising images
corrupted by AWGN. The two key ingredients of the proposed approach are:

1. An unbiased estimate of the MSE, known as SURE. In particular, this statistical
quantity only depends on the observed noisy measurements and can thus be com-
puted in practice. In contrast to the popular Bayesian approach, no prior on the
unknown noise-free data is required to derive SURE.

2. A linear expansion of thresholds (LET): in image denoising, SURE was usually
used for optimizing one or several non-linear parameters involved in ad hoc wavelet
estimators. In this chapter, we have proposed an alternative approach by building
a linearly parametrized denoiser which offers more flexibility than the standard
thresholding functions. Thanks to the quadratic form of SURE, we have shown
that the optimal (in the minimum SURE sense) parameters are simply the solution
of a linear system of equations. From a computational point of view, this makes
the SURE-LET strategy particularly attractive.
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Chapter 3

SURE-LET in Orthonormal
Wavelet Representation

3.1 Motivations

Despite reports on the superior denoising performances of redundant transforms [43, 52,
91], we will only consider critically sampled wavelet transforms in this chapter1. The ra-
tionale behind our choice is that, since there is no added information (only repeated infor-
mation) in redundant transforms, we believe that, eventually, a non-redundant transform
may match the performance of redundant ones. This would potentially be very promis-
ing since the major drawback of redundant transforms are their memory and CPU time
requirements which limits their routine use for very large images and, above all, usual
volumes of data encountered in biomedical applications.

Besides its lighter computational cost, an orthonormal wavelet transform (OWT) has
two further advantages over redundant transformations:

• Energy conservation: The Euclidian norm is preserved in the transformed do-
main. In particular, the mean-squared error (MSE) in the image domain is a
weighted sum of the MSEs of each individual orthonormal wavelet subband xj ∈
R

Nj :

1

N
‖x̂− x‖2︸ ︷︷ ︸
MSE

=
J+1∑
j=1

Nj

N
‖x̂j − xj‖2︸ ︷︷ ︸

MSEj

(3.1)

where Nj is the number of pixels in subband j = 1 . . . J + 1.

• Preservation of the AWGN model: The noise remains white and Gaussian with
same statistics in the orthonormal wavelet domain. From the noise point of view,
the wavelet subbands are therefore statistically independent, and consequently

E
{
bibjT

}
= σ2Id δi−j (3.2)

1Some parts of this chapter are based on our published papers [92, 93].

33
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where δn =

{
1, if n = 0
0, otherwise

is the discrete Kronecker delta function.

In each orthonormal wavelet subband j ∈ [1; J + 1], we thus have the following
observation model:

yj = xj + bj , with bj ∼ N (0, σ2Id) (3.3)

In the orthonormal wavelet domain, each subband can therefore be denoised indepen-
dently.

3.2 Pointwise Estimator

In this section, we only consider pointwise, subband-adaptive wavelet estimators of the
form

x̂j = [θj(yjn)]1≤Nj , for j ∈ [1; J ] (3.4)

As it is usually the case in wavelet denoising, the lowpass residual subband yJ+1 is
not processed, i.e. x̂J+1 = yJ+1. From now on, we will drop the subband index j since a
new denoising function is independently applied in each individual subband.

3.2.1 Pointwise SURE

Inside each subband of an orthonormal wavelet transform, the MSE is given by

MSE =
1

N

N∑
n=1

(θ(yn)− xn)
2

(3.5)

In Section 2.3, we gave a general form of Stein’s unbiased risk estimate for an arbitrary
processing. Below, we re-express SURE for an orthonormal wavelet-domain pointwise
processing θ.

Corollary 1. Let θ : R → R be a (weakly) differentiable function, such that |θ(z)| ≤
cste · exp(az2) for a < 1

2σ2 . Then, the following random variable:

ε =
1

N

N∑
n=1

(
(θ(yn)− yn)

2 + 2σ2θ′(yn)
)− σ2 (3.6)

is an unbiased estimator of the expected MSE, i.e.

E {ε} = E

{
1

N

N∑
n=1

(θ(yn)− xn)
2

}

Proof. Since this corollary is a particular case of Theorem 1, it is admitted without
proof. �
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3.2.2 Pointwise SURE-LET

In Section 2.6, we have proposed a general form of denoising functions (2.19): a linear
expansion of thresholds (LET). In the context of pointwise orthonormal wavelet denoising,
LET takes the following form:

θ(yn) =

K∑
k=1

akθk(yn) (3.7)

The vector of parameters a = [a1 . . . aK ]T that minimizes (3.6) for the above pointwise
LET is given by:

aopt = M−1c (3.8)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M =

[
N∑

n=1

θk(yn)θl(yn)

]
1≤k,l≤K

c =

[
N∑

n=1

(ynθk(yn)− σ2θ′k(yn))

]
1≤k≤K

For the remaining of this section, we will drop the location subscript “n” and conse-
quently, y will denote any of the wavelet coefficients yn.

The difficulty is now to choose suitable basis functions θk that will determine the
shape of our denoising function. Therefore, we want the denoising function θ to satisfy
the following properties:

• differentiability: required to apply Corollary 1;

• anti-symmetry: the wavelet coefficients are not expected to exhibit a sign prefer-
ence;

• linear behavior for large coefficients: because θ(y) should asymptotically tend
to y.

After trying several types of θk, we have found that all of them give quite similar results,
when the above conditions are satisfied. We have thus decided to retain the following
pointwise denoising function:

θ(y) =

K∑
k=1

ak y exp

(
−(k − 1)

y2

2T 2

)
︸ ︷︷ ︸

θk(y)

(3.9)

We choose derivatives of Gaussians (DOG) because they decay quite fast, which ensures
a linear behavior close to the identity for large coefficients (see Figure 3.1).

In addition to the linear coefficients, our denoising function contains two nonlinear
dependencies: the number of terms K and the parameter T . We will see later that they
can be fixed independently of the image.
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Figure 3.1: The shape of our denoising function (3.9) in a particular wavelet
subband, for various K and optimized ak’s and T .

If we consider only one parameter (K = 1), our denoising function simply becomes
θ(y) = a1y, which is the simplest linear pointwise denoising function. The direct mini-
mization of the estimate ε provides

θ(y) =

(
1− Nσ2

‖y‖2
)

︸ ︷︷ ︸
a1

y (3.10)

The above pointwise linear MMSE estimator can be either interpreted as a pointwise
Wiener filter (encountered in Section 1.3.1, Equ. (1.7)) or as a variant of the James-Stein
estimator [94].

Practical tests (with optimization over the parameter T , independently in each sub-
band) on various images and with various noise levels have shown that, as soon as K ≥ 2,
the results become quite similar. It thus appears that it is sufficient to keep as few as
K = 2 terms in (3.9). This is confirmed in Figure 3.1, which shows that the shape of our
denoising function is nearly insensitive to the variation of K ≥ 2.

Moreover, the optimal value of the parameter T is closely linked to the standard
deviation σ of the AWGN and in a lesser way to the number of parameters K. Its
interpretation is quite similar to the soft-thresholding case: it manages the transition
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Peppers 256 × 256 MIT 256 × 256

Lena 512 × 512 Boat 512 × 512

Figure 3.2: Sensitivity of the proposed denoising function (3.11) with respect
to variations of T . We can notice that for all images and for the whole range of
input PSNR the maximum of the PSNR is reached for T 2/σ2 � 6.

between low SNR to high SNR coefficients. In our case though, the variations of the
minimal ε (over ak) when T changes are quite small (see Figure 3.2), because our denoising
function is much more flexible than the soft-threshold. This sensitivity becomes even
smaller as the number of parameters K increases. In fact, this indicates that some
parameters are in that case useless.

To summarize, we have shown that both the number of terms K and the parameter T
have only a minor influence on the quality of the denoising process. This indicates that
these two parameters do not have to be optimized; instead, they can be fixed once for
all, independently of the type of image. From a practical point of view, we suggest to
use K = 2 terms and T =

√
6σ (see Figure 3.2), leading to the following pointwise
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thresholding function:

θ0(y;a) = a1y + a2 exp

(
− y2

12σ2

)
y (3.11)

Now, it is interesting to evaluate the efficiency of our denoising function (3.11) and the
accuracy of our minimization process based on a SURE estimate ε of the MSE. We
propose to compare our results with those obtained by the popular subband-adaptive soft-
threshold with three different threshold selection rules: (1) the threshold is obtained by a
general cross validation procedure (GCVshrink), as suggested in [95]2; (2) the threshold
is obtained by SURE minimization, without restrictions (SUREshrink* ), contrary to the
hybrid approach proposed in [71]; (3) the threshold is obtained by MSE minimization
(OracleShrink). Two main observations naturally come out of Table 3.1:

1. SURE is a reliable estimate of the MSE. Indeed, the resulting average loss in PSNR is
within 0.1 dB for all images and for a wide range of noise levels. A threshold selection
based on SURE minimization is therefore much closer to an Oracle optimization
than the GCV-based selection.

2. Our sum of DOG (3.11) gives better PSNRs than even the optimal (in the MMSE
sense) soft-threshold. This indicates that the optimization of two linear parameters
leads to better results than the optimization of one non-linear parameter.

3.3 Interscale Estimator

The integration of interscale information has been shown to improve the denoising quality,
both visually and in terms of PSNR [81,83,96]. However, the gain brought is often modest,
especially considering the additional complications involved by this processing [81]. In
this section, we reformulate the problem by first building a loose prediction ỹ of wavelet
coefficients y out of a suitably filtered version of the lowpass subband at the same scale,
and then by including this predictor in an explicit interscale denoising function. Apart
from the specific denoising problem addressed in this thesis, we believe more generally
that other applications (e.g. compression, detection, segmentation) could benefit as well
from the theory that leads to this predictor.

3.3.1 Building the Interscale Predictor

The wavelet coefficients that lie on the same dyadic tree (see Figure 3.3) are well-known
to be take large values in the neighborhood of image discontinuities. What can thus be
predicted with reasonably good accuracy are the position of large wavelet coefficients out
of parents at lower resolutions. However, getting the actual values of the finer resolution
scale coefficients seem somewhat out of reach. This suggests that the best we can get out
of interscale correlations is a segmentation between regions of large and small coefficients.
This comes back to the idea of signal of interest proposed by Pižurica et al. in [82].

2Matlab implementation available at:
http://www.cs.kuleuven.be/~maarten/software/pieflab.html
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Table 3.1: Comparison of our sum of DOG (3.11) with three variants of the
popular soft-threshold.

σσσ 5 10 20 30 50 100

Method Peppers 256 × 256
GCVShrink 34.89 31.42 27.59 25.43 22.97 20.23

SUREShrink* 36.38 32.06 28.02 25.80 23.30 20.69
OracleShrink 36.39 32.08 28.04 25.83 23.34 20.78

Sum of DOG (SURE) 36.67 32.37 28.27 25.95 23.43 20.94
Sum of DOG (Oracle) 36.68 32.38 28.28 25.96 23.46 21.02

Method Bridge 256 × 256
GCVShrink 28.83 26.45 23.97 22.79 21.33 19.42

SUREShrink* 34.83 29.81 25.74 23.89 22.02 19.94
OracleShrink 34.83 29.81 25.76 23.91 22.06 20.03

Sum of DOG (SURE) 34.89 30.00 26.08 24.27 22.38 20.27
Sum of DOG (Oracle) 34.89 30.00 26.09 24.28 22.40 20.34

Method Boat 512 × 512
GCVShrink 34.13 31.19 27.95 26.31 24.36 22.12

SUREShrink* 36.08 32.11 28.64 26.81 24.79 22.50
OracleShrink 36.09 32.12 28.65 26.82 24.81 22.55

Sum of DOG (SURE) 36.35 32.38 28.86 27.03 25.02 22.75
Sum of DOG (Oracle) 36.35 32.38 28.86 27.04 25.03 22.78

Method Goldhill 512 × 512
GCVShrink 32.31 30.05 27.00 25.78 24.34 22.81

SUREShrink* 36.00 31.98 28.75 27.17 25.43 23.38
OracleShrink 36.00 31.98 28.76 27.19 25.46 23.44

Sum of DOG (SURE) 36.22 32.25 29.00 27.43 25.68 23.67
Sum of DOG (Oracle) 36.22 32.25 29.00 27.43 25.70 23.70

Note: The output PSNRs have been averaged over ten noise realizations.

LH1 HH1

HL1

LH2 HH2

HL2

LH3 HH3

HL3LL3

�
�
�
�
���

�
�
��

Figure 3.3: Schematic view of three stages of a fully decimated 2D wavelet
transform and the so-called parent-child relationship.
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In a critically sampled orthonormal wavelet decomposition, the parent subband is half
the size of the child subband. The usual way of putting the two subbands in correspon-
dence is simply to expand the parent by a factor two. Unfortunately, this approach does
not take into account the potential (non-integer) shift caused by the filters of the OWT.
We thus propose a better solution, which addresses this issue and ensures the alignment
of image features between the child and its parent.

Our idea comes from the following observation: let LHj and LLj be, respectively,
bandpass and lowpass outputs at the decomposition level j of the filterbank. Then, if
the group delay3 between the bandpass and the lowpass filters are equal, no shift between
the features of LHj and LLj will occur. Of course, depending on the amplitude response
of the filters, some features may be attenuated, blurred, or enhanced, but their relative
location will be the same. When the group delays differ, which is the general case, we
thus propose to filter the lowpass subband LLj in order to compensate for the group
delay difference with LHj . This operation is depicted in Figure 3.4(A): LLj is filtered
in the three bandpass “directions” by adequately designed filters WHL, WHH and WLH ,
providing aligned (i.e. group delay compensated) subbands with HLj , HHj and LHj .

Because the filters used in the standard 2D orthonormal wavelet transform are usually
separable, we only consider here 1D group delay compensation (GDC).

Definition 1. We say that two filters H(z) and G(z) are group delay compensated if and
only if the group delay of the quotient filter H(z)/G(z) is zero identically, i.e. if and only
if there exists a (anti-)symmetric filter R(z) = ±R(z−1) such that H(z) = G(z)R(z).

The following result shows how to choose a GDC filter in a standard orthonormal
filterbank.

Theorem 3. For the output of the dyadic orthonormal filterbank of Figure 3.4(B) to be
group delay compensated, it is necessary and sufficient that:

W (z2) = G(z−1)G(−z−1)(1 + εz−2)R(z2) (3.12)

where ε = ±1 and R(z) = R(z−1) is arbitrary.

Proof. Group delay compensation between the two filterbank branches is equivalent to
(see Figure 3.4(B))

H(z−1)W (z2) = G(z−1)R1(z) (3.13)

where R1(z) = εR1(z
−1) is an arbitrary symmetric (ε = 1) or anti-symmetric (ε = −1)

filter.
Because the filters H and G are orthonormal, we have H(z−1) = zG(−z), and thus

(3.13) can be rearranged as:

W (z2) =
G(z−1)R1(z)

zG(−z)
= G(z−1)G(−z−1)

z−1R1(z)

G(−z)G(−z−1)
(3.14)

3The group delay of a filter h with frequency response H(ω) = A(ω) exp(jφ(ω)) is defined as the
frequency gradient of its phase response, with a minus sign, i.e. −∇φ(ω).
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(A)

(B)

x(k)

G(z−1)

H(z−1)

��
��
↓2

��
��
↓2

yh(k) High-pass output

yl(k) W (z) ỹh(k)︸ ︷︷ ︸
≡

H(z−1) W (z2) ��
��
↓2

Figure 3.4: One way of obtaining the whole parent information out of the
lowpass subband: (A) 2D illustration. (B) 1D filterbank illustration.

Since both G(z−1)G(−z−1) and W (z2) are even polynomial, we can define

R2(z
2) =

z−1R1(z)

G(−z)G(−z−1)
,

because the r.h.s. of Equ. (3.14) has to be an even polynomial too.

Using the symmetry of R1(z), we further observe that R2(z) = εz−1R2(z
−1), and
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consequently, R2(z) can be factorized as R2(z) = (1 + εz−1)R(z), where

R(z−2) =
zR1(z

−1)

(1 + εz2)G(−z)G(−z−1)

=
εzR1(z)

(1 + εz2)G(−z)G(−z−1)

=
z−1R1(z)

(1 + εz−2)G(−z)G(−z−1)

= R(z2)

i.e. R(z) is an arbitrary zero-phase filter.
After substitution in (3.14), this finally leads us to the formulation (3.12), as an

equivalent characterization of the group delay compensation in the filterbank of Fig-
ure 3.4(B). �

Note that the construction of the interscale predictors can be performed by a deci-
mated filterbank similar to that of the standard discrete wavelet transform, where the
usual analysis filters H(z−1) and G(z−1) are replaced by H(z−1) and H(z−1)W (z2),
respectively.

In addition to (3.12), the GDC filter W (z) has to satisfy a few constraints:

• Energy preservation, i.e.
∑

n∈Z
w2

n = 1, in order for the amplitude of the two
outputs to be comparable;

• Highpass behavior, in order for the filtered lowpass image to “look like” the
bandpass target;

• Shortest possible response, in order to minimize the enlargement of image fea-
tures.

We can give a simple GDC filter in the case of symmetric filters. The shortest highpass
W (z) satisfying the GDC condition is in fact the simple gradient filter: W (z) = z − 1. If
the symmetry is not centered at the origin but at a position n0, then W (z) = z−n0(z−1).
This type of solution is still adequate for near-symmetric filters such as the Daubechies
symlets [39]. When the lowpass filter is not symmetric, we can simply take R(z2) = 1 in
(3.12).

Finally, in order to increase the homogeneity inside regions of similar magnitude co-
efficients, we apply a 2D-smoothing filter (e.g. a normalized Gaussian kernel G(x) =
1√
2π

e−
x2

2 ) onto the absolute value of the GDC output. In the rest of this chapter, we will

refer to the so-built interscale predictor as ỹ (see Figure 3.5).

3.3.2 Integrating the Interscale Predictor

Now that we have built the interscale predictor ỹ, we have to suitably integrate it into
our pointwise denoising function. As mentioned before, this interscale predictor does not
tell us much about the actual value of its corresponding child wavelet coefficients. It
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LL1: Lowpass |WHL ∗ LL1| ỹ: Interscale predictor

GDC Gaussian Smoothing

Figure 3.5: Building an efficient interscale predictor, illustrated with a partic-
ular subband (HL1) of the noise-free Peppers image.

only gives an indication on its expected magnitude. Here, we thus propose to use the
parent ỹ as a discriminator between high SNR wavelet coefficients and low SNR wavelet
coefficients, leading to the following general interscale denoising function:

θ(y, ỹ;a,b) = f(ỹ)

K∑
k=1

akθk(y) + (1− f(ỹ))

K∑
k=1

bkθk(y) (3.15)

The linear set of parameters a and b are then solved for by minimizing the MSE estimate
ε defined in Corollary 1. The optimal coefficients are obtained in the same way as in
Section 3.2.2 (i.e. by solving a linear system of 2K equations) and involve a solution
similar to (3.8).

A first thought choice for the function f in (3.15) is simply the Heaviside function

H(ỹ) =

{
1, if |ỹ| ≥ T
0, if |ỹ| < T

(3.16)

where T can be interpreted as a decision factor. However, since the classification will not
be perfect (i.e. some small parent coefficients may correspond to high magnitude child
coefficients, and vice-versa), it is more appropriate to use a smoother decision function.
We thus propose to use instead:

f(ỹ) = exp

(
− ỹ2

2T 2

)
(3.17)

As in the univariate case of Section 3.2.2, we suggest to use a sum of DOG with
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K = 2 terms for each class of wavelet coefficients and 4 T =
√
6σ, leading to the following

interscale denoising function:

θ(y, ỹ;a,b) = exp

(
− ỹ2

12σ2

)
θ0(y;a) +

(
1− exp

(
− ỹ2

12σ2

))
θ0(y;b)

= exp

(
− ỹ2

12σ2

)(
a1 + a2 exp

(
− y2

12σ2

))
y +(

1− exp

(
− ỹ2

12σ2

))(
b1 + b2 exp

(
− y2

12σ2

))
y (3.18)

Figure 3.6: 3D surface plot of a possible realization of our interscale threshold-
ing function (3.18).

Table 3.2 quantifies the improvement introduced by this new way of considering the
interscale information, as compared to the usual expansion by two of the parent subband.

3.4 Multichannel/Multivariate Estimator

In this section, we propose a vector/matrix extension of SURE-LET denoising in the or-
thonormal wavelet domain. We now consider N -pixel images with C channels; typically,

4Side investigations have shown that the T needed in (3.17) and the one optimized in Section 3.2.2
can be chosen identical for optimal performances and equal to

√
6σ.
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Table 3.2: Denoising performance improvement brought by our interscale strat-
egy (OWT sym8 ).

σσσ 5 10 20 30 50 100

Method Peppers 256 × 256
Expansion by 2 36.76 32.49 28.46 26.21 23.62 20.92

Proposed 37.17 33.18 29.33 27.13 24.43 21.32

Method House 256 × 256
Expansion by 2 37.50 33.59 30.03 28.07 25.78 22.92

Proposed 37.88 34.29 30.93 28.98 26.58 23.51

Note: The output PSNRs have been averaged over ten noise realizations.

C = 3 color channels for RGB images, but for biological images (fluorescence) or multi-
band satellite images, C might be much larger. We denote these multichannel images by
a C ×N matrix whose columns are the channel values of each pixel:

x = [x1 x2 . . .xN ], where xn = [x1,n x2,n . . . xC,n]
T (3.19)

These images are corrupted by an additive channel-wise white Gaussian noise5 b =
[b1 b2 . . .bN ] of known C × C interchannel covariance matrix Γ, i.e.

E
{
bnb

T
n′
}
= Γ δn−n′

We denote the resulting noisy image by y = [y1 y2 . . .yN ] and we have:

y = x+ b (3.20)

For multichannel images, the MSE between an estimate x̂ of x and the actual value
of x can be expressed using Frobenius matrix norm as

MSE =
1

CN
‖x̂− x‖2F

=
1

CN
trace

{
(x̂− x)(x̂− x)T

}
=

1

CN

N∑
n=1

‖x̂n − xn‖2

After the application of an orthonormal wavelet transform (OWT) to each channel
(see Figure 3.7), the resulting multichannel wavelet subbands are denoted by

yj = xj + bj , j ∈ [1, J + 1] (3.21)

The two important conservation properties of the OWT that we recalled at the be-
ginning of this chapter, have the following consequences:

5“Channel-wise” means here that the noise is Gaussian and white inside each channel.
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Figure 3.7: Two iterations of a 2-D orthonormal wavelet transform applied to
a RGB image.

• The wavelet coefficients of the AWGN are Gaussian as well, and are independent
within and between the subbands. Moreover, the interchannel covariance matrix
remains unchanged

E

{
bj
nb

j′
n′

T
}

= Γ δn−n′ δj−j′ (3.22)
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• The image domain MSE and the subband MSEs are related through

‖x̂− x‖2F︸ ︷︷ ︸
CN×MSE

=
J+1∑
j=1

‖x̂j − xj‖2F︸ ︷︷ ︸
CNj×MSEj

(3.23)

These two key properties make it particularly attractive to perform independent pro-
cessing θj in each individual noisy wavelet subbands yj . To take advantage of both the
interchannels similarities and the interscale consistencies that may be intrinsic to x, the
thresholding function θj will also involve a multichannel interscale predictor ỹj built out
of the lowpass subband at scale j as detailed in Section 3.3.1. We will however remain
“pointwise” in the sense that the estimate x̂j

n of the nth pixel of subband j will depend
only on yj

n and ỹj
n, without taking their neighbours into account. It is essential to recall

that, because of the statistical independence between the noise component from wavelet
subbands of different iteration depth, yj and ỹj are also statistically independent.

From now on, we will drop the subband superscript j when no ambiguity is likely
to arise. More abstractly, we are thus going to consider the denoising of a multichannel
(subband) image y = x + b, given an independent prediction (parent) ỹ, by using a
R

C × R
C → R

C function θ relating the coefficients of y and ỹ to the coefficients of the
estimate x̂ through

x̂n = θ(yn, ỹn), for n = 1, 2, . . . , N (3.24)

3.4.1 Multichannel SURE

In this section, we derive an unbiased MSE estimate for a multichannel interscale thresh-
olding applied in the orthonormal wavelet domain.

Corollary 2. Assume that θ(·, ·) is (weakly) differentiable w.r.t. its first variable, and
such that ‖θ(u,v)‖ ≤ cste(v)× exp(‖u‖2/(2s2)) where s > σ. Then, if the estimate x̂ is
built according to (3.24), the following random variable

ε =
1

CN

N∑
n=1

‖θ(yn, ỹn)− yn‖2 +

2

CN

N∑
n=1

trace
{
ΓT∇1θ(yn, ỹn)

}
− 1

C
trace {Γ} (3.25)

is an unbiased estimator of the expected MSE, i.e.

E {ε} =
1

CN
E
{‖x̂− x‖2F

}
Here, we have denoted by ∇1θ the matrix containing the partial derivatives of the



48 CHAPTER 3

components of θ = [θ1 θ2 . . . θC ]
T with respect to its first variable:

∇1θ(u,v) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂θ1(u,v)

∂u1

∂θ2(u,v)

∂u1
. . .

∂θC(u,v)

∂u1
∂θ1(u,v)

∂u2

∂θ2(u,v)

∂u2
. . .

∂θC(u,v)

∂u2
.
.
.

.

.

.
.
.
.

∂θ1(u,v)

∂uC

∂θ2(u,v)

∂uC
. . .

∂θC(u,v)

∂uC

⎤⎥⎥⎥⎥⎥⎥⎦
Proof. Note that, because the noise contaminating ỹn is independent from the one de-
grading yn, we may simply prove the result without considering ỹn to be random. We can
then develop the squared error between xn = yn−bn and its estimate x̂n = θ(yn, ỹn) as

E
{‖θ(yn, ỹn)− xn‖2

}
= E

{‖θ(yn, ỹn)‖2
}

−2E
{
θ(yn, ỹn)

T(yn − bn)
}
+ ‖xn‖2

= E
{‖θ(yn, ỹn)− yn‖2

}
+2E

{
θ(yn, ỹn)

Tbn

}
+ ‖xn‖2 − E

{‖yn‖2
}

(3.26)

Now we use the fact that a zero-mean multivariate Gaussian probability density function
q(bn) with covariance matrix Γ satisfies bnq(bn) = −Γ∇q(bn) to evaluate E

{
θ(yn, ỹn)

Tbn

}
:

E
{
θ(yn, ỹn)

Tbn

}
=

∫
RC

θ(xn + bn, ỹn)
Tbnq(bn) dbn

= −
∫
RC

θ(xn + bn, ỹn)
TΓ∇q(bn) dbn

=

∫
RC

divbn

{
ΓTθ(xn + bn, ỹn)

}
q(bn) dbn (by parts)

=

∫
RC

trace
{
ΓT∇1θ(xn + bn, ỹn)

}
q(bn) dbn

= E
{
trace

{
ΓT∇1θ(yn, ỹn)

}}
Introducing the above relation, as well as the standard result

E
{‖yn‖2

}
= ‖xn‖2 + trace {Γ}

into (3.26), leads us to the desired result. �

3.4.2 Multichannel SURE-LET

In this section, we show how to adapt the monochannel SURE-LET denoiser introduced
in Section 3.3 to multichannel image denoising. The two fundamental ingredients of the
SURE-LET approach remain the same:
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1. The denoising function θ is built as a linear expansion of simple (possibly non-linear)
thresholding functions θk:

θ(yn, ỹn) =

K∑
k=1

aTk θk(yn, ỹn)

= [aT1 aT2 . . . aTK ]︸ ︷︷ ︸
AT

×

⎡⎢⎢⎢⎣
θ1(yn, ỹn)
θ2(yn, ỹn)

...
θK(yn, ỹn)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Θ(yn,ỹn)

(3.27)

Here, Θ(yn, ỹn) is a KC × 1 vector, the ak’s are C × C matrices and hence A is
a KC × C matrix. In this formalism the gradient of θ(yn, ỹn) with respect to the
first variable can be expressed as

∇1θ(yn, ỹn) = ∇1Θ(yn, ỹn)A

2. The MSE estimate ε is quadratic in A, as shown below:

ε =
1

CN

N∑
n=1

∥∥ATΘ(yn, ỹn)− yn

∥∥2
+

2

CN

N∑
n=1

trace
{
ΓT∇1Θ(yn, ỹn)A

}
− 1

C
trace {Γ}

=
1

CN

N∑
n=1

trace
{(

ATΘ(yn, ỹn)− yn

)(
ATΘ(yn, ỹn)− yn

)T}

+
2

CN

N∑
n=1

trace
{
ΓT∇1Θ(yn, ỹn)A

}
− 1

C
trace {Γ}

=
1

CN
trace

{
ATMA− 2CTA

}
+

1

CN
trace

{
yyT −NΓ

}
(3.28)

where we have defined⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M =

N∑
n=1

Θ(yn, ỹn)Θ(yn, ỹn)
T

C =
N∑

n=1

(
Θ(yn, ỹn)y

T
n − (∇1Θ(yn, ỹn)

)T
Γ
) (3.29)

Finally, the minimization of (3.28) with respect to A boils down to the following linear
system of equations:

Aopt = M−1C (3.30)
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Obviously, it is advisable to have the smallest possible number of parameters, in order
for M to be nonsingular and in order to maintain the variance of ε as small as possible,
in such a way that any of its realizations is close to the actual MSE.

It may also be interesting to restrict the number of degrees of freedom of the coefficient
matrices ak and, in exchange, increase the actual numberK of these coefficients: typically,
one may choose ak to be of the form ukv

T
k where vk is some known C × 1 vector, while

uk is an unknown C × 1 vector. This means that the KC × C matrix A lives in some
linear subspace of dimension D < KC2 spanned by, say, a basis of KC × C matrices
{Ed}d=1,2,...,D. Once again, minimizing (3.28) with respect to all the degrees of freedom
of A leads to a linear system of equations

trace
{
ET

d

(
MAopt −C

)}
= 0 for d = 1, 2, . . . D,

from which the D (linear) degrees of freedom of Aopt can be computed.

3.4.3 Multichannel Interscale Thresholding

We propose now a natural vectorization of the interscale thresholding defined in Equ. (3.18)
by taking into account the strong similarities that may occur between the various channels.
More specifically, we build this thresholding function according to the expression (3.27)
with K = 4 in which each θk denoises a particular zone of the multichannel wavelet
subband, characterized by large or small values of the parents/wavelet coefficients. This
zone selection makes use of a “trigger” function γ(x) which is essentially unity for small
values of |x|, and vanishes for large values. We have chosen the following expression:

γ(x) = exp

(
− |x|
12
√
C

)
(3.31)

The interscale predictor ỹ will then be used in order to smoothly discriminate be-
tween high-SNR and low-SNR wavelet coefficients, which finally leads to the following
multichannel interscale thresholding function:

θ(yn, ỹn) = γ(ỹT
nΓ

−1ỹn)γ(y
T
nΓ

−1yn)︸ ︷︷ ︸
small parents and small coefficients

aT1 yn +

(
1− γ(ỹT

nΓ
−1ỹn)

)
γ(yT

nΓ
−1yn)︸ ︷︷ ︸

large parents and small coefficients

aT2 yn +

γ(ỹT
nΓ

−1ỹn)
(
1− γ(yT

nΓ
−1yn)

)︸ ︷︷ ︸
small parents and large coefficients

aT3 yn +

(
1− γ(ỹT

nΓ
−1ỹn)

)(
1− γ(yT

nΓ
−1yn)

)︸ ︷︷ ︸
large parents and large coefficients

aT4 yn

(3.32)

where a1, a2, a3 and a4 are C × C matrices, leading to an overall number of 4C2

parameters.
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(A) (B)

Figure 3.8: (A) A zoom at Barbara’s trousers at the finest scale of an orthonor-
mal wavelet transform: the stripes are clearly visible. (B) A zoom at Barbara’s
trousers at the next coarser scale (expanded by two): the stripes are not visible
anymore.

When C = 1, we recover the monochannel interscale thresholding (3.18). In the
experimental section 3.7.2, we have retained the above expression because of its simplicity.
However, we have observed that by increasing K from 4 to 4C (by increasing the number
of zones, e.g. by distinguishing between parents in the same channel from parents in
other channels) and decreasing the number of degrees of freedom of the coefficients ak
from C × C full-rank matrices to C × C matrices having non-zero elements in a single
column (the overall number of parameters thus remains 4C2) yields often better denoising
results that may in some cases reach up to +0.3 dB.

3.4.4 From Multichannel to Multivariate Interscale Thresholding

In Section 3.3, we have shown that an efficient integration of the interscale dependencies
can bring a significant improvement, both quantitatively (higher PSNR) and qualitatively
(better preservation of edges). However, some particular image features (such as textures)
can have a relatively tight frequency localization, and might thus be only present at a
given resolution in a particular bandpass wavelet subband (see Figure 3.8). Interscale
dependencies of such patterns might therefore be very weak, if not inexistant. To effi-
ciently denoise grayscale images with such content, the intrascale relationships between
neighboring pixels must be definitively accounted for.

In practice, a vector yn of C = M2 wavelet coefficients taken from a M ×M square
neighborhood centred around the location n is formed (see Figure 3.9). In most Bayesian
approaches (e.g. [81, 84]), these vectors of neighboring coefficients are used to estimate
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y1,n

y2,n

y3,n

y4,n

y9,n

y5,n

y6,n

y7,n

y8,n

Figure 3.9: Construction of a C×1 multivariate coefficient yn from its M ×M
square neighborhood (here, M = 3 and thus C = 9). The central coefficient yC,n

is denoted by eTCyn.

the local covariance matrix Γx of the underlying noise-free wavelet coefficients as:

Γx =
1

N

N∑
n=1

yny
T
n︸ ︷︷ ︸

Γy

−Γ

where Γ is the covariance matrix of the noise b as defined in (3.22). Recall that in an
orthonormal wavelet representation, each AWGN coefficient is independent from all of
its neighbors: hence, Γ = σ2Id inside each wavelet subband. The estimated covariance
matrix of the noise-free wavelet coefficients Γx is then often used to derive a multivariate
maximum a posteriori [84] or a multivariate Bayesian least-square [81] estimator.

In our approach, we propose to re-interpret multivariate denoising as a particular
case of multichannel denoising, where the C = M2 channels of yn are formed by the
C − 1 neighbors of the central coefficient and the central coefficient yn,C = eTCyn itself.
The main difference from the multichannel processing that we previously described, is
that we only need to estimate the central coefficient, i.e. eTC x̂n = eTCθ(yn, ỹn). In the
multivariate case, the multichannel SURE-LET procedure described in Section 3.4.2 is
still valid, except that now

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M =

N∑
n=1

ET
CΘ(yn, ỹn)Θ(yn, ỹn)

TEC

C =

N∑
n=1

ET
C

(
Θ(yn, ỹn)y

T
n − (∇1Θ(yn, ỹn)

)T
Γ
)
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where EC =

⎡⎢⎢⎢⎢⎣
eC 0 · · · 0

0 eC 0
...

... 0
. . . 0

0 · · · 0 eC

⎤⎥⎥⎥⎥⎦ is a KC ×K matrix which restricts the degrees of

freedom of Aopt = M−1C from KC × C to K × C.
Considering the interscale thresholding (3.32) (i.e. K = 4) with a standard square

neighborhood of coefficients (e.g. C = 3 × 3) would lead to 36 parameters per wavelet
subband. This over-parametrization would significantly increase the variance of SURE,
leading to an unreliable parameters optimization. To avoid this scenario, we propose
to use cross-shaped neighborhood instead. This choice of shape is further justified by
the natural directional selectivity of the separable 2D OWT, which favors vertical and
horizontal features. To check if this directional selectivity is reflected in the structure
of the optimal linear parameters Aopt, we have considered a 5 × 5 square neighborhood
and optimized, in the MMSE sense, the weights of the linear combination of these 25
coefficients. The magnitudes of these optimal weights Aopt, rearranged as 5 × 5 matrix,
are displayed in Figure 3.10 for various wavelet subbands of two standard grayscale images
Peppers and Lena. We can make the two following observations:

• As expected, the magnitude of the optimal coefficients is higher along the two
preferential directions (i.e. either horizontal, vertical or both) and maximum for
the central coefficient. A cross-shaped neighborhood thus constitutes an appropriate
choice.

• Remarkably, the values of the optimal coefficients are roughly symmetric along the
two preferential directions.

The consideration of the above observations allows us to finally reduce the total num-
ber of parameters per wavelet subband from K×M2 to K×M , by imposing the following
structure on each of the parameters matrix ak:

ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 ak1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 akM0
0 . . . 0

akM0+1 . . . akM−1 akM akM−1 . . . akM0+1

0 . . . 0 akM0
0 . . . 0

...
. . .

...
...

...
. . .

...
0 . . . 0 ak1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.33)

where M0 =
M − 1

2
, M odd.

To summarize, for multivariate denoising, we propose to use the multivariate interscale
thresholding defined in Equ. (3.32) with a M×M cross-shaped neighborhood: in practice,
we suggest to use M = 3 (resp. M = 5) for 256×256 (resp. 512×512) images. Inside this
neighborhood, only M degrees of freedom are allowed for each parameter ak to account
for the symmetries observed in Figure 3.10.



54 CHAPTER 3

Aopt in HL1 Aopt in LH1 Aopt in HH1

Figure 3.10: Illustration of the directional structure of the optimal (in the
MMSE sense) set of parameters Aopt for the highpass subbands at the finest
resolution. Top row: Peppers. Bottom row: Lena.

3.5 SURE-LET Estimators: a Comparison

Before comparing our SURE-LET denoising strategy with some state-of-the-art algo-
rithms, it is instructive to evaluate the performance of the various grayscale wavelet
estimators proposed in this chapter. In Figure 3.11, we compare the results obtained
with the simple two-terms sum of DOG (3.11), the interscale thresholding (3.18) and
the multivariate interscale estimator (3.32) described in Section 3.4.4. The improvement
(often more than +1dB) brought by the integration of interscale dependencies is quite
significant for most standard images. Yet, for images that have a substantial well-localized
frequency content (e.g. Barbara), the integration of interscale dependencies does not lead
to such an impressive gain. As expected for such images, the integration of intrascale de-
pendencies considerably increases the denoising performance (around +1.5 dB). In most
other cases, it usually brings an improvement of +0.5 dB over the interscale estimator.

3.6 Noise Variance Estimation

Most of the denoising algorithms designed for AWGN reduction require the knowledge of
the AWGN variance σ2. Numerous works are thus entirely dedicated to this estimation
problem (e.g. [97–102]).

Two strategies are usually considered: the first one consists in computing the local
variance inside every M ×M (typically M = 8) blocks of the noisy image. The AWGN
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Peppers 256× 256 House 256× 256

Lena 512× 512 Barbara 512× 512

Figure 3.11: Comparison of the various wavelet estimators introduced in this
chapter. The benchmark is provided by the simple univariate sum of DOG (3.11)
(“+” markers); the interscale thresholding (3.18) is referred to as “bivariate” (“◦”
markers) and its multivariate extension (3.32) as “multivariate” (“∗” markers).

variance is then estimated by averaging a subset of these local variances. The retained
subset should only contain the noise variances computed inside the most homogenous
regions of the image. The second one consists in prefiltering the noisy image with a unit-
norm highpass filter, and then estimating the noise variance from the filtered residual. In
this approach, the residual is assumed to mainly contain the AWGN noise component.
This estimation method has been popularized in wavelet-based denoising algorithms by
Donoho, who proposed the median of the absolute deviation (MAD) of the highest fre-
quency subband (HH) as an estimate σ̂ of the noise standard deviation [103]:

σ̂ = 1.4826 med {|y −med {y}|}, yn ∈ HH (3.34)

For a wide range of noise levels, the wavelet-domain MAD estimator usually gives
an accurate estimation of the AWGN variance for most natural images. However, under
relatively low noise conditions (σ < 10), it becomes unreliable for those images having a
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significant high-frequency content. Indeed, in that case, the noise variance will be overes-
timated due to the non-negligeable contribution of the noise-free signal energy present in
the highest frequency noisy wavelet subband. To overcome this issue, we propose to de-
sign a linear filter that minimizes the energy of the noise-free signal, while still preserving
the AWGN variance6.

Proposition 4. The unit-norm filter h ∈ R
M that minimizes the residual energy of the

noise-free signal ‖h ∗ x‖2 is the eigenvector corresponding to the minimum eigenvalue of

the symmetric matrix A = [ai,j ]1≤i,j≤M , where ai,j =
∑N

n=1 yn−iyn−j.

Proof. The independence between x and b allows us to write:

‖h ∗ x‖2 = E
{‖h ∗ y‖2}− E

{‖h ∗ b‖2}
= E

{‖h ∗ y‖2}−Nσ2 (‖h‖2 = 1)

The optimal filter hopt that minimizes ‖h ∗ x‖2 is thus given by:

hopt = argminh ‖h ∗ y‖2 subject to ‖h‖2 = 1

Introducing the Lagrange multiplier λ, we obtain the following (unconstrained) functional
to minimize:

J(h) = ‖h ∗ y‖2 − λ(‖h‖2 − 1)

=
∑
i,j

hi

∑
n

yn−iyn−j︸ ︷︷ ︸
ai,j

hj − λ(‖h‖2 − 1)

= hTAh− λ(‖h‖2 − 1)

and thus:
∇hJ(h) = 2Ah− 2λh = 0 ⇐⇒ Ah = λh (3.35)

We finally demonstrate Proposition 4, by noting that:

hT
optAhopt

(3.35)
= λopt ‖hopt‖2︸ ︷︷ ︸

=1

= λopt is minimum ⇐⇒ λopt = λmin

�

An estimate of the AWGN variance could be simply obtained as

σ̂2 =
1

N
‖hopt ∗ y‖2

However, in order to improve the overall performances, we propose to apply a more robust
estimation procedure on the optimally filtered noisy data. The idea is the following: as

6Note that the proposed filter design falls within the broader framework of “eigenfilters” design intro-
duced by Vaidyanathan and Nguyen in [104].
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observed in Figure 3.12, there are still some sparse structures in the residual image that
can bias the estimate of σ. We thus propose to compute the noise standard deviation in
every blocks of the residual image. Since most of these local estimates will be close to the
actual noise standard deviation, the latter can be estimated as the mode of the smoothed
histogram of the local noise standard deviations. An overview of the proposed hybrid
estimation procedure is given in Figure 3.12. In practice, we found that a good trade-off
between estimation accuracy and variance can be achieved with a 3 × 3 optimized filter
hopt and local estimates of the noise standard deviation computed inside blocks of size
25× 25.

As observed in Table 3.3, the proposed estimation procedure is more accurate than
the widely-used wavelet-domain MAD estimator, while having a comparable variance.
Consequently, the PSNR loss (0− 0.4 dB) due to the error in the estimation of σ is much
lower with the proposed approach (as shown in Figure 3.13, when using our interscale
wavelet thresholding (3.18)).

Table 3.3: Comparison between the proposed AWGN standard deviation esti-
mator and the popular wavelet-domain MAD estimator.

σσσ 5 10 15 20 25 30 50 100

Method Measure Cameraman 256 × 256

MAD
Relative error 0.26 0.11 0.07 0.04 0.03 0.02 0.01 0.00

Std of the error 0.06 0.10 0.13 0.17 0.22 0.27 0.45 0.89

Proposed
Relative error 0.05 0.02 0.02 0.02 0.01 0.01 0.00 0.01

Std of the error 0.08 0.17 0.24 0.28 0.33 0.37 0.56 1.04

Method Measure Bridge 256 × 256

MAD
Relative error 0.67 0.25 0.13 0.08 0.05 0.04 0.01 0.00

Std of the error 0.08 0.10 0.14 0.18 0.22 0.25 0.41 0.85

Proposed
Relative error 0.27 0.10 0.08 0.06 0.04 0.03 0.00 0.01

Std of the error 0.15 0.17 0.34 0.29 0.29 0.33 0.50 0.96

Method Measure Barbara 512 × 512

MAD
Relative error 0.28 0.12 0.07 0.04 0.03 0.02 0.01 0.00

Std of the error 0.03 0.04 0.06 0.08 0.10 0.12 0.21 0.41

Proposed
Relative error 0.11 0.03 0.02 0.01 0.01 0.01 0.00 0.01

Std of the error 0.08 0.09 0.14 0.17 0.17 0.18 0.20 0.46

Method Measure Mandrill 512 × 512

MAD
Relative error 0.83 0.32 0.17 0.11 0.07 0.05 0.02 0.00

Std of the error 0.03 0.05 0.08 0.09 0.11 0.14 0.21 0.39

Proposed
Relative error 0.22 0.08 0.07 0.05 0.04 0.03 0.01 0.00

Std of the error 0.10 0.15 0.25 0.20 0.16 0.16 0.21 0.46

Notes: 1. The relative error has been computed as
|σ̂−σ|

σ
.

2. The estimates have been averaged over 100 noise realizations.

3.7 Experiments

3.7.1 Grayscale Images

In this section, we compare the proposed SURE-LET approach with some of the best
state-of-the-art wavelet-based techniques: Sendur’s et al. bivariate MAP estimator with
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Figure 3.12: Overview of the proposed procedure for estimating the AWGN
standard deviation.

local signal variance estimation [84], Portilla’s BLS-GSM [81] and Pižurica’s ProbShrink
[82]. In all comparisons, we use a critically sampled orthonormal wavelet basis with eight
vanishing moments (sym8 ) over four (resp. five) decomposition stages for 256×256 (resp.
512× 512) images.

PSNR comparisons

We have tested the various denoising methods for a representative set of standard 8-bit7

grayscale images such as Lena, Barbara, Boat, Al, Goldhill (size 512× 512) and Peppers,
House (size 256 × 256), corrupted by simulated AWGN at eight different powers σ ∈
[5, 10, 15, 20, 25, 30, 50, 100], which corresponds to PSNR decibel values [34.15, 28.13,
24.61, 22.11, 20.17, 18.59, 14.15, 8.13]. The denoising process has been performed over

7The PSNR has been thus computed as: PSNR = 10 log10
2552

MSE
.
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Cameraman 256× 256 Bridge 256× 256

Barbara 512× 512 Mandrill 512× 512

Figure 3.13: PSNR loss due to the error in the estimation of the AWGN stan-
dard deviation, when using our interscale thresholding (3.18) with: the actual σ
(“+” markers), σ̂ provided by the wavelet-domain MAD estimator (“◦” markers),
and σ̂ estimated by the proposed procedure (“∗” markers).

ten different noise realizations for each noise standard deviation and the resulting PSNRs
have been averaged over these ten runs. The parameters of each method have been set
according to the values given by their respective authors in the corresponding referred
papers. Variations in output PSNRs are thus only due to the denoising techniques them-
selves. This reliable comparison was only possible thanks to the kindness of the various
authors who have provided their respective Matlab codes on their personal websites.

Table 3.4 summarizes the results obtained. To the noteworthy exception of Barbara,
the results obtained by our interscale estimator (3.18) are already competitive with the
best techniques available, when considering non-redundant orthonormal transforms. The
integration of the intrascale dependencies brings an additional PSNR improvement of
around 0.5 dB, except for the image Barbara, where the gain is even more significant
(over 1 dB).

When looking closer at the results, we observe that:
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• The proposed interscale wavelet estimator gives better results than BiShrink which
integrates both the inter- and the intrascale dependencies (average gain of 0.6 dB).

• The proposed interscale wavelet estimator gives better results than ProbShrink
which integrates the intrascale dependencies (average gain of 0.4 dB).

• The proposed interscale wavelet estimator obtains similar or sometimes even better
results than BLS-GSM for most images.

• The proposed multivariate interscale wavelet thresholding gives consistently higher
PSNRs (0.5 − 1 dB) than the other state-of-the-art wavelet-based denoising algo-
rithms.

Peppers 256× 256 House 256× 256

Lena 512× 512 Barbara 512× 512

Figure 3.14: Comparison between the proposed multivariate orthonormal
wavelet estimator (3.32) (“+” markers) and the BLS-GSM applied in two dif-
ferent redundant representations: UWT (“◦” markers) and FSP (“∗” markers).

Recall that one of the original motivations of this chapter was to design an orthonormal
wavelet-domain denoising algorithm that would potentially match the quality of the state-
of-the-art redundant wavelet-domain denoising methods. In Figure 3.14, we thus show a
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Table 3.4: Comparison of some of the most efficient orthonormal wavelet-
domain denoising methods.

σσσ 5 10 15 20 25 30 50 100
Input PSNR 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Peppers 256 × 256
BiShrink [84] 36.61 32.56 30.27 28.68 27.48 26.52 23.90 20.78

ProbShrink [82] 36.72 32.69 30.43 28.85 27.65 26.68 23.83 20.85
BLS-GSM [81] 36.80 32.86 30.61 29.07 27.91 26.97 24.39 20.92

Bivariate
SURE-LET (3.18)

37.18 33.19 30.91 29.33 28.12 27.14 24.43 21.28

Multivariate
SURE-LET (3.32)

37.40 33.51 31.31 29.78 28.61 27.66 25.00 21.50

Method House 256 × 256
BiShrink [84] 37.56 33.64 31.61 30.20 29.11 28.24 25.88 22.89

ProbShrink [82] 37.60 33.84 31.77 30.29 29.20 28.33 26.05 23.17
BLS-GSM [81] 38.04 34.29 32.27 30.83 29.69 28.75 26.20 22.95

Bivariate
SURE-LET (3.18)

37.89 34.31 32.34 30.96 29.88 29.00 26.59 23.48

Multivariate
SURE-LET (3.32)

38.45 34.90 32.93 31.53 30.43 29.53 27.02 23.66

Method Lena 512 × 512
BiShrink [84] 37.57 34.24 32.35 31.01 29.99 29.17 26.91 24.02

ProbShrink [82] 37.64 34.28 32.35 31.01 29.99 29.18 26.97 24.25
BLS-GSM [81] 37.85 34.60 32.69 31.33 30.28 29.43 27.09 24.17

Bivariate
SURE-LET (3.18)

37.96 34.56 32.67 31.35 30.34 29.53 27.33 24.61

Multivariate
SURE-LET (3.32)

38.27 34.98 33.10 31.77 30.74 29.91 27.62 24.67

Method Barbara 512 × 512
BiShrink [84] 36.75 32.52 30.15 28.51 27.29 26.33 23.92 21.53

ProbShrink [82] 36.75 32.48 30.04 28.40 27.20 26.27 23.85 21.60
BLS-GSM [81] 37.05 32.88 30.54 28.92 27.71 26.75 24.26 21.58

Bivariate
SURE-LET (3.18)

36.70 32.19 29.66 27.98 26.76 25.83 23.71 21.82

Multivariate
SURE-LET (3.32)

37.46 33.35 31.01 29.38 28.15 27.18 24.70 22.07

Method Boat 512 × 512
BiShrink [84] 36.19 32.47 30.49 29.10 28.05 27.22 25.07 22.61

ProbShrink [82] 36.21 32.54 30.51 29.11 28.05 27.22 25.13 22.74
BLS-GSM [81] 36.46 32.89 30.89 29.50 28.44 27.59 25.36 22.71

Bivariate
SURE-LET (3.18)

36.70 32.90 30.86 29.48 28.45 27.65 25.55 23.09

Multivariate
SURE-LET (3.32)

37.05 33.32 31.34 29.97 28.93 28.10 25.92 23.27

Method Al 512 × 512
BiShrink [84] 38.00 34.50 32.58 31.25 30.23 29.40 27.12 24.10

ProbShrink [82] 38.11 34.58 32.65 31.24 30.12 29.31 27.18 24.30
BLS-GSM [81] 38.38 34.84 32.95 31.60 30.56 29.71 27.36 24.27

Bivariate
SURE-LET (3.18)

38.43 34.90 32.98 31.66 30.66 29.86 27.64 24.67

Multivariate
SURE-LET (3.32)

38.95 35.39 33.47 32.15 31.14 30.32 28.04 24.96

Method Goldhill 512 × 512
BiShrink [84] 36.18 32.28 30.33 29.07 28.15 27.44 25.59 23.38

ProbShrink [82] 36.07 32.30 30.35 29.07 28.13 27.43 25.63 23.55
BLS-GSM [81] 36.38 32.62 30.69 29.42 28.49 27.75 25.78 23.43

Bivariate
SURE-LET (3.18)

36.53 32.69 30.77 29.53 28.62 27.91 26.09 23.94

Multivariate
SURE-LET (3.32)

36.91 33.15 31.25 30.02 29.11 28.40 26.50 24.15

Note: The output PSNRs have been averaged over ten noise realizations.
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comparison between the proposed multivariate interscale thresholding (3.32) applied in
the orthonormal wavelet domain and the BLS-GSM applied in two different redundant
representations: the classical undecimated wavelet transform and the full steerable (eight
orientations per scale) pyramid [47] (FSP). All transforms are implemented with periodic
boundary extensions. The two wavelet-based transforms use the same symlet filters with
eight vanishing moments. As observed, we obtain PSNR results similar (±0.2 dB) to those
achieved by the BLS-GSM using the UWT. However, the application of the BLS-GSM
in a FSP outperforms (+0.5 dB on average) our non-redundant solution for most images
and for most noise levels. A redundant representation allows much more design flexibility
than an orthonormal transform. In particular, the better directional selectivity of the
FSP leads to a better preservation of both edges and textures. Yet, it is encouraging to
notice that we could match the quality of the BLS-GSM applied in the standard UWT
when considering the same wavelet filters.

Visual quality

Although there is no consensual objective way to judge the visual quality of a denoised
image, two important criteria are widely used: the visibility of processing artifacts and
the conservation of image edges. Processing artifacts usually result from a modification of
the spatial correlation between wavelet coefficients (often caused by the zeroing of small
neighboring coefficients) and are likely to be reduced by taking into account intrascale
dependencies. Instead, edge distortions usually arise from modifications of the interscale
coefficient correlations. The amplitude of these modifications is likely to be reduced by a
careful consideration of interscale dependencies in the denoising function.

In Figures 3.15, we show the denoised output generated by some of the algorithms
compared in this section. We would like to stress that our method exhibits the fewest
artifacts, which we attribute to the fact that we are never forcing any wavelet coefficients
to zero. We have also reported the SSIM index8 [5] of the various denoised images: here
again, the proposed multivariate interscale thresholding yields the highest SSIM index.

Computation time

It is also interesting to evaluate the various denoising methods from a practical point of
view: the computation time. Indeed, the results achieved by overcomplete representations
are admittedly superior than the ones obtained by critically sampled wavelet transforms,
but their weaknesses are the time they require and their intensive computer memory
usage. The execution of the BLS-GSM applied in a FSP lasts around 32 s on a MacPro
workstation with 2 × 2.66 GHz Dual-Core for 512 × 512 images. With our multivariate
interscale thresholding (3.18), the whole denoising task takes around 0.18 s for 256× 256
images and about 0.68 s for 512× 512 images, using the same workstation.

Table 3.5 summarizes the relative computation time of the various methods considered
in this section. Note that the main part of the ProbShrink and some parts of the BLS-
GSM are contained in pre-compiled files; this makes their execution a bit faster than the
other algorithms which are fully implemented in Matlab.

8For more details on this image quality measure, see Section 1.2.1 of Chapter 1.
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(A) (B)

(C) (D)

(E) (F)

Figure 3.15: (A) Part of the noise-free 256 × 256 House image. (B) A
noisy version of it: SSIM = 0.23. (C) Denoised by BiShrink : SSIM = 0.73.
(D) Denoised by ProbShrink : SSIM = 0.75. (E) Denoised by BLS-GSM :
SSIM = 0.75. (F) Denoised by the proposed multivariate interscale thresholding
(3.32): SSIM = 0.78.
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Table 3.5: Relative computation time of various denoising techniques.
Normalized Unit of time

Method
256 × 256 images 512 × 512 images

Univariate
SURE-LET (3.11)

1.0 3.9

BiShrink [84] 1.1 4.2
ProbShrink [82] 11.1 45.8
BLS-GSM [81] 15.3 56.7

Bivariate
SURE-LET (3.18)

2.9 11.6

Multivariate
SURE-LET (3.32)

6.7 25.1

Redundant
BLS-GSM [81]

288.1 1193.8

Note: The computation times have been averaged over twenty runs.

3.7.2 Color Images

Color spaces usually consist of C = 3 channels and we mostly consider red-green-blue
(RGB) representations here. In order to demonstrate the performance of our approach,
we assume that the interchannel noise covariance matrix is given by:

Γ =

⎡⎣ σ2
R 0 0
0 σ2

G 0
0 0 σ2

B

⎤⎦
This assumption implies that, in other color spaces, there will usually be noise correla-

tions between the color channels. As an illustration, suppose that we want to perform the
denoising in the luminance-chrominance space YUV. An image yyuv in YUV is obtained
form an original RGB image y through the following linear transformation:

yyuv =

⎡⎣ 0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.1

⎤⎦
︸ ︷︷ ︸

L

y (3.36)

The MSE estimate in the YUV color space is finally obtained by replacing x, y and
Γ by respectively xyuv = Lx, yyuv = Ly and Γyuv = LΓLT in the expression of the
multichannel SURE (3.25).

All the experiments of this section have been carried out on N = 256 × 256 and
N = 512 × 512 RGB test images from the set presented in Figure 3.16. We have ap-
plied our multichannel interscale thresholding algorithm after 4 or 5 decomposition levels
(depending on the size of the image: 2562 or 5122) of an orthonormal wavelet transform
(OWT) using the standard sym8 wavelet filter.
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Figure 3.16: Test images used in the experiments, referred to as Image 1 to
Image 8 (numbered from left-to-right and top-to-bottom).

Multichannel vs Independent Monochannel Thresholding

Before comparing our results with some of the state-of-the-art denoising procedures, we
first want to evaluate the improvements brought by the integration of interchannel de-
pendencies. In Figure 3.17, we compare our multichannel interscale thresholding (3.32)
with the interscale thresholding defined in (3.18) applied separately in each channel, both
in the standard RGB color space and in the luminance-chrominance space YUV.

Image 1 Image 7

Figure 3.17: PSNR improvements brought by our multichannel strategy, com-
pared to the worst case (monochannel SURE-LET in RGB).

As observed, the integration of interchannel dependencies improves the denoising per-
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formance considerably, both in the RGB color space (more than +1dB) and in the more
“decorrelated” YUV space (around +0.5 dB). Note that these improvements become
even more pronounced (around +1.5–2 dB) when the power of the noise is different in
each channel.

Remarkably and contrary to the other denoising algorithms that have been published
previously, our results are quite insensitive to the color representation (variations of
±0.1 dB). Indeed, the parameters ak of (3.32) can be understood as statistically op-
timized (in the minimum SURE sense) linear color space transformations in each wavelet
zone. From now on, we will thus apply our multichannel algorithm in the RGB color
space only.

PSNR Comparisons

We have chosen to compare our method with two state-of-the-art multiresolution-based
denoising algorithms:

• Pižurica’s et al. ProbShrink-MB [82], which is a multiband extension of the original
grayscale denoiser of the same authors. For color image denoising, it has to be
applied in the standard RGB representation, and for equal noise variance in each
channel. We have applied this algorithm with a non-redundant orthonormal wavelet
transform, as well as with the undecimated wavelet tranform (UWT); we have con-
sidered the same number of decomposition levels and the same wavelet (sym8 ) as
with our method. Since this algorithm has been shown in [82, 105] to favorably
compare with the multiband wavelet thresholding described in [106], as well as with
the vector-based linear MMSE estimator proposed in [107], it constitutes a good
reference for evaluating our solution.

• Portilla’s et al. BLS-GSM [81]: although this algorithm has not been designed
for multichannel denoising, this is currently the most efficient multiresolution-based
grayscale denoiser we know of. For color image denoising, we have simply applied
the BLS-GSM independently in each RGB channel, considering the redundant FSP
representation.

Note that, in all likelihood, a more complete (i.e. including the modeling of local
neighborhoods and parents) multichannel extension of the BLS-GSM than the one
recently initiated by Scheunders et al. in [108], would certainly give substantially
better results than the independent application of the original BLS-GSM that we
propose to use here.

In the first experiment, we have corrupted the test images with AWGN having the
same variance in each RGB channel. The PSNR results are displayed in Table 3.6. Using
the same orthonormal wavelet transform, our multichannel SURE-LET algorithm clearly
outperforms (often by more than +1dB) the ProbShrink-MB. Despite being performed
in a non-redundant wavelet representation, our solution gives even better (average gain
of nearly +0.5 dB) output PSNRs than the ProbShrink-MB applied in the undecimated
wavelet representation, and similar results to BLS-GSM for all the tested images, as
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well as for the whole range of input noise levels. From a visual point of view, our algo-
rithm holds its own against the best redundant approaches based on multiresolution (see
Figure 3.18).

In a second experiment, the test images have been corrupted with AWGN having a
different power in each RGB channel. As a comparison, we have used another version
of Pižurica’s et al. ProbShrink [105] which is an application of their original grayscale
denoiser in the luminance-chrominance color space in the undecimated wavelet transform,
consequently referred to as the UWT ProbShrink-YUV. The PSNR results are displayed
in Table 3.7. We have also reported in this table the results published in [109]. Their
algorithm is developed in an orthonormal wavelet transform framework and combines the
universal hidden Markov tree (uHMT), a statistical approach devised in [110], with an
optimal luminance/color-difference space projection (OCP); it will therefore be referred
to as the OWT uHMT-OCP. As observed, our multichannel SURE-LET approach out-
performs these two algorithms in terms of PSNR (almost +1 dB); it even gives better
results than the BLS-GSM for most images. In Figure 3.19, we show the visual quality
of the various algorithms: ours exhibits very few color artifacts, and preserves most of
the image details.

Finally, we must emphasize that the execution of the un-optimized Matlab implemen-
tation of our algorithm only lasts around 1.8s for 512 × 512 color images on a MacPro
workstation with 2 × 2.66 GHz Dual-Core. To compare with, the best ProbShrink re-
quires approximately 6s under the same conditions, whereas the BLS-GSM requires
about 108s. Besides achieving very competitive denoising results, the proposed solu-
tion is also faster than most state-of-the-art algorithms: the interested reader may wish
to check these claims with our online demo available at http://bigwww.epfl.ch/demo/
suredenoising-color/index.html. Not only is it faster, but it is also much more mem-
ory effective because it makes use of a non-redundant transformation, an approach that
could prove even more valuable for the processing of higher-dimensional data, in partic-
ular, tridimensional and moving pictures.

3.7.3 Multichannel Images

Our multichannel SURE-LET algorithm is particularly well-suited to the denoising of
multiband images, such as satellite images, and more generally, any stack of images with
significant common content (e.g., consecutive moving images or consecutive volume slices).
Indeed, thanks to the SURE-based optimization of the linear parameters, the potentially
strong similarities between the various channels are efficiently (and automatically) taken
into account. There is thus no need to decorrelate the bands beforehand.

For the experiments, we have used two different 7-bands Landsat images9:

• the first one covers the inland city of Wagga Wagga in Australia. The coverage area
shown in Figure 3.20(A) is approximately 15 km by 15 km with a resolution of 30 m
(image size of N = 512× 512× 7).

9Data by courtesy of the following website:
http://ceos.cnes.fr:8100/cdrom-00/ceos1/datasets.htm
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Table 3.6: Comparison of color image denoising algorithms for the same noise
level in each RGB channel.

σR = σG = σB 5 10 15 20 25 30 50 100
Input PSNR [dB] 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Image 1 256 × 256
OWT ProbShrink-MB [82] 36.65 33.18 31.32 29.98 28.94 28.07 25.61 22.69

OWT SURE-LET 37.91 34.46 32.60 31.29 30.25 29.39 26.95 23.73

UWT ProbShrink-MB [82] 37.69 34.22 32.30 30.94 29.96 29.06 26.55 23.72
FSP BLS-GSM [81] 37.57 34.20 32.52 31.31 30.34 29.52 27.21 24.12

Method Image 2 256 × 256
OWT ProbShrink-MB [82] 34.37 30.01 28.17 26.93 26.00 25.25 23.24 20.72

OWT SURE-LET 35.40 31.22 29.24 27.98 27.07 26.34 24.38 21.76

UWT ProbShrink-MB [82] 35.31 31.21 29.22 27.92 26.99 26.21 24.17 21.65
FSP BLS-GSM [81] 35.35 31.01 29.09 27.91 27.04 26.34 24.37 21.74

Method Image 3 512 × 512
OWT ProbShrink-MB [82] 36.37 33.45 31.78 30.59 29.67 28.92 26.88 24.28

OWT SURE-LET 37.80 34.64 33.02 31.90 31.04 30.33 28.35 25.66

UWT ProbShrink-MB [82] 37.46 34.42 32.69 31.47 30.61 29.83 27.76 25.03
FSP BLS-GSM [81] 37.29 34.45 32.90 31.78 30.89 30.15 28.09 25.40

Method Image 4 512 × 512
OWT ProbShrink-MB [82] 35.48 32.49 31.02 29.98 29.14 28.41 26.20 23.55

OWT SURE-LET 36.62 33.35 31.79 30.72 29.89 29.19 27.16 24.48

UWT ProbShrink-MB [82] 36.33 33.35 31.81 30.74 29.96 29.20 26.85 24.28
FSP BLS-GSM [81] 36.34 33.26 31.89 30.92 30.13 29.46 27.47 24.73

Method Image 5 512 × 512
OWT ProbShrink-MB [82] 33.86 28.90 26.44 24.87 23.73 22.89 20.94 19.31

OWT SURE-LET 35.12 30.49 28.15 26.64 25.55 24.71 22.59 20.37

UWT ProbShrink-MB [82] 34.83 30.15 27.72 26.17 25.04 24.16 21.98 19.81
FSP BLS-GSM [81] 35.01 30.13 27.66 26.08 24.95 24.07 21.92 19.89

Method Image 6 512 × 512
OWT ProbShrink-MB [82] 37.58 34.03 32.01 30.64 29.29 28.24 25.90 23.30

OWT SURE-LET 39.11 35.70 33.71 32.29 31.19 30.29 27.77 24.77

UWT ProbShrink-MB [82] 38.78 35.23 33.20 31.80 30.77 29.81 26.87 23.97
FSP BLS-GSM [81] 38.40 35.01 33.09 31.74 30.69 29.84 27.47 24.45

Method Image 7 512 × 512
OWT ProbShrink-MB [82] 35.47 31.25 29.15 27.76 26.70 25.87 23.77 21.44

OWT SURE-LET 38.69 34.24 31.87 30.29 29.10 28.15 25.63 22.72

UWT ProbShrink-MB [82] 37.05 32.64 30.36 28.88 27.80 26.87 24.58 21.91
FSP BLS-GSM [81] 36.36 32.17 30.14 28.86 27.92 27.18 25.13 22.50

Method Image 8 512 × 512
OWT ProbShrink-MB [82] 39.47 35.97 33.87 32.05 30.85 29.98 27.76 25.00

OWT SURE-LET 41.05 37.56 35.49 34.00 32.84 31.88 29.26 26.11

UWT ProbShrink-MB [82] 40.49 36.92 34.82 33.36 32.25 31.24 28.61 25.55
FSP BLS-GSM [81] 40.16 37.03 35.11 33.71 32.62 31.72 29.24 26.18

Notes: The output PSNRs have been averaged over ten noise realizations.
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(A) (B)

(C) (D)

(E) (F)

Figure 3.18: (A) Part of the noise-free Image 8. (B) Noisy version
of it: PSNR = 20.17 dB. (C) Denoised by ProbShrink-MB (OWT
sym8 ): PSNR = 30.88 dB. (D) Denoised by SURE-LET (OWT sym8 ):
PSNR = 32.83 dB. (E) Denoised by ProbShrink-MB (UWT sym8 ):
PSNR = 32.22 dB. (F) Denoised by BLS-GSM (FSP): PSNR = 32.60 dB.



70 CHAPTER 3

(A) (B)

(C)

(D) (E)

Figure 3.19: (A) Part of the noise-free Image 7. (B) Noisy version of it:
PSNR = 19.33 dB (σR = 38.25, σG = 25.50 and σB = 12.75). (C) Denoised by
our multichannel SURE-LET (OWT sym8 ): PSNR = 30.05 dB. (D) Denoised
by ProbShrink-YUV (UWT sym8 ): PSNR = 28.27 dB. (E) Denoised by BLS-
GSM (FSP): PSNR = 27.83 dB.



SECTION 3.7 71

Table 3.7: Comparison of color image denoising algorithms for a different noise
level in each RGB channel.

σR = 38.25, σG = 25.50, σB = 12.75
Input PSNR: 19.33 [dB]

Method Image 1 Image 2 Image 3 Image 4
OWT SURE-LET 30.63 27.19 31.41 29.93

UWT ProbShrink-YUV [105] 29.53 26.55 30.47 29.37
FSP BLS-GSM [81] 30.47 27.18 30.91 30.13

Method Image 5 Image 6 Image 7 Image 8
OWT uHMT-OCP [109] N/A N/A 29.16 31.46

OWT SURE-LET 26.12 31.34 30.09 33.17

UWT ProbShrink-YUV [105] 24.93 29.95 28.25 32.03
FSP BLS-GSM [81] 25.10 30.45 27.83 32.45

Notes: The output PSNRs have been averaged over ten noise realizations.

• the second one shows a part of a scene taken over Southern California, encom-
passing the region from Long Beach to San Diego. The coverage area shown in
Figure 3.20(B) is also approximately 15 km by 15 km with a resolution of 30 m
(image size of N = 512× 512× 7).

(A) (B)

Figure 3.20: (A) First band of a Landsat image of Wagga Wagga. (B) First
band of a Landsat image showing a part of Southern California.

For the denoising experiments, we have disregarded band 6 of both Landsat images,
since it is very different from the others (a thermal infrared channel at lower resolution);
our test data are therefore of size N = 512 × 512 × 6. Unfortunately, we were unable
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to compare our results with the ones obtained by other algorithms specifically devised
to handle more than 3 bands because we could neither get the test data used in their
experiments nor find the corresponding implementations. However, to have a point of
comparison we show the results obtained by the BLS-GSM applied separately in each
bands.

Table 3.8: Comparison of multiband denoising algorithms (same noise level in
each channel)

σi, i ∈ [1, 6] 5 10 15 20 25 30 50 100
Input PSNR [dB] 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Wagga Wagga 512 × 512
FSP BLS-GSM [81] 35.06 30.21 27.70 26.09 24.92 24.02 21.76 19.26
OWT SURE-LET 35.37 30.88 28.59 27.09 26.00 25.14 22.95 20.39

Method Southern California 512 × 512
FSP BLS-GSM [81] 35.52 30.83 28.33 26.67 25.47 24.54 22.22 19.71
OWT SURE-LET 36.57 32.19 29.78 28.15 26.96 26.03 23.64 20.92

Notes: The output PSNRs have been averaged over ten noise realizations.

As it can be observed in Table 3.8, our multichannel SURE-LET clearly outperforms
(often by more than +1dB) the BLS-GSM, although it is applied in an orthonormal
wavelet representation. A visual comparison is also shown in Figure 3.21 for one particular
band. From a computational time point of view, there is an obvious interest in considering
a non-redundant transformation: the denoising of the 6 bands of a 512×512 Landsat image
lasts 6.5s with our algorithm, whereas it takes 210 s with BLS-GSM.

3.8 Summary

In this chapter, we have presented several SURE-LET estimators for orthonormal wavelet
domain denoising. While in most thresholding functions (e.g. soft-threshold), the non-
linear transition between high and low magnitude wavelet coefficients is managed by one or
more non-linear parameters, we have proposed here an alternative pointwise thresholding,
ruled by two linear parameters. Besides being faster to optimize, our solution achieves
better PSNR results than even the optimal sof-thresholding.

However, the restrictive use of an orthonormal transform requires more sophisticated
thresholding functions in order to be competitive with the state-of-the-art approaches.
We have thus proposed a rigorous procedure (based on group-delay compensation) to
take full advantage of the interscale relationships that are naturally present in a wavelet
representation. Combining these interscale dependencies with the local consistency of the
wavelet coefficients (the so-called intrascale dependencies) has significantly improved the
performance of our simple pointwise thresholding, while maintaining a low computational
complexity.

In practice, an image can have several channels (e.g. 3 for color images) that can be
potentially highly correlated. The standard approach to deal with such images consists
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(A) (B)

(C) (D)

Figure 3.21: (A) Part of the first band of the noise-free Southern California
image. (B) Noisy version of it: PSNR = 18.59 dB. (C) Denoised by BLS-GSM
(FSP): PSNR = 24.54 dB. (D) Denoised by our multichannel SURE-LET
(OWT sym8 ): PSNR = 26.03 dB.

in first de-correlating the data (e.g. color space transformation), and then applying any
monochannel denoiser separately on each channel. In this chapter, we have devised a
specific non-separable wavelet estimator, based on a natural multichannel extension of
the orthonormal SURE-LET approach.

Finally, we have assessed the performance of the proposed orthonormal SURE-LET
strategy by running several simulations on a representative set of standard mono- and mul-
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tichannel images. What comes out of this study is that our solution achieves better perfor-
mances (both quantitatively and visually) than the state-of-the-art non-redundant denois-
ing methods. In some cases, it can even match the quality of the best multiresolution-
based approaches applied in a redundant representation, while having a much lighter
computational burden.



Chapter 4

SURE-LET in
Non-Orthogonal/Redundant
Representation

4.1 Motivations

One of the most popular approaches to process noisy images consists in first applying
some linear (often redundant) transformation, then performing a nonlinear (and some-
times multivariate) operation on the transformed coefficients, and finally reverting to the
image domain by applying the inverse linear transformation. While the choice of the
transformation can be justified by invoking well-accepted compression or sparsity argu-
ments (see Section 1.3.4), the nonlinear operation that follows is more frequently based
on ad hoc statistical hypotheses on the transformed coefficients that are specific to a given
algorithm. We have already pointed out that one of the appealing aspects of the SURE-
LET toolkit developed so far is that it precisely does not require a statistical modelling
of the noise-free transformed coefficients.

In this chapter1, we extend the SURE-LET principle to nonlinear processing per-
formed in an arbitrary transformed domain. In particular, we examine the close relations
between the choice of transform(s), the design of the transformed-domain nonlinear op-
eration and the global optimization of the whole denoising process. One of the motiva-
tions for this study actually originates from the observation made by those who applied
soft-thresholding to an undecimated wavelet transform: the SUREshrink threshold deter-
mination yields substantially worse results than an empirical choice. Unfortunately, this
has led some practitioners to wrongly conclude that the SURE approach is unsuitable for
redundant transforms, whereas a correct diagnosis should be that it is the independent
subband approach that is flawed.

1Some parts of this chapter are based on our published papers [111,112].

75
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4.2 SURE-LET for Transform-Domain Denoising

Transform-domain denoising consists in first defining a complementary pair of linear trans-
formation operators D (decomposition) and R (reconstruction) such that RD = Identity:
typically, D is a bank of decimated or undecimated filters. Once the size of the input and
output data are frozen, these linear operators are characterized by matrices, respectively
D = [di,j ](i,j)∈[1;L]×[1;N ] and R = [ri,j ](i,j)∈[1;N ]×[1;L] that satisfy the perfect recon-
struction property RD = Id. In this chapter, we only consider real transforms2, i.e.
di,j , ri,j ∈ R. The whole denoising process then boils down to the following steps:

1. Apply D to the noisy signal y = x + b to get the transformed noisy coefficients
w = Dy = [wi]i∈[1;L];

2. Apply a (possibly multivariate) thresholding function Θ(w) =
[
θi(w)

]
i∈[1;L]

;

3. Revert to the original domain by applying R to the thresholded coefficients Θ(w),
yielding the denoised estimate x̂ = RΘ(w).

Such a denoising procedure can be summarized as a function of the noisy input coef-
ficients:

x̂ = F(y) = RΘ(Dy) (4.1)

The SURE-LET strategy consists in expressing F as a linear expansion of denoising
algorithms Fk, according to:

F(y) =

K∑
k=1

ak RΘk(Dy)︸ ︷︷ ︸
Fk(y)

, (4.2)

where Θk(·) are elementary (possibly multivariate) thresholding functions. As already
indicated in Section 2.6, retrieving the parameters ak then boils down to the resolution
of the linear system of equations given in Equ. (2.20).

In a general transform-domain SURE-LET framework, the unbiased MSE estimate
given in Theorem 1 can be reformulated in the following way:

Corollary 3. Let F be defined according to (4.1) where Θ denotes a (possibly multi-
variate) thresholding. Then the MSE between the original and the denoised signal is
unbiasedly estimated by the following random variable:

ε =
1

N
‖F(y)− y‖2 + 2σ2

N
trace {DRJΘ(w)} − σ2 (4.3)

where: JΘ(w) =
[∂θk(w)

∂wl

]
1≤k,l≤L

is the Jacobian matrix of Θ(w).

2We refer the reader to [113] for a recent adaptation of the SURE-LET strategy to complex transforms.
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Proof. By applying Theorem 1, we only have to prove that in the transform-domain
SURE-LET framework:

div {F(y)} = trace {DRJΘ(w)} (4.4)

By using the reconstruction formula F(y) = RΘ(w), i.e. fn(y) =
∑L

l=1 rn,lθl(w), and

the decomposition formula w = Dy, i.e. wl =
∑N

k=1 dl,kyk, we can successively write the
following equalities:

div {F(y)} =

N∑
n=1

∂fn(y)

∂yn

=
N∑

n=1

L∑
l=1

rn,l

L∑
k=1

∂θl(w)

∂wk

∂wk

∂yn

=

N∑
n=1

L∑
l=1

rn,l

L∑
k=1

∂θl(w)

∂wk
dk,n

=
L∑

k=1

L∑
l=1

∂θl(w)

∂wk

N∑
n=1

dk,nrn,l︸ ︷︷ ︸
[DR]k,l

=
L∑

k=1

L∑
l=1

[DR]k,l[JΘ(w)]l,k (4.5)

and finally conclude that div {F(y)} = trace {DRJΘ(w)}. �

As it appears in this corollary, the computation of the divergence term, i.e. of
trace {DRJΘ(w)}, is a crucial point. In Sections 4.3 and 4.4, we further develop this
divergence term for two particular transform-domain processing. We refer the reader
to [114] for a general Monte-Carlo technique to evaluate this divergence term for an
arbitrary non-linear processing (in particular when F is not explicitly known).

4.3 Pointwise Estimator

In this section, we only consider a transform-domain pointwise processing, i.e. Θ(w) =[
θl(wl)

]
l∈[1;L]

. In this particular case, SURE is given by:

Corollary 4. Let F be defined according to (4.1) where Θ denotes a pointwise threshold-
ing. Then, the MSE between the original and the denoised signal is unbiasedly estimated
by the following random variable:

ε =
1

N
‖F(y)− y‖2 + 2σ2

N
αTΘ′(Dy)− σ2 (4.6)

where:



78 CHAPTER 4

• α = diag {DR} = [[DR]l,l]1≤l≤L is a vector made of the diagonal elements of the
matrix DR;

• Θ′(Dy) = Θ′(w) = [θ′l(wl)].

In particular, when D = [DT
1 DT

2 . . .DT
J ]

T and R = [R1 R2 . . . RJ ] where Di,Ri are
Ni ×N and N ×Ni matrices, then α = [αT

1 ,α
T
2 , . . . ,α

T
J ]

T where αi = diag {DiRi}.

The above result is deduced from Corollary 3 by direct calculation.

4.3.1 Case of Non-redundant Transforms

Here, we consider the case of non-redundant transforms (i.e. the number of samples is
preserved in the transformed domain), and more precisely:

• D is a full rank matrix of size N ×N ;

• R is also a full rank matrix of size N ×N .

Then, the divergence term α of Corollary 4 becomes:

α = [1 1 . . . 1︸ ︷︷ ︸
N times

]T (4.7)

Indeed, DR = RD = Id, so that α = diag {DR} = diag {Id}.
If in addition the transformation is orthonormal, then the reconstruction matrix is

simply the transpose of the decomposition matrix, i.e. R = DT. Consequently, in
Corollary 4 the SURE becomes:

ε =
1

N
‖F(y)− y‖2 + 2σ2

N
αTΘ′(Dy)− σ2

=
1

N
‖Θ(Dy)−Dy‖2 + 2σ2

N
αTΘ′(Dy)− σ2 (orthogonality of R)

(4.7)
=

1

N

N∑
i=1

(
(θi(wi)− wi)

2 + 2σ2θ′i(wi)
)
− σ2

where wi is the ith component of w = Dy.

For orthonormal transforms, SURE is the sum of the specific MSE estimates for each
transformed coefficient wi. The optimization procedure can thus be performed separately
in the transformed domain, as detailed in Chapter 3. This is specific to orthonormal
transforms: non-redundant biorthogonal transforms do not enjoy this property. Yet, the
result given in (4.7) still applies and is actually particularly useful for applying our SURE
minimization strategy.
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x

...

G̃J(z
−1) wJ

...

G̃2(z
−1) w2

G̃1(z
−1) w1

x
⊕

GJ(z)

G2(z)

G1(z)

...

Figure 4.1: Undecimated J-band analysis–synthesis filterbank.

4.3.2 Case of Undecimated Filterbank Transforms

We now consider the case of linear redundant transforms characterized by J analysis
filters G̃i(z) =

∑
n g̃i[n]z

−n and J synthesis filters Gi(z) =
∑

n gi[n]z
−n as shown in

Figure 4.1.
A periodic boundary extension implementation of this structure gives rise to decom-

position and reconstruction matrices D and R made of J circulant submatrices (i.e.
diagonalized with an N -point DFT matrix) Di and Ri of size N × N each, with coeffi-
cients:

[Di]k,l =
∑
n

g̃i[l − k + nN ]

[Ri]k,l =
∑
n

gi[k − l + nN ]

We then have the following lemma to be used in Corollary 4:

Lemma 2. When D and R are periodically extended implementations of the analysis–
synthesis filterbank of Figure 4.1, the divergence term α in (4.6) is given by α = [αT

1 αT
2

. . .αT
J ]

T where

αi =
(∑

n

γi[nN ]
)
[1 1 . . . 1︸ ︷︷ ︸
N times

]T (4.8)

and where γi[n] is the nth coefficient of the filter G̃i(z
−1)Gi(z).

Proof. According to Corollary 4 we have to compute αi = diag {DiRi}. Since Di and
Ri are circulant matrices the product DiRi is also circulant and is built using the N -
periodized coefficients of the filter G̃i(z

−1)Gi(z), i.e.

[DiRi]k,l =
∑
n

γi[k − l + nN ]

the diagonal of which yields (4.8). �

The extension to filterbanks in higher dimensions is straightforward, the summation
in (4.8) running over a multidimensional index n.
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The filters G̃i and Gi usually satisfy the biorthogonality condition

Mi−1∑
k=0

G̃i(z
−1e−j2πk/Mi)Gi(ze

j2πk/Mi)︸ ︷︷ ︸
Γi(zej2πk/Mi )

= λi (4.9)

where Mi is a divisor of N . Indeed, undecimated filterbanks are often obtained from
critically sampled filterbanks, for which (4.9) holds with λi = Mi. In this case, (4.9)
actually specifies the coefficients γi[nMi] and thus αi = λi/Mi [1 1 . . . 1]T.

1. The Undecimated Wavelet Transform: A first example of such a transform is
the standard undecimated wavelet transform (UWT) which uses J + 1 (3J + 1 in
two dimensions) orthonormal filters (see Figure 4.2). In that case, the equivalent
filters are given by

G̃i(z) = 2iGi(z) = H(z)H(z2) . . . H(z2
i−2

)G(z2
i−1

) for i = 1, 2, . . . , J

G̃J+1(z) = 2JGJ+1(z) = H(z)H(z2) . . . H(z2
J−1

)

They satisfy (4.9) for λi = 1. This shows that αi = 2−i[1 1 . . . 1]T for all i =
1, 2, . . . J and αJ+1 = 2−J [1 1 . . . 1]T. In a 2D separable framework, these values
are extended straightforwardly, thanks to the fact that the 2D filters still satisfy (4.9)
for λi = 1: the general result is thus that αi is given by the (2D) downsampling
factor 1/Mi.

x

G(z−1)

H(z−1)

G(z−2)

H(z−2)

w1

w2

w3

1
2G(z2)

1
2H(z2)

⊕
1
2H(z)

1
2G(z)

⊕
x

Figure 4.2: The classical undecimated wavelet filterbank for 1D signal. Here, J = 2.

2. The Overlapping BDCT : The overlapping M -BDCT is a second example of an
undecimated filterbank transform, where the underlying filters are given by G̃i(z) =
MGi(z) where:

g̃i[n] = ci cos

(
π(2n+ 1)i

2M

)
, 0 ≤ i, n ≤ M − 1 (4.10)

with ci =

⎧⎪⎪⎨⎪⎪⎩
1√
M

, if i = 0

2√
M

, if i = 1 . . .M − 1
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Figure 4.3: A realization of the proposed subband-dependent pointwise thresh-
olding for redundant representation.

The DCT filters also satisfy the biorthogonality condition (4.9) for λi = 1, and
consequently αi = 1/M [1 1 . . . 1]T for all i = 0, 1, . . .M − 1. For d-dimensional
signal, the DCT filters are applied separately to each dimension, and thus αi =
1/Md [1 1 . . . 1]T.

4.3.3 Pointwise LET

In Section 3.2.2 of Chapter 3, we gave some minimal properties that a pointwise threshold-
ing function should satisfy to be efficient. We propose now a similar subband-dependent
denoising function that involves two linear parameters only

θj(w;aj) = aj,1 w︸︷︷︸
t1(w)

+aj,2 w

(
1− exp

(
−
( w

3σ

)8))
︸ ︷︷ ︸

t2(w)

, for j = 1 . . . J (4.11)

which can be seen as a smooth approximation of a Hard-threshold (see Figure 4.3). We
have experimented with this particular choice of thresholding function, and have found it
to be slightly more efficient in a redundant representation than the sum of DOG (3.11)
introduced in Section 3.2.2. As in the OWT case, adding more terms in the above LET
only brings a marginal denoising gain of 0.1− 0.2 dB.
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The global image-domain LET can be finally rewritten as

F(y) =
J∑

j=1

2∑
k=1

aj,kFj,k(y) +RJ+1DJ+1y︸ ︷︷ ︸
lowpass

(4.12)

where Fj,k is the image obtained by zeroing all the bands j′ �= j and processing the sub-
band j with the thresholding function tk(w). Note that, as usual in denoising algorithms,
the lowpass residual subband is not processed.

The parameters aj,k that minimize the MSE estimate ε given in Theorem 1 are then
the solution of the linear system of 2J equations Ma = c, where for k, l ∈ [1; J ]× [1; 2],{

M =
[
Fk(y)

TFl(y)
]
2(k1−1)+k2,2(l1−1)+l2

c =
[
Fk(y)

T(Id−RJ+1DJ+1)y − σ2div {Fk(y)}
]
2(k1−1)+k2

(4.13)

4.3.4 Numerical Computation of the Divergence Term α

In the general case where D and R are known only by their action on vectors, and not
explicitly by their matrix coefficients (typically when only D and R are specified), the
analytical expression for α may be inconvenient to obtain: in order to build α, for each
l = 1, 2, . . . L it is necessary to compute the reconstruction fl = Rel (where [el]n = δn−l

is the canonical basis of RL), then the decomposition Dfl and keep the lth component.
Given that L is of the order of 2562 (and even much more in the case of redundant
transforms) this process may be extremely costly, even considering that it has to be done
only once. Fortunately, we can always compute a very good approximation of it using the
following numerical algorithm:
For i = 1 · · · I

1. Generate a normalized white Gaussian noise bi ∈ R
L;

2. Apply the reconstruction matrix to bi to get the vector ri = Rbi of size N × 1;

3. Apply the decomposition matrix to ri to get the vector b′
i = DRbi of size L× 1;

4. Compute the element-by-element product of b′
i with bi to get a vector of L coef-

ficients vi = diag
{
b′
ib

T
i

}
, which can be viewed as a realization of the random

vector v = diag
{
DRbbT

}
.

end
An approximate value α̂ for diag {DR} is finally obtained by averaging the realizations

vi over I runs (typically I = 1000 provides great accuracy):

α̂ =
1

I

I∑
i=1

vi (4.14)

The above algorithm is justified by the following lemma3:

3Note that a similar result for the stochastic estimation of the trace or the diagonal of a matrix can
be found in [115,116].
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Lemma 3. Let b be a normalized white Gaussian noise with L components, and define
b′ = DRb. Then, we have the following equality:

E
{
diag

{
b′bT

}}
= diag {DR} (4.15)

Proof.
E
{
diag

{
DRbbT

}}
= diag{DRE

{
bbT

}︸ ︷︷ ︸
Id

} = diag {DR}

�

The numerical computation of diag {DR} can be performed offline for various image
sizes, since it does not depend specifically on the image (but for its size) nor on the noise
level.

Influence of the Boundary Extensions

One of the main drawbacks of any transform-domain denoising algorithm is the poten-
tial generation of boundary artifacts by the transform itself. Decreasing these effects is
routinely done by performing boundary extensions, the most popular choice being sym-
metric extension and periodic extension. Thus, the effect of these extensions boils down
to replacing the transformation D by another transformation, D′.

Indeed, usual boundary extensions are linear pre-processing applied to the available
data y and can therefore be expressed in a matrix form. In particular, for a given boundary
extension of length E, i.e. characterized by an E × N matrix H, the denoising process
becomes:

F(y) = [IdN 0N×E ]RN+E Θ

(
DN+E

[
y

Hy

])
= R′Θ(D′y)

where DN+E (resp. RN+E) is the matrix corresponding to the linear transformation D
(resp. R) when the input signal is of size N + E. Any boundary handling can therefore
be seen as a modification of the decomposition matrix D that must be taken into account
when computing the divergence term, namely diag {D′R′}. This is where Lemma 3 is
particularly useful: although the implementation of the transformations D and R with
the adequate boundary extensions may be straightforward, the explicit computation of the
coefficients of the matrices R′ and D′ is tedious, and Lemma 3 avoids this computation.

4.3.5 Summary of the algorithm

The proposed SURE-LET algorithm for a pointwise processing in an arbitrary trans-
formed domain can be summarized as follows:

1. Perform a boundary extension on the noisy image;

2. Perform a linear transform on the extended noisy image;

3. For j = 1 . . . J (number of bandpass subbands),
For k = 1, 2 (number of thresholds in the LET),
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(a) Apply the pointwise thresholding functions tk defined in (4.11) to the current
subband wj ;

(b) Reconstruct the processed subband by setting all the other subbands to zero
to obtain Fj,k(y);

(c) Compute the first derivative of tk for each coefficient of the current subband
wj and build the corresponding coordinate of c as exemplified by (4.13);

end
end

4. Compute the matrix M given in Equ. (4.13) and deduce the optimal (in the mini-
mum SURE sense) linear parameters aj,k’s;

5. The noise-free image x̂ is finally estimated by the sum of each Fj,k weighted by
its corresponding SURE-optimized aj,k and the reconstructed lowpass residual sub-
band, as described in Equ. (4.12).

In the particular case of the BDCT, where the number of subbands can be huge (e.g.
(J + 1) = 256 for 16 × 16 blocks), we propose to process together subbands that are in
the same radial frequency band (see Figure 4.4). In practice, we found that considering
only J = 8 radial frequency bands leads to near optimal PSNR performances, while
considerably reducing the overall number of parameters (e.g. from 2 × 255 to 2 × 8, no
parameters being assigned to the lowpass residual subband).

ωx

ω
y

Figure 4.4: BDCT subbands grouping based on their radial frequency: sub-
bands belonging to the same radial frequency band have the same color and
share the same LET parameters.
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4.3.6 Computational Complexity

The computational complexity of the proposed pointwise SURE-LET algorithm can be
evaluated as follows (with N being the number of samples, J the number of processed
bandpass subbands and K the overall number of terms in the LET):

1. FFT-based implementation of an undecimated (J + 1)-band analysis filterbank:
O((J + 1) ·N · log2(N));

2. Application of the pointwise thresholding and of its derivative: O(2J ·N);

3. Reconstruction of each processed subbands and of the lowpass residual:
O((2J + 1) ·N · log2(N));

4. Construction of the symmetric K ×K matrix M: O(K(K + 1)/2 ·N);

5. Construction of the K × 1 vector c: O(K ·N);

6. Resolution of the linear system of K equations: O(K3);

7. Obtention of the final estimate x̂: O((K + 1) ·N).

Considering a N = 256 × 256 image and 4 levels of decomposition of the UWT (i.e.
J = 12 bandpass subbands and thus K = 24) leads to an overall number of around 1′000
operations per pixel. Using an overcomplete 12×12 BDCT (i.e. J = 143) and considering
only 8 distinct radial frequency bands (i.e. K = 16) increases the computational cost to
∼ 7′350 operations per pixel.

4.4 Multivariate Estimator

In this section, we consider a multivariate processing which takes into account (2M + 1)
(resp. (2M + 1)2 for 2D signal) neighboring transformed coefficients, i.e.

Θ(w) =
[
θl(wl)

]
l∈[1;L]

, where wl = [wl−M wl−M+1 . . . wl+M ]T (4.16)

4.4.1 Multivariate SURE

In the case of a multivariate processing applied in an arbitrary transformed-domain,
SURE is given by:

Corollary 5. Let F be defined according to (4.1) where Θ denotes a multivariate thresh-
olding as defined in (4.16). Then the MSE between the original and the denoised signal
is unbiasedly estimated by the following random variable:

ε =
1

N
‖F(y)− y‖2 + 2σ2

N

M∑
m=−M

αT
mΘ′

m(w)− σ2 (4.17)

where:
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• αm = diag {SmDR} = [[SmDR]l,l]1≤l≤L is a vector made of the diagonal elements
of the matrix SmDR. Sm is a L × L permutation matrix which operates a cyclic
shift of length m.

• Θ′
m(w) =

[
∂θl(wl)

∂wl−m

]
1≤l≤L

.

Proof. Similarly to the proof of Corollary 3, the successive use of the reconstruction and
decomposition formulas allows us to write:

div {F(y)} =
N∑

n=1

∂fn(y)

∂yn

=
N∑

n=1

L∑
l=1

rn,l

M∑
m=−M

∂θl(wl)

∂wl−m

∂wl−m

∂yn

=
M∑

m=−M

L∑
l=1

∂θl(wl)

∂wl−m

N∑
n=1

dl−m,nrn,l︸ ︷︷ ︸
[SmDR]l,l

=
M∑

m=−M

diag {SmDR}TΘ′
m(w)

�

To practically evaluate the terms diag {SmDR}, we can simply apply the numerical
procedure described in Section 4.3.4 for each shift by m: after Step 3, the vector b′

i must
be further multiplied by the matrix Sm; i.e., its components must be circularly shifted by
m positions.

4.4.2 Multivariate LET

In this section, we propose a multivariate thresholding based on the pointwise thresholding
θj(w) defined in (4.11). The idea is to use the local energy of the transformed coefficients
to coarsely distinguish the potentially high-magnitude coefficients from the potentially
low-magnitude ones. Each of the two resulting classes of transformed coefficients is then
processed by its corresponding pointwise thresholding θj(w;aj) (respectively θj(w;bj)),
leading to the following multivariate thresholding:

θj(w;aj ,bj) = γ(‖w‖) θj(w;aj) + (1− γ(‖w‖)) θj(w;bj) (4.18)

Here, γ(x) = e−(
x
T )

8

is a discriminative function based on the local energy computed
inside a (2M+1) neighborhood of transformed coefficients. In our experiments, we found
that T = 2(2M + 1)σ gave the best results.

The general behavior of the proposed multivariate thresholding is the following (see
Figure 4.5):
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• For low-magnitude local energies (i.e. ‖w‖ 	 T ), γ(‖w‖) is close to 1 and thus
θj(w) � θj(w;aj);

• For high-magnitude local energies (i.e. ‖w‖ � T ), γ(‖w‖) is close to 0 and thus
θj(w) � θj(w;bj).

Figure 4.5: A realization of the proposed subband-dependent multivariate
thresholding for redundant representation.

4.4.3 Computational Complexity

The computational complexity of the proposed multivariate SURE-LET algorithm can be
evaluated in the same way as in Section 4.3.6. The main differences are that the number
of linear parameters K is doubled and (2M +1)2J partial derivatives must be computed.
Taking into account these additional operations leads to an overall number of ∼ 2′600
(resp. ∼ 15′700) operations per pixel for denoising a 256 × 256 image with the UWT
(resp. with the 12× 12 BDCT), in a standard setting where M = 2.
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4.5 Multichannel Estimator

In this section, we propose a vector/matrix extension of SURE-LET denoising in an arbi-
trary transform-domain. We use the same notations as the ones introduced in Section 3.4
of Chapter 3; i.e., the noisy multichannel image is denoted by

y = [y1 y2 . . .yN ], where yn = [y1,n y2,n . . . yC,n]
T

where C is the number of channels (e.g. C = 3 for color images).
Recall that, according to these notations, the MSE between an estimate

x̂ = F(y) =
(
RΘ(DyT︸ ︷︷ ︸

w

)
)T

(4.19)

of the noise-free image x and the actual value of x is given by

MSE =
1

CN
trace

{
(x̂− x)(x̂− x)T

}
4.5.1 Multichannel SURE

Under these conditions, Theorem 1 can be re-expressed as:

Corollary 6. The following random variable

ε =
1

CN

(
trace

{
(F(y)− y)(F(y)− y)T −NΓ

}
+ 2div {ΓF(y)}) (4.20)

is an unbiased estimate of the expected MSE, i.e.

E {ε} =
1

CN
E
{
trace

{
(F(y)− x)(F(y)− x)T

}}
where div {F(y)} =

C∑
c=1

N∑
n=1

∂fc,n(y)

∂yc,n
is a generalized divergence operator.

The above result is a straightforward extension to the result proved in Theorem 1.

4.5.2 Multichannel LET

In the LET framework, F is described as a linear combination of elementary multichannel
thresholding functions Fk, i.e.

F(y) =
K∑

k=1

aTk
(
RΘk(DyT)

)T︸ ︷︷ ︸
Fk(y)

= [aT1 aT2 . . . aTK ]︸ ︷︷ ︸
AT

⎡⎢⎢⎢⎣
F1(y)
F2(y)

...
FK(y)

⎤⎥⎥⎥⎦ (4.21)
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where A is the KC × C matrix of unknown parameters.

We only consider here a (spatially) pointwise multichannel thresholding function, i.e.

Θ(w) =
[
θl(wl)

T
]
1≤l≤L

with θl(wl) = [θl,c(wl)]1≤c≤C (4.22)

In this case, the divergence term which appears in (4.20) is re-expressed as

div {ΓF(y)} =
C∑

c=1

N∑
n=1

C∑
i=1

γc,i
∂fi,n(y)

∂yc,n

=
C∑

c=1

C∑
i=1

γc,i

L∑
l=1

∂θl,i(wl)

∂wl,c

N∑
n=1

dl,nrn,l︸ ︷︷ ︸
[DR]l,l

=
C∑

c=1

C∑
i=1

γc,i α
TΘ′

i,c(w)

= trace

⎧⎪⎨⎪⎩Γ

⎡⎢⎣ αTΘ′
1,1(w) · · · αTΘ′

1,C(w)
...

. . .
...

αTΘ′
C,1(w) · · · αTΘ′

C,C(w)

⎤⎥⎦
⎫⎪⎬⎪⎭ (4.23)

where α = diag {DR} and Θ′
i,j(w) =

[
∂θl,i(wl)
∂wl,j

]
1≤l≤L

, for 1 ≤ i, j ≤ C.

Using the multichannel LET expression (4.21) and the above result (4.23) allows us
to rewrite the unbiased estimate (4.20) of the MSE as

ε =
1

CN
trace

{
ATMA− 2CTA

}
+

1

CN
trace

{
yyT −NΓ

}
(4.24)

where M = [mk,l]1≤k,l≤K and C = [ck]1≤k≤K , with:⎧⎪⎪⎪⎨⎪⎪⎪⎩
mk,l = Fk(y)Fl(y)

T

ck = Fk(y)y
T − Γ

⎡⎢⎣ αTΘ′
k;1,1(w) · · · αTΘ′

k;1,C(w)
...

. . .
...

αTΘ′
k;C,1(w) · · · αTΘ′

k;C,C(w)

⎤⎥⎦ (4.25)

The optimal parameters Aopt of the linear expansion of thresholds (4.21) are the ones
that minimize the unbiased MSE estimate given in (4.24), i.e.

Aopt = M−1C

where the components of the KC×KC matrix M and of the KC×1 vector C are defined
in (4.25).
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4.5.3 Multichannel Thresholding

We propose a natural multichannel extension of the subband-adaptive grayscale denoiser
introduced in Section 4.3.3, by taking into account the potentially strong interchannel
similarities as follows:

θl(wl) = aT1 wl + γ
(
wT

l Γ
−1wl

)
aT2 wl (4.26)

where γ(x) = e−(
x
T )

4

is used as the discriminator between large/small transformed coeffi-
cients. In our experiments, we found that T = 9

√
C gave the best PSNR results. If C = 1,

we obviously recover the grayscale thresholding function presented in Section 4.3.3.

4.6 Experiments

4.6.1 Transform-Domain vs Image-Domain Optimization

Before comparing the proposed general transform-domain SURE-LET approach with the
best state-of-the-art algorithms, we demonstrate here that, in order to optimize the de-
noising process, it is essential to perform the minimization in the image-domain4. By
contrast, an independent wavelet subband processing is suboptimal, often by a significant
margin, even in a “tight” frame representation. This is because we usually do not have en-
ergy preservation between the denoised “tight” frame coefficients ŵ and the reconstructed
image x̂ = Rŵ: ‖Rŵ‖ �= ‖ŵ‖. This is not in contradiction with the well-known energy
conservation between the “tight” frame coefficients w = Dy and the noisy image y:
‖Dy‖ = ‖y‖.

In Figure 4.6, we compare a classical transform-domain (TD) SURE-based optimiza-
tion of our pointwise thresholding function (4.11) with the image-domain (ID) optimiza-
tion based on Corollary 4 in the framework of the undecimated wavelet transform (con-
sidering two different wavelet filters Haar and sym8 ). We notice that the rigorous image
domain optimization provides large improvements (up to +1dB) over the independent
in-band optimization when using the Haar filters. The same observation holds for the
smoother sym8 filters, but the gain is less important (around +0.5 dB). On average, the
best results are obtained with an image-domain optimization of the undecimated Haar
wavelet representation; this is not the case with non-redundant wavelet transforms, where
the use of smoother wavelets (such as sym8 ) gives better results.

A closer examination of the “optimal” thresholding functions either obtained by the
transform-domain or the image-domain SURE optimization indicates that the variation
in PSNR performance may be related to the difference between the slopes of these func-
tions around zero: the image-domain solution is actually much flatter, making it able to
suppress small coefficients almost exactly.

4.6.2 Periodic vs Symmetric Boundary Extensions

It is also worth quantifying the effects of particular boundary extensions. In Figure 4.7,
we compare symmetric boundary extensions (rigorous SURE computation, as described

4This fact has been also recently pointed out by Raphan et. al. in [117].



SECTION 4.6 91

Peppers 256 × 256 Cameraman 256 × 256

Lena 512 × 512 Al 512 × 512

Figure 4.6: Comparison of the proposed SURE-LET denoising procedure
(image-domain optimization) with a SURE-based denoising algorithm optimized
in the wavelet domain when using the undecimated wavelet transform.

in Section 4.3.4) with the periodic ones. As it can be observed, the symmetric boundary
extension can lead to up to +0.5 dB of PSNR improvements over the periodic one.

4.6.3 Orthogonal vs Redundant Representation

In this section, we compare the pointwise undecimated (Haar) wavelet thresholding in-
troduced in (4.11) and its multivariate extension (4.18), with the pointwise orthonormal
(sym8 ) thresholding presented in (3.11) and its interscale multivariate extension described
in Section 3.4.4. Periodic boundary extensions have been considered for all methods and
the same number of decomposition levels has been performed. Figure 4.8 summarizes the
following observations:

• A pointwise thresholding applied in a redundant wavelet representation significantly
outperforms (up to +2.5 dB) a similar complexity pointwise thresholding applied in
an orthonormal wavelet decomposition.
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Peppers 256 × 256 House 256 × 256

Figure 4.7: Influence of the boundary extensions when using the undecimated
Haar wavelet transform.

• A multivariate thresholding applied in an orthonormal wavelet decomposition is
generally outperformed (0.5 − 1 dB loss) by a pointwise thresholding applied in a
redundant wavelet representation.

• The PSNR improvements brought by the application of a more sophisticated (i.e.
multivariate) thresholding are less significant in redundant representation than in
orthonormal wavelet decomposition.

4.6.4 UWT vs Overcomplete BDCT

In Figure 4.9, we compare the PSNRs obtained by the application of the pointwise SURE-
LET thresholding in the Haar undecimated wavelet transform and in an overcomplete
12 × 12 BDCT representation. On the one hand, we observe that the Haar UWT is
a better transform for simple, approximately piecewise-smooth images such as Peppers
and Cameraman. On the other hand, the BDCT is more efficient at yielding a sparse
representation of the various textures present in images like Lena and Barbara.

In order to get the best out of several transforms, we propose to make the LET
span several transformed domains with complementary properties: SURE is then used to
globally optimize the weights of this linear combination of processed subbands. In this
case, the union of several transforms can be interpreted as an overcomplete dictionary
of bases which can sparsely represent a wide class of natural images. As expected, this
combined and jointly optimized UWT/BDCT SURE-LET solution gives better results
than either the UWT or the BDCT SURE-LET; it is also more efficient than any simple
convex combinations of both.

Note that the idea of combining several complementary transforms was also exploited
in the context of image denoising by Starck et. al. in [118]. The use of an overcomplete
dictionary, either fixed in advance (as in our case) or trained, is at the core of the K-
SVD-based denoising algorithm of Elad et. al. [34].
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Peppers 256 × 256 House 256 × 256

Lena 512 × 512 Boat 512 × 512

Figure 4.8: Comparison between SURE-LET algorithms applied in an or-
thonormal wavelet decomposition and SURE-LET algorithms applied in a re-
dundant wavelet representation.

4.6.5 Comparisons with Multiscale Image Denoising Methods

In this section, we compare the proposed pointwise SURE-LET approach with some of the
best state-of-the-art redundant multiresolution-based techniques. We have retained the
same methods as in Section 3.7.1 of Chapter 3 but applied in a redundant representation;
i.e., BiShrink [84] applied with a dual-tree complex wavelet transform (DTCWT), Prob-
Shrink [82] applied in an undecimated wavelet representation using Daubechies symlets
filters with eight vanishing moments (sym8 ), and BLS-GSM [81] applied in a full steer-
able (eight orientations per scale) pyramid (FSP). We have followed the same protocol
as in Section 3.7.1, except that symmetric boundary extensions have been applied for all
methods.

Table 4.1 reports the PSNR results obtained by the various denoising methods, the
best results being shown in boldface. In most cases, the proposed pointwise SURE-LET
thresholding applied in the Haar UWT achieves higher PSNRs than both the multivariate
BiShrink and ProbShrink (average gain of 0.3 dB). It also matches the performance of
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Table 4.1: Comparison of some of the most efficient redundant multiscale de-
noising methods.

σ 5 10 15 20 25 30 50 100
Input PSNR 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Peppers 256 × 256
BiShrink 37.17 33.37 31.27 29.80 28.67 27.76 25.27 22.10

ProbShrink 37.33 33.50 31.34 29.81 28.65 27.72 25.17 21.97
BLS-GSM 37.34 33.78 31.74 30.31 29.21 28.31 25.85 22.58

UWT
SURE-LET (4.11) 37.63 34.00 31.96 30.52 29.39 28.47 25.96 22.66

BDCT
SURE-LET (4.11) 37.50 33.63 31.47 30.01 28.93 28.06 25.73 22.60

Dictionary
SURE-LET (4.11) 37.95 34.33 32.23 30.74 29.58 28.65 26.13 22.78

Method House 256 × 256
BiShrink 38.36 34.73 32.92 31.66 30.67 29.85 27.54 24.46

ProbShrink 38.27 34.80 32.98 31.66 30.63 29.77 27.41 24.20
BLS-GSM 38.71 35.39 33.66 32.40 31.39 30.54 28.16 24.84

UWT
SURE-LET (4.11) 38.72 35.53 33.84 32.64 31.70 30.93 28.59 25.21

BDCT
SURE-LET (4.11) 39.28 35.74 33.80 32.48 31.48 30.65 28.36 25.05

Dictionary
SURE-LET (4.11) 39.40 36.03 34.20 32.94 31.95 31.12 28.69 25.21

Method Barbara 512 × 512
BiShrink 37.35 33.51 31.37 29.87 28.71 27.78 25.29 22.46

ProbShrink 37.39 33.49 31.24 29.60 28.33 27.30 24.54 22.00
BLS-GSM 37.79 34.02 31.83 30.29 29.09 28.12 25.42 22.52

UWT
SURE-LET (4.11) 36.98 32.65 30.16 28.45 27.18 26.23 24.14 22.27

BDCT
SURE-LET (4.11) 38.16 34.35 32.19 30.67 29.51 28.58 26.03 22.68

Dictionary
SURE-LET (4.11) 38.19 34.42 32.29 30.80 29.65 28.72 26.18 22.92

Method Boat 512 × 512
BiShrink 36.72 33.18 31.31 29.99 28.97 28.16 25.99 23.34

ProbShrink 36.69 33.29 31.35 29.98 28.91 28.07 25.85 23.19
BLS-GSM 36.98 33.58 31.70 30.37 29.36 28.54 26.35 23.65

UWT
SURE-LET (4.11) 37.13 33.54 31.58 30.23 29.22 28.41 26.23 23.63

BDCT
SURE-LET (4.11) 37.21 33.52 31.54 30.18 29.14 28.31 26.14 23.52

Dictionary
SURE-LET (4.11) 37.38 33.78 31.83 30.48 29.44 28.60 26.36 23.69

Method Al 512 × 512
BiShrink 38.72 35.34 33.52 32.26 31.28 30.47 28.20 25.06

ProbShrink 38.79 35.35 33.49 32.14 31.02 30.26 28.06 24.93
BLS-GSM 38.99 35.59 33.83 32.62 31.69 30.92 28.73 25.67

UWT
SURE-LET (4.11) 38.88 35.43 33.61 32.37 31.43 30.67 28.60 25.73

BDCT
SURE-LET (4.11) 39.20 35.74 33.91 32.65 31.69 30.90 28.69 25.65

Dictionary
SURE-LET (4.11) 39.27 35.83 34.01 32.77 31.81 31.04 28.87 25.86

Method Goldhill 512 × 512
BiShrink 36.78 33.12 31.24 30.00 29.09 28.38 26.53 24.21

ProbShrink 36.57 32.97 31.07 29.83 28.93 28.23 26.42 24.21
BLS-GSM 37.00 33.38 31.52 30.30 29.40 28.69 26.83 24.52

UWT
SURE-LET (4.11) 36.85 33.21 31.37 30.17 29.29 28.61 26.83 24.70

BDCT
SURE-LET (4.11) 37.05 33.39 31.52 30.29 29.38 28.67 26.83 24.57

Dictionary
SURE-LET (4.11) 37.19 33.57 31.70 30.46 29.55 28.83 26.95 24.72

Note: The output PSNRs have been averaged over ten noise realizations.



SECTION 4.6 95

Peppers 256 × 256 Cameraman 256 × 256

Lena 512 × 512 Barbara 512 × 512

Figure 4.9: Comparison between the pointwise SURE-LET thresholding (4.11)
applied in the Haar undecimated wavelet transform (“+” markers, benchmark),
in an overcomplete 12 × 12 BDCT representation (“◦” markers) and in an
UWT/BDCT dictionary (“∗” markers).

the best multiresolution-based technique (BLS-GSM ). As emphasized in Section 4.6.4, it
is more advisable to apply the SURE-LET strategy to an overcomplete BDCT to achieve
more competitive results on some images such as Barbara. In all cases, the SURE-LET
thresholding optimized in a UWT/BDCT dictionary achieves the highest PSNR results.

In Figure 4.10, we show some visual comparisons between the various multiscale de-
noising algorithms applied on Barbara. As observed, our dictionary-based SURE-LET
algorithm can efficiently restore the various textures present in this particular image.
This observation is confirmed by the SSIM visual quality measure.
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(A) (B)

(C) (D)

(E) (F)

Figure 4.10: (A) Part of the noise-free Barbara. (B) Noisy version of it:
SSIM = 0.48. (C) Denoised by UWT-ProbShrink : SSIM = 0.85. (D) De-
noised by DTCWT-BiShrink : SSIM = 0.86. (E) Denoised by FSP-BLS-GSM :
SSIM = 0.87. (E) Denoised by the proposed pointwise SURE-LET, optimized
in an UWT/BDCT dictionary: SSIM = 0.88.
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4.6.6 Comparisons with Other State-of-the-art Image Denoising
Methods

In the previous section, we have compared our pointwise SURE-LET denoising strat-
egy with the most efficient state-of-the-art multiresolution-based techniques. We propose
now to compare our multivariate approach with some of the most successful alternative
denoising solutions:

• The non-local means (NL-means) algorithm of Buades et. al. [7]: this algorithm
belongs to the class of patch-based approaches (see Section 1.3.2) and involves three
important parameters that need to be fixed. The degree of smoothing has been set
to 0.7σ, a value that has been recently shown to give near optimal performances [25].
The size of the search window has been set to 21×21, which constitutes a good trade-
off between PSNR performances and computation time. For a fair comparison, we
have optimized (in the MMSE sense) the size of the similarity window (from 3× 3
to 9× 9).

• The total-variation (TV ) minimization by Rudin et. al. [28]: the principle of this
denoising algorithm has been sketched in Section 1.3.3. In practice, we have used
the fast implementation proposed by Chambolle5 [119]. In order to get the highest
PSNR performances, we have optimized (in the MMSE sense) the value of the
regularization parameter in a finite set of 50 values logarithmically ranging from
10−4 to 1.

• The K-SVD algorithm of Elad et. al. [34]: at the core of their denoising approach
lies the notion of Sparseland model, which assumes that a broad class of images
can be well represented by a linear combination of few atoms from an overcomplete
dictionary. The latter can be either fixed in advance (e.g. an overcomplete BDCT),
trained on a set of image patches taken from good quality images or trained on the
noisy image itself. If the training option is retained, then the redundant dictionary
is adaptively build using the so-called K-SVD algorithm [120]. The denoised image
is the minimizer of a regularized cost functional involving a global data-fidelity term
and local image priors which ensure that each patch of the denoised image has a
sparse representation in the considered dictionary.

• The sparse 3D transform-domain collaborative filtering (BM3D6) by Dabov et.
al. [121]: this solution is a sophisticated two-pass algorithm which can be briefly
summarized as follows. In the first pass, a block-matching procedure is applied to
each square block of the noisy image. In the neighborhood of each of these ref-
erence blocks, a search for similar blocks is performed. The best matching blocks
and their corresponding reference block are grouped together to yield a 3D stack of
similar blocks. A 3D transform-domain thresholding is then applied to the stack.

5Matlab implementation available at:
http://www.math.ucla.edu/~getreuer/matlabimaging.html#topics

6Matlab implementation available at:
http://www.cs.tut.fi/~foi/GCF-BM3D/#ref_software
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An estimate of each pixel is finally obtained by aggregation (i.e. weighted combina-
tion) of the block-wise estimates that overlap with the current pixel. In the second
pass, the same procedure is applied, except that the block-matching is performed
on the denoised image (as estimated by the first step) and the 3D transform-domain
thresholding is replaced by an approximated oracle pointwise Wiener filter which
makes use of the denoised image as an estimation of the underlying noise-free image.
Although many parameters involved in this algorithm are empirically chosen, the
BM3D currently achieves the highest PSNR performances and exhibits the fewest
artifacts for most images and for a wide range of noise levels.

In Figure 4.11, we display some PSNR comparisons between these algorithms and
the proposed multivariate SURE-LET thresholding (4.18), globally optimized in a Haar
UWT/12×12 BDCT dictionary. As observed, the proposed solution outperforms both the
NL-means and the TV algorithms (around +1dB). We consistently obtain higher PSNRs
(+0.3 dB on average) than the K-SVD approach, which tends to further degrade as the
noise level increases. Yet, we generally obtain slightly lower PSNRs (up to 0.5 dB) than the
BM3D. We believe that the consideration of a more sophisticated/heterogenous dictionary
(containing basis elements with higher directional selectivity, such as the curevelets [52]
or the full steerable pyramid [47]) in a SURE-LET framework could fill this little gap.

In Figure 4.12, we show the denoising result of each of the algorithms described in this
section. The computed SSIM values confirm the PSNR ranking of the various methods:
the proposed solution holds its own against the high-quality BM3D.

From a computational point of view, a UWT/BDCT dictionary-based multivariate
(M = 2) SURE-LET algorithm is much more time-consuming than a simple pointwise
SURE-LET thresholding applied in either the UWT or in the BDCT representation,
because it requires around 20′400 operations per pixel. Yet, comparing to the best
state-of-the-art denoising methods, it still constitutes a competitive solution. Indeed,
the K-SVD [34] and the BM3D [121] require respectively ∼ 163′840 and at most 31′600
operations per pixel7. The proposed algorithm is thus approximately one order of mag-
nitude faster than the K-SVD, while having a similar computational complexity to that
of the BM3D.

4.6.7 Comparisons with State-of-the-Art Color Image Denoising
Methods

We have applied our multichannel SURE-LET thresholding for denoising color images
using the Haar UWT with symmetric boundaries handling. A new thresholding function
(4.26) was applied inside each of the wavelet subbands, while keeping the lowpass residual
unchanged. The experiments have been executed on the set of standard RGB images
shown in Figure 3.16 using the same protocol as the one described in Section 3.7.2.

In Table 4.2 we compare our PSNR results with those obtained by running two other
state-of-the-art color image denoising algorithms:

7These values have been computed based on the computational complexity formulas given by the
authors in their respective publication, and according to the parameters setting used in their implemen-
tation.
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Peppers 256 × 256 Lena 512 × 512

Boat 512 × 512 Goldhill 512 × 512

Figure 4.11: Comparison between the proposed multivariate SURE-LET algo-
rithm (“+” markers, benchmark) optimized in an UWT/BDCT dictionary and
some successful denoising algorithms: NL-means [7] (“♦” markers), TV [28] (“◦”
markers), K-SVD [34] (“�” markers) and BM3D [121] (“∗” markers).

• Pižurica et al. ProbShrink-MB using the same transform (UWT Haar) and bound-
ary conditions (symmetric) as ours.

• Foi et al. pointwise SA-DCT 8 [65], which is the application of their grayscale
shape-adaptive DCT denoiser in the opponent color space, but using the adaptive
neighborhoods defined in the luminance channel for all channels.

We notice that we obtain a significant gain (about +1dB) over the ProbShrink-MB,
and similar results to the pointwise SA-DCT. Moreover, our denoised images contain very
few color artifacts, and represent a good trade-off between noise removal and preservation
of small details (see Figure 4.13).

From a computational point of view, the execution of our un-optimized Matlab im-
plementation lasts around 3s for 256× 256 RGB images, which is slightly faster than the

8Matlab code available online at http://www.cs.tut.fi/\~foi/SA-DCT/\#ref_software
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(A) (B)

(C) (D)

(E) (F)

Figure 4.12: (A) Part of the noisy Goldhill : SSIM = 0.48. (B) Denoised by
NL-means: SSIM = 0.66. (C) Denoised by TV : SSIM = 0.70. (D) Denoised by
K-SVD : SSIM = 0.71. (E) Denoised by BM3D : SSIM = 0.75. (E) Denoised by
the proposed multivariate SURE-LET optimized in an UWT/BDCT dictionary:
SSIM = 0.74.
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Table 4.2: Comparison of some color image denoising algorithms (same noise
level in each RGB channel)

σR = σG = σB 5 10 15 20 25 30 50 100
Input PSNR [dB] 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Image 1 256 × 256
ProbShrink-MB [82] 37.99 34.67 32.97 31.81 30.93 30.18 27.93 24.70

SA-DCT [65] 38.60 35.64 34.07 32.97 32.10 31.39 29.18 25.90
UWT

SURE-LET (4.26) 38.51 35.44 33.88 32.80 31.95 31.25 29.11 25.75

Method Image 2 256 × 256
ProbShrink-MB [82] 35.39 31.23 29.32 28.14 27.25 26.56 24.67 22.20

SA-DCT [65] 35.50 31.26 29.44 28.40 27.64 27.04 25.31 22.85
UWT

SURE-LET (4.26) 35.57 31.53 29.70 28.55 27.71 27.05 25.23 22.72

Method Image 3 512 × 512
ProbShrink-MB [82] 37.44 34.35 32.74 31.60 30.76 30.03 28.03 25.43

SA-DCT [65] 37.69 34.97 33.60 32.63 31.86 31.21 29.25 26.47
UWT

SURE-LET (4.26) 38.03 35.05 33.55 32.51 31.70 31.03 29.14 26.53

Method Image 4 512 × 512
ProbShrink-MB [82] 36.47 33.46 32.06 31.11 30.36 29.72 27.81 25.00

SA-DCT [65] 36.78 33.68 32.39 31.55 30.88 30.30 28.50 25.76
UWT

SURE-LET (4.26) 36.89 33.86 32.49 31.58 30.87 30.28 28.52 25.81

Method Image 5 512 × 512
ProbShrink-MB [82] 34.85 30.06 27.63 26.13 25.04 24.18 22.01 19.94

SA-DCT [65] 35.22 30.61 28.32 26.88 25.85 25.06 23.01 20.52
UWT

SURE-LET (4.26) 35.20 30.67 28.40 26.92 25.84 25.00 22.88 20.68

Method Image 6 512 × 512
ProbShrink-MB [82] 38.82 35.31 33.42 32.12 31.15 30.32 27.86 24.59

SA-DCT [65] 39.46 36.37 34.64 33.39 32.41 31.59 29.22 26.04
UWT

SURE-LET (4.26) 39.57 36.44 34.66 33.39 32.40 31.59 29.24 26.05

Notes: The output PSNRs have been averaged over ten noise realizations.

two other algorithms that make use of pre-compiled codes.

4.7 Summary

In this chapter, we have generalized the SURE-LET approach to arbitrary transform-
domain denoising. The specificity of SURE-LET for redundant or non-orthonormal
transforms lies in the fact that the MSE/SURE minimization is performed in the im-
age domain. While it is true that, due to some Parseval-like MSE conservation, image
domain MSE/SURE minimization is equivalent to separate in-band MSE/SURE mini-
mization whenever the analysis transformation is (non-redundant) orthonormal, this is
grossly wrong as soon as the transformation is, either redundant (even when it is a “tight
frame”) or non-orthonormal. In our experiments, we have pointed out that a rigorous
image-domain SURE-based parameters optimization brings a non-negligible PSNR im-
provement over the conventional independent subband optimization. Note that the com-
putational efficiency of this image-domain optimization is only possible when considering
a linear parameterization of the denoising process; this naturally makes prohibitive the
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(A) (B)

(C) (D)

(E)

Figure 4.13: (A) Part of the noise-free Image 6. (B) Noisy version of it:
PSNR = 18.59 dB. (C) Denoised by ProbShrink-MB : PSNR = 30.32 dB. (D)
Denoised by the pointwise SA-DCT : PSNR = 31.60 dB. (E) Denoised by the
proposed method: PSNR = 31.61 dB.
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use of sophisticated wavelet estimators that require the optimization of several non-linear
parameters.

We have shown that a further development of the divergence of the denoising process
which appears in the SURE expression reveals the diagonal of the product between the
decomposition and the reconstruction matrices. Provided that these matrices are explic-
itly given, this divergence term can be computed analytically. When this is not the case,
we have described a simple numerical procedure to compute a good approximation of this
transform-dependent term.

Pointwise, multivariate and multichannel thresholding rules have been then proposed.
Their application in the Haar UWT and in an overcomplete BDCT representation have
been experimented, leading to the following observation: the choice of transform can
have a significant influence on the denoising quality. To obtain the best performance out
of several transformations, we have thus proposed to apply the SURE-LET strategy to
an heterogenous dictionary of overcomplete transforms. The resulting dictionary-based
SURE-LET has been finally shown to favorably compare with the state-of-the-art denois-
ing algorithms.
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Chapter 5

SURE-LET for Fast Video
Denoising

5.1 Motivations

Despite the recent advances in video sequence acquisition and transmission, denoising
still remains an essential step before performing higher level tasks, such as coding, com-
pression, object tracking or pattern recognition. Since the origins of the degradations are
numerous and diverse (imperfection of the CCD detectors, electronic instabilities, thermal
fluctuations, ...), the overall noise contribution is often modeled as an additive (usually
Gaussian) white process, independent from the original uncorrupted image sequence [122].

The huge amount of correlations present in every video sequences has quite early
led the researchers to develop combined spatio-temporal denoising algorithms, instead
of sequentially applying available 2D tools. The emergence of new multiresolution tools
such as the wavelet transform [38, 39] then gave an alternative to the standard noise
reduction filters that were used for video denoising [123–126]. Now, the transform-domain
techniques in general, and the wavelet-based in particular [127–133], have been shown to
outperform these spatio-temporal linear and even non-linear filtering.

In this chapter1, we stay within this scope of wavelet-domain video denoising tech-
niques. More precisely, and contrary to most of the existing techniques [127–130, 133],
we consider an orthonormal wavelet transform rather than redundant representations,
because of its appealing properties (energy and noise statistics preservation), its lower
computational complexity and memory usage. To take into account the strong tempo-
ral correlations between adjacent fames, we work out a multiframe wavelet thresholding
based on the multichannel SURE-LET strategy introduced in Section 3.4. To increase the
correlations between adjacent frames, we compensate for interframe motion using a global
motion compensation followed by a selective block-matching procedure. The selectivity is
obtained by first performing a coarse interframe motion detection and then only match-
ing those blocks inside which a significant motion occurred. Thanks to its selectivity,

1This chapter is based on our submitted paper [134].
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the proposed block-matching has a negligible influence on the interframe noise covariance
matrix. This latter point is crucial for the efficiency of our SURE-LET algorithm. In-
stead, standard block-matching [135] would make it difficult to track the interframe noise
statistics.

5.2 Multiframe SURE-LET

In this section, we use the same formalism as in the multichannel SURE-LET denoising
developed in Section 3.4. We denote an original (unknown) video sequence of T frames
containing N pixels by:

v = [v1 v2 . . . vN ], with vn = [v1,n v2,n . . . vT,n]
T (5.1)

We also define a unitary T × 1 vector et such that eTt vn = vt,n, and we assume that
the observed noisy video sequence is given by u = v + n, where n is an additive white
Gaussian noise independent of v, with known T × T interframe covariance matrix Γ.

In an orthonormal wavelet representation, the observation model is preserved in the
transformed domain, as well as the interframe noise covariance matrix Γ. Therefore, each
noisy wavelet coefficient yj

n ∈ R
T , j = 1 . . . J , n = 1 . . . N j is given by

yj
n = xj

n + bj
n, where bj

n ∼ N (0,Γ) (5.2)

5.2.1 Multiframe SURE

Denoting by v̂ an estimate of the noise-free video v, we can define the global MSE as:

MSE =
1

NT

T∑
t=1

N∑
n=1

eTt (v̂n − vn)(v̂n − vn)
Tet︸ ︷︷ ︸

N×MSEt

=
1

NT

T∑
t=1

J∑
j=1

Nj∑
n=1

eTt (x̂
j
n − xj

n)(x̂
j
n − xj

n)
Tet︸ ︷︷ ︸

Nj×MSEj
t

(5.3)

where eTt x̂
j
n = θjt (y

j
n,p

j
n) is the nth pixel of the jth wavelet subband of the denoised

frame t. It is obtained by thresholding the nth pixel of the jth wavelet subband of the
noisy frame t, taking into account (some of) its neighboring frames. From now on, we
will drop the subband superscript “j” and the time frame indication “t” for the sake of
clarity, when no ambiguities arise.

Considering this multiframe processing θ : RT × R
T → R, the MSE of any wavelet

subband j of any frame t is estimated without bias by

ε =
1

N

N∑
n=1

[ (
θ(yn,pn)− eTt yn

)2
+ 2eTt Γ∇1θ(yn,pn)−NeTt Γet

]
(5.4)



SECTION 5.3 107

in accordance with the general SURE methodology developed so far.

Recall that ∇1 stands for the gradient operator relatively to the first variable of the
function θ, i.e. yn (see Section 3.4). If yn is considered as a vector of neighboring wavelet
coefficients (instead of a multiframe wavelet coefficient), the above result (5.4) can be
interpreted as a multivariate SURE, similar to the one used in Section 3.4.4 to optimize
a multivariate thresholding.

5.2.2 Multiframe LET

The thresholding function is specified by the following linear combination of K basic
thresholding functions

θ(yn, ỹn) = [aT1 aT2 . . .aTK ]︸ ︷︷ ︸
aT

⎡⎢⎢⎢⎣
θ1(yn, ỹn)
θ2(yn, ỹn)

...
θK(yn, ỹn)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

θ(yn,ỹn)

(5.5)

where a and θ are both KT × 1 vectors.

Thanks to this linear parameterization, the optimal —in the minimum ε sense— pa-
rameters of (5.5) are the solution of the following linear system of equations:

aopt = M−1C (5.6)

where:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M =

N∑
n=1

θ(yn, ỹn)θ(yn, ỹn)
T

C =
N∑

n=1

(
θ(yn, ỹn)y

T
n − (∇1θ(yn, ỹn)

)T
Γ
)
et

5.3 A Fast Video Denoising Algorithm

We propose to de noise the video frame by frame, by considering a sliding temporal
window of τ (odd) neighboring frames centered around the current frame. For instance,
the denoising of the reference frame t involves frames t− (τ − 1)/2 to t+ (τ − 1)/2.

The various steps of the proposed algorithm (Fig. 5.1) are the following: We first
align all the neighboring frames (global registration) and compensate for their (local) mo-
tion, w.r.t. the frame t. Then, this reference frame is processed in the wavelet domain,
using thresholds based on the values of the wavelet coefficients of the aligned neighbor-
ing frames, and on their own coarser-scale coefficients (multiframe interscale SURE-LET
thresholding). Finally, an inverse wavelet transform is performed on the denoised coeffi-
cients of this reference frame. These steps are detailed in Sections 5.3.1, 5.3.2 and 5.3.3.



108 CHAPTER 5

Global Motion 
Compensation

Local Motion 
Compensation

Orthonormal
Wavelet 

Transform

Multiframe
Interscale 

SURE-LET

Orthonormal
Inverse Wavelet 

Transform

Noisy input video Denoised output video

x

y t

︷︸︸︷τ

Figure 5.1: Overview of the proposed denoising algorithm. One frame of the
video sequence is denoised by using its τ − 1 neighbours (l.h.s., in red); here,
τ = 3. After compensating for their relative motion, these τ frames undergo an
orthonormal wavelet transform, the coefficients of which are SURE-LET thresh-
olded to provide a denoised estimate of the wavelet coefficients of the central
frame.

5.3.1 Global Motion Compensation

As a global motion model, we can simply consider the translations due to camera motions
(pan/tilt). The optimal integer shift sopt required to register a given frame t +Δt with
respect to the reference frame t, is the index of the maximum of the cross-correlation
function between the two frames [133,136], i.e.

sopt = argmaxs F−1
{
Ut(·)U∗

t+Δt(·)
}
(s) (5.7)
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where F−1 {·} denotes the inverse discrete Fourier transform and Ut(ω), Ut+Δt(ω) are
respectively the discrete Fourier transforms of the reference frame and of the current
frame.

5.3.2 Local Motion Compensation

A global motion model does not reflect the local interframe motions. Block-matching
[135] is a standard procedure used in video processing to compensate for these local
interframe motions. Its principle is illustrated in Figure 5.2. Here, each of the τ −
1 neighboring frames is replaced by a version that is motion-compensated w.r.t. the
reference frame. Considering one of these neighboring frames, motion compensation is
performed as follows: the reference frame is divided into blocks2; then, for each block
of this frame, a search for similar blocks is performed in the neighboring frame; the
compensated frame is then built by pasting the best matching block of the neighboring
frame at the location of the reference block. Several parameters are therefore involved:

• the size of the considered blocks: we found that rectangular blocks of fixed size
8× 16 were a good trade-off between accurate motion estimation, robustness w.r.t.
noise and computational complexity. Note that a rectangular shape is well-adapted
to the standard video format, which are not of squared size.

• the size of the search region: here again, the trade-off evoked above led us to consider
a square region of 15×15 pixels centered around the position of the reference block.
Note that we obtained similar results with a rectangular search region of 11 × 21
pixels.

• the criterion used for measuring the similarity between blocks: the two most popular
measures of similarities are the mean of the absolute difference (MAD) and the mean
squared error (MSE). We experimentally observed that the MSE gave slightly better
results.

• the way of exploring the search region: we retained the exhaustive search because
of its simplicity and accuracy. Note that there is a huge amount of literature (e.g.
[137–139]) exposing fast algorithms for efficiently exploring the search region.

Instead of trying to find the best matches for every blocks of the reference frame,
we consider only blocks where a significant motion occurred. Indeed, in noisy video
sequences, there is a strong risk of matching the noise component in the still regions. In
that case, the interframe noise becomes locally highly correlated (see Fig. 5.5(B)). To
avoid this risk and still be able to consider the interframe noise as stationary (with a good
approximation), we propose to perform motion compensation only in the blocks where a
significant motion between frames was detected, as illustrated in Figure 5.3. Incidentally,
this also significantly reduces the computation cost.

The proposed motion detection involves two steps:

2In this work, we only consider non-overlapping blocks. Note that better PSNR results ( 0.2− 0.7 dB)
can be obtained with overlapping blocks, but the computational burden then becomes heavier.
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Reference frame Current frame

Search region

Matching block

Figure 5.2: The principle of block-matching.

(A) (B)

(C) (D)

Figure 5.3: (A) Frame no 3 of the Tennis sequence: PSNR = 22.11 dB. (B)
Frame no 6 of the Tennis sequence (reference frame): PSNR = 22.11 dB. (C)
Detected motion with corresponding blocks to be matched. (D) Motion com-
pensated frame no 3.

1. In order to be robust w.r.t. noise, the considered frames are smoothed by the
following regularized Wiener filter:

H(ω) =

{
1− |N(ω)|2

|U(ω)|2 , if |U(ω)|2 > λ1|N(ω)|2
0 , otherwise

(5.8)

where |N(ω)|2 and |U(ω)|2 are respectively the power spectrum of the noise (con-
stant for white Gaussian noise) and of the noisy frame. λ1 ≥ 1 is the regularization
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parameter; its value will be discussed hereafter.

2. The MSEs between the two considered frames are then computed inside each block.
The minimum of these MSEs (MSEmin) is considered as the “no motion level”.
Consequently, the block-matching will be performed only for those blocks of the
reference frame having a MSE above a given threshold of motion λ2 MSEmin, where
λ2 ≥ 1.

In our experiments, we found that any values of λ1 and λ2 chosen in the range [2; 3]
gave similar results (±0.1 dB). A smaller value of these two parameters will decrease the
robustness w.r.t. noise. A higher value of the regularization parameter λ1 will oversmooth
the frames, decreasing the accuracy of the subsequent block-matching. A higher value of
the parameter λ2 will speed up the algorithm, but the subsequent motion compensation
will be less effective. In our experiments, we have selected λ1 = λ2 =

√
6.

The block-matching itself is performed on the smoothed frames, in order to decrease
the sensitivity to noise. For each frame and for each detected block, the minimum MSE
(computed between the reference block and its best matching block) is stored; the inverse
of the average of these MSEs will then serve as a weight qt for the considered frame t in
the subsequent wavelet-domain thresholding (Section 5.3.3). These weights are especially
important when there is no or little correlation between adjacent frames; this situation
appears when, for example, a quick change of camera occurs (see Figure 5.4).

The proposed selective block-matching procedure has two key advantages:

1. It leads to a fast local motion compensation, despite the fact that an exhaustive
search is performed.

2. The interframe noise covariance matrix can be assumed to be unaffected by the
local motion compensation (Figure 5.5(C)), contrary to standard block-matching
(Figure 5.5(B)).

5.3.3 Multiframe Interscale Wavelet Thresholding

Once the motion between a reference frame and a reasonable number of adjacent frames
has been compensated, a 2D orthonormal wavelet transform is applied to each motion-
compensated frame. Each highpass subband of the reference frame is then denoised
according to the generic procedure described in Section 5.2.2, Equ. (5.5), in which K = 4
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Frame no 88 (qt−1 = 0.69) Reference frame no 89 (qt = 0.69)

Frame no 90 (qt+1 = 0.21)

Figure 5.4: Example of a quick change of camera (Tennis sequence at PSNR =
22.11 dB). The various frames are weighted accordingly (qt−1, qt and qt+1).

(A) (B) (C)

Figure 5.5: Influence of the block-matching motion compensation on the inter-
frame noise covariance matrix (frame no 6 is the reference frame). (A) Interframe
noise covariance matrix for the 11 first frames of the noisy Tennis sequence before
motion compensation. (B) Interframe noise covariance matrix after a standard
block-matching algorithm. (C) Interframe noise covariance matrix after the pro-
posed selective block-matching algorithm.
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and

θ(yn, ỹn) = aT1 γ(ỹT
nWỹn)γ(y

T
nWyn)yn︸ ︷︷ ︸

θ1(yn,ỹn)

+

aT2 γ(ỹT
nWỹn)γ(y

T
nWyn)yn︸ ︷︷ ︸

θ2(yn,ỹn)

+

aT3 γ(ỹT
nWỹn)γ(y

T
nWyn)yn︸ ︷︷ ︸

θ3(yn,ỹn)

+

aT4 γ(ỹT
nWỹn)γ(y

T
nWyn)yn︸ ︷︷ ︸

θ4(yn,ỹn)

(5.9)

where

• γ(x) = exp
(
− |x|

2λ2
3

)
and γ(x) = 1 − γ(x) are two discriminative functions that

classify the wavelet coefficients in four groups, based on their magnitude and the
magnitude of their parent ỹn. λ3 is a threshold that rules this categorization of the
wavelet coefficients. The numerous3 linear parameters involved in the multiframe
thresholding bring a high level of flexibility to the denoising process. As a conse-
quence, the nonlinear parameter λ3 does not require a data-dependent optimization;
we experimentally found that λ3 = λ2 = λ1 =

√
6 gave the best results. Note that

this value is the same that we used for multichannel denoising in Section 3.4.3 of
Chapter 3.

• Each ak is a τ × 1 vector of linear parameters that is optimized for each subband
by the procedure described in Section 5.2.2.

• W = QTΓ−1
τ Q is a τ × τ weighting matrix that takes into account:

1. the potential interframe SNR disparities, through the inverse of the τ × τ
interframe noise covariance matrix Γτ ;

2. the potential weak interframe correlations, through the weights qt resulting
from the block-matching (Section 5.3.2) and stored in the τ×τ diagonal matrix
Q. The weights are normalized to ensure that the Frobenius norm of Q,
‖Q‖F =

√
trace {QTQ} = 1.

5.3.4 Computational Complexity

To denoise a given reference frame using its (τ−1) neighboring frames, the computational
complexity of our algorithm can be evaluated as follows:

• Discrete wavelet transform: O(τ ·N · log2(N))

• Building of the interscale predictor: O(τ ·N · log2(N))

3Four times the considered number of adjacent frames per subband.
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• Application of the interscale wavelet thresholding (5.9): O(τ ·K ·N)

• Global motion compensation: O((τ − 1) ·N · log2(N))

• Local motion compensation: O((τ − 1) · Bx · By · Rx · Ry · N
Sx·Sy

), where Bx × By

is the block size, Rx × Ry the size of the search region and (Sx, Sy) the step size
between two adjacent reference blocks.

In the proposed settings, we consider τ = 11 adjacent frames (5 past , 5 future and the
current frame), non-overlapping —(Sx, Sy) = (Bx, By)— blocks of size (Bx, By) = (8, 16),
a search region of (Rx, Ry) = (15, 15) locations and K = 4 vectors of τ × 1 parameters.
For a frame of N = 288×352 pixels, the most costly part of our algorithm is thus the local
motion compensation step, because (τ − 1)RxRy >> τ log2(N) >> τK. When summing
up all these operations, we get an approximate number of 2800 operations per pixel to
denoise one frame. However, since the block matching procedure is selective, the actual
number of operations is much lower in practice.

5.4 Experiments

We propose now to evaluate the performance of our algorithm in comparison to some
other state-of-the-art wavelet-based methods (all are redundant):

• Selesnick et al. 3DWTF [84,127]: a bivariate thresholding is applied in each spatio-
temporal subband of a 3D non-separable dual-tree complex wavelet transform.

• Pižurica et al. SEQWT [128]: a spatially adaptive Bayesian shrinkage is applied in
the undecimated wavelet-domain, followed by a recursive temporal filtering.

• Zlokolica et al. WRSTF [129]: in the undecimated wavelet domain, motion esti-
mation and adaptive temporal filtering are recursively performed, followed by an
intraframe spatially adaptive filter.

The results of these three algorithms for denoising standard grayscale video sequences
can be downloaded at http://telin.ugent.be/~vzlokoli/Results_J/. This allows a
fair comparison between the various methods. Note that we could not directly compare
our results with the recent multiframe extension [133] of the original BLS-GSM algorithm
[81], because we could neither have access to the corresponding code nor strictly reproduce
their experiments. However, we observed a similar improvement over the still BLS-GSM
with our method and with the algorithm described in [133].

The noisy video sequences have been obtained by adding (without clipping) indepen-
dent Gaussian white noises of given variance σ2 on each frame, i.e. Γ = σ2Id. For our
algorithm, we performed 4 levels of decomposition of an orthonormal wavelet transform
using Daubechies sym8 filters [37].

In Figure 5.6, we show the peak signal-to-noise ratio4 (PSNR) in each frame of various
video sequences5 (Flowers, Tennis, Foreman and Bus) at different input PSNR. We can

4Defined as: PSNR = 10 log10
2552

MSE
dB.

5Available together with some denoising results at:
http://bigwww.epfl.ch/luisier/VideoDenoising/
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observe that our algorithm achieves globally, and for almost every frames, significantly
better results than the three other state-of-the-art procedures. From a visual point of
view, our solution provides a good trade-off between noise reduction and preservation of
small features (see Figure 5.7), as confirmed by the SSIM index.

Flowers at PSNR = 24.61 dB Tennis at PSNR = 22.11 dB

Foreman at PSNR = 20.17 dB Bus at PSNR = 20.17 dB

Figure 5.6: Comparison of the PSNR evolution for various video sequences and
wavelet-based denoising algorithms.“�” markers refer to the proposed algorithm,
“�” to the 3DWTF [83, 127], “∗” to the SEQWT [128] and “◦” to the WRSTF
[129].

In Table 5.1, we show global PSNR comparisons of the various wavelet-based algo-
rithms. As observed, the proposed algorithm consistently gives higher PSNR (+1dB)
than the other wavelet-based approaches. We must point out that these denoising results
are very encouraging since we are only using a non-redundant (orthonormal) wavelet
transform, whereas other state-of-the-art video denoising algorithms make use of redun-
dant wavelet representations. Moreover, with our current Matlab implementation, it only
takes around 2s to denoise one 288×352 frame. This is slightly slower than the execution
time of the WRSTF, but the latter is fully implemented in C++.

We have also added in Table 5.1 the results we obtained by running the VBM3D6 [140],
which is not a wavelet-based solution, but a more sophisticated two-pass algorithm. Up

6Matlab code available at: http://www.cs.tut.fi/~foi/GCF-BM3D/#ref software
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Table 5.1: Comparison of some state-of-the-art video denoising algorithms
σ 5 10 15 20 25 30 50 100

Input PSNR 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Tennis 240 × 352
3DWTF [83, 127] N/A 32.09 29.88 28.31 N/A N/A N/A N/A
SEQWT [128] N/A 30.96 28.34 26.88 N/A N/A N/A N/A
WRSTF [129] N/A 32.57 30.45 28.96 27.83 N/A N/A N/A
Proposed
Algorithm 37.38 33.52 31.41 29.96 28.85 27.94 25.50 22.60

VBM3D [121] 37.82 34.14 32.10 30.39 28.84 27.41 24.81 22.13

Method Flowers 240 × 352
3DWTF [83, 127] N/A 30.33 27.79 26.10 N/A N/A N/A N/A
SEQWT [128] N/A 29.62 27.10 25.32 N/A N/A N/A N/A
WRSTF [129] N/A 30.77 28.10 26.33 24.92 N/A N/A N/A
Proposed
Algorithm 36.22 31.63 29.11 27.31 25.89 24.76 21.73 18.54

VBM3D [121] 36.51 32.04 29.66 28.07 26.82 25.74 21.53 17.27

Method Foreman 288 × 352
WRSTF [129] N/A 35.33 33.14 31.55 30.30 N/A N/A N/A
Proposed
Algorithm 39.60 36.13 34.13 32.73 31.61 30.71 28.15 24.85

VBM3D [121] 40.21 37.19 35.59 34.39 33.39 32.52 29.75 24.02

Method Bus 288 × 352
WRSTF [129] N/A 32.78 30.40 28.76 27.46 N/A N/A N/A
Proposed
Algorithm 37.45 33.13 30.69 28.99 27.74 26.74 24.04 21.12

VBM3D [121] 37.28 32.88 30.49 28.95 27.81 26.93 24.40 20.74

Note: PSNRs displayed in this table correspond to the averaged values over frames 10−20 of the various video
sequences, using frames 5 − 25 to avoid potential boundary artifacts in the temporal dimension.

to our knowledge, the PSNRs obtained by the VBM3D are among the best published
so far for video denoising [141]. Note that the results presented in [141] could not be
reproduced due to unspecified video clipping and cropping7. We can notice in Table 5.1
that, in some cases, our lower-complexity solution is even competitive with the VBM3D.

From a computational standpoint, our algorithm only requires ∼ 2′800 operations
per pixel (see Section 5.3.4). To compare with, the algorithm described in [141] requires
∼ 75′000 operations per pixel. Note that the authors in [141] have suggested some ac-
celeration techniques which could potentially reduce this number of operations per pixel.
In [140], there is no analysis of algorithm’s complexity. However, in their paper on im-
age denoising [121], they give the following formula for computing the overall number of
operations per pixel (using our notations):

Cost = 3C2D + 2
(BxBy +N2)RxRy

SxSy
+ 3

(N2C2D +BxByC1D)

SxSy

where N2 is the number of blocks in a 3D group, C1D and C2D denote the number of
arithmetic operations required for the 1D (resp. 2D) transform of the group of blocks.

In their video denoising settings, they use (Bx, By) = (8, 8), (Rx, Ry) = (7, 7),
(Sx, Sy) = (6, 6), N2 = 8 and τ = 9 neighboring frames. Considering a separable FFT-
based implementation, the cost of the 2D (resp. 1D) transform can be evaluated as
C2D = BxBy log2(BxBy) (resp. C1D = N2 log2(N2)). Using these values, we obtain an

7Private communication with the authors of [141].
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overall number of τ ×Cost � 15′500 operations per pixel to denoise one frame. Note that
they have also proposed some acceleration techniques in order to decrease this number of
operations.

5.5 Summary

In this chapter, we have presented a relatively simple and yet very efficient orthonormal
wavelet-domain video denoising algorithm. Thanks to a proper selective block-matching
procedure, the effect of motion compensation on the noise statistics becomes negligible,
and an adapted multiframe interscale SURE-LET thresholding could be applied. The
proposed algorithm has been shown to favorably compare with state-of-the-art redundant
wavelet-based approaches, while having a lighter computational load. The consideration
of redundant transformations seems however necessary for our solution to consistently
reach the same level of performance as the very best video denoising algorithms available
[121,141].
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(A) (B)

(C) (D)

(E)

Figure 5.7: (A) Part of the noise-free frame no 90 of the Tennis sequence.
(B) Noisy version of it: SSIM = 0.46 (C) Denoised with the SEQWT [128]:
SSIM = 0.71. (D) Denoised with the WRSTF [129]: SSIM = 0.69. (E) Denoised
with the proposed algorithm: SSIM = 0.82.
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Chapter 6

PURE-LET: a Toolkit for
Estimating Poisson Intensities
in AWGN

6.1 Motivations

“Additive white Gaussian noise” (AWGN) is a ubiquitous model in the context of sta-
tistical image restoration. In many applications, however, the current trend towards
quantitative imaging calls for less generic models that better account for the physical
acquisition process. The need for such models is particularly stringent in biomicroscopy,
where live samples are often observed at very low light levels, due to acquisition-time and
photo-toxicity constraints [142]. In this regime, the performance of the imaging device is
typically shot-noise limited, i.e. the major source of measurement noise is strongly signal-
dependent. Thus, opting for a non-additive, non-Gaussian model can yield significant
restoration-quality improvements in such applications.

Gaussian priors almost systematically lead to closed-form solutions in a Bayesian
framework; this has probably led to the common misconception that other noise models
are generally less tractable. Actually, when using non-Bayesian approaches, the advantage
of the Gaussian paradigm is not as clear-cut. In this chapter, we provide a rigorous
data-driven procedure, hereafter termed PURE-LET, for estimating Poisson intensities
in AWGN. The driving principle of the proposed approach still remains the minimization
of the MSE.

6.2 Related Work

The first wavelet-based techniques that were specifically designed for Poisson intensity es-
timation appeared in the fields of astrophysics [143] and seismology [144]. In the context
of image denoising, several works are based on the fact that Poisson statistics are pre-
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served across scales in the lowpass channel of an unnormalized Haar wavelet transform.
This fundamental property was for example used by Timmermann and Nowak [145] to
construct a multiscale Bayesian model of the image; an extension for estimating all pa-
rameters of the model using the expectation-maximization algorithm was derived in [146].
A similar model was proposed independently by Kolaczyk for 1D signals [147], using the
concept of recursive dyadic partition. A generalization to three families of distributions
(Gaussian, Poisson and multinomial) was described in [148], along with an asymptotic
minimax analysis. The aforementioned property was also used within a user-calibrated
hypothesis-testing approach for astrophysical imaging [149]. The idea of using hypothe-
sis testing to handle Poisson statistics was initially adapted from the Gaussian case by
Kolaczyk [150], who proposed to use (pairs of) level-dependent thresholds. A complemen-
tary study of the theoretical asymptotic properties of wavelet estimators was presented
in [151].

Notice that the Bayesian framework has also been used in conjunction with more
involved multiscale transformations than the Haar transform. For example, Sardy et
al. [152] considered a general 	1-penalized-likelihood framework for arbitrary wavelet bases
and noise models, including the Poisson case. More recently, Willett and Nowak have pro-
posed a platelet-based penalized-likelihood estimator that was shown to be very efficient
for denoising piecewise-smooth images [153].

A widespread alternative to the direct handling of Poisson statistics is to apply
variance-stabilizing transforms (VSTs), with the underlying idea of exploiting the broad
class of denoising methods that are based on a Gaussian noise model [154]. Since the sem-
inal work of Anscombe [155], more involved VSTs have been proposed, the most famous
example being the Haar-Fisz transform [156]. Such approaches belong to the state-of-
the-art for 1D wavelet-based Poisson noise removal [156,157]. They have been combined
with various other methodologies, e.g. Bayesian multiscale likelihood models that can
be applied to arbitrary wavelet transforms [158]. Very recently, a hybrid approach that
combines VSTs, hypothesis testing, 	1-penalized reconstruction and advanced redundant
multiscale representations has been proposed by Zhang et al. [159]. Their approach and
the Platelet method of Willett and Nowak, stand among the most efficient estimators of
2D Poisson intensities.

With the exception of cross-validation methods [152,160,161], however, the potential
of purely data-driven techniques seems to have remained under-exploited for the wavelet-
based restoration of images corrupted by Poisson noise.

6.3 Poisson Unbiased Risk Estimate (PURE)

Recall that:

• z is a Poisson random variable of intensity x ∈ R+, if and only if its probability
density function (PDF) p conditioned on x is

p(z|x) = xz

z!
e−x

We use the standard notation z ∼ P(x).
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• b is a normally distributed random variable with zero-mean and variance σ2, if and
only if its probability density function q is

q(b) =
1√
2πσ2

e−
b2

2σ2

We use the standard notation b ∼ N (0, σ2).

In this chapter, z will denote a vector of N independent Poisson random variables zn
of underlying intensities xn, i.e. zn ∼ P(xn). A realization of z can be thought of as a
noisy measurement of the intensity signal x. We recall that, in contrast with Bayesian
approaches, x is considered to be deterministic in the present framework.

Now, let us further assume that these noisy measurements zn are degraded by i.i.d.
additive white Gaussian noises (AWGNs) bn of known variance σ2, i.e. bn ∼ N (0, σ2).
The final observation vector y is therefore given by:

y = z+ b (6.1)

Our goal is then to find an estimate x̂ = F(y) that is the closest possible to the
unknown original signal in the minimum mean-squared error (as defined in Equ. (2.2))
sense. In order to build a purely data-driven unbiased estimate of the MSE, we need to
consider the following lemma:

Lemma 4. Let the family of vectors (en)n=1...N be the canonical basis of RN , i.e. all
components of en are zero, except for the nth component, which is equal to one. Let
F : RN → R

N be a real vector-valued function such that ∀n, Ez {|fn(z− en)|} < ∞ and
fn(z) = 0 if zn ≤ 0. Then

Ez

{
xTF(z)

}
= Ez

{
zTF−(z)

}
(6.2)

where F−(z) = [fn(z− en)]n=1...N .

Proof. This result can be thought of as the “Poisson equivalent” of Stein’s lemma. A
proof of a similar result can be found for instance in [162, 163]. Yet, for the sake of
completeness, we give this proof hereafter.

Denoting by Ezn{·} the partial expectation over the nth component of the Poisson
process z, we have the following sequence of equalities:

Ezn {xnfn(z)} =
+∞∑
zn=0

xnfn(z)p(zn|xn)

=
+∞∑
zn=0

xnfn(z)
xzn
n

zn!
e−xn

=
+∞∑
zn=1

fn(z− en)
xzn
n

(zn − 1)!
e−xn

=
+∞∑
zn=0

znfn(z− en)
xzn
n

zn!
e−xn

= Ezn {znfn(z− en)}
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Taking the expectation over the remaining components of z and using the linearity of the
mathematical expectation finally leads to the desired result. �

The MSE score of a given estimate x̂ = F(y) of x can then be accurately evaluated
from the observed data using the following theorem:

Theorem 4. Let F(y) = [fn(y)]n=1...N be a N -dimensional real-valued vector function
satisfying the requirements of Lemma 4. Then the random variable

ε =
1

N

(‖F(y)‖2 − 2yTF−(y) + 2σ2div
{
F−(y)

})
+

1

N

(‖y‖2 − 1Ty
)− σ2 (6.3)

is an unbiased estimate of the expected MSE, i.e.

E {ε} =
1

N
E
{‖F(y)− x‖2}

Proof. By expanding the expectation of the squared error between x and its estimate
F(y), we obtain

E
{‖F(y)− x‖2} = E

{‖F(y)‖2}+ ‖x‖2︸︷︷︸
(I)

−2E
{
xTF(y)

}︸ ︷︷ ︸
(II)

(6.4)

We can now evaluate the two expressions (I,II) which involve the unknown data x.

(I) We notice that

‖x‖2 = E
{
xTy

}
(6.1)
= Eb

{
Ez

{
xTz

}}
+ Eb

{
xTb

}︸ ︷︷ ︸
=0

Lemma 4
= Eb

{
Ez

{‖z‖2 − 1Tz
}}

and we have:

Eb

{‖z‖2 − 1Tz
} (6.1)

= Eb

{‖y‖2 − 1Ty
}
+ Eb

{‖b‖2 − 2bTy
}

Lemma 1
= Eb

{‖y‖2 − 1Ty
}−Nσ2

which finally leads to:

‖x‖2 = E
{‖y‖2 − 1Ty

}−Nσ2 (6.5)

(II) We can write the following sequence of equalities:

E
{
xTF(y)

}
= Eb

{
Ez

{
xTF(z+ b)

}}
Lemma 4

= Eb

{
Ez

{
zTF−(z+ b)

}}
(6.1)
= E

{
yTF−(y)

}− Ez

{
Eb

{
bTF−(y)

}}
Lemma 1

= E
{
yTF−(y)

}− σ2E
{
div

{
F−(y)

}}
(6.6)
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Putting back Equ. (6.5) and (6.6) into Equ. (6.4) finally demonstrates Theorem 4. �

In the remaining of this work, the unbiased MSE estimate (6.3) will be referred to
as PURE (Poisson’s unbiased risk estimate)1. It can be seen as the equivalent of SURE
(Stein’s unbiased risk estimate) [70], which was derived for AWGN only.

In the following proposition, we give an extension to the Poisson’s Lemma 4, that will
be useful for our study on the reliability of PURE given in the next section.

Proposition 5. Let k ∈ N
∗ be a positive integer and fn : RN → R real-valued functions

such that, for n = 1 . . . N and i = 1 . . . k, |E {fn(z− ien)} | < +∞ and fn(z) = 0, if
zn < k. Then,

E
{
xk
nfn(z)

}
= E

{
k−1∏
i=0

(zn − i)fn(z− ken)

}
(6.7)

The proof of this proposition can be derived in the same way as the proof of Lemma 4.
Note that a similar result can be found in [163].

6.4 Reliability of the PURE Estimate

In this section, we propose to compute the expected squared error between the actual
MSE and its PURE estimate. For the sake of simplicity, we only consider the case of a
pure Poisson process and we do not take into account the error induced by the estimation
of the noise-free signal energy ‖x‖2.
Property 2. In the case of a Poisson process, the expected squared error between the
effective part of PURE (6.3) and the actual MSE is given by:

E
{
(ε−MSE)2

}
=

4

N2
E

{ ∑
1≤i,j≤N

yiyj

(
fi(y − ei)fj(y − ej) + fi(y − ei − ej)fj(y − ei − ej)

−2fi(y − ei)fj(y − ei − ej)
)

+
∑

1≤i≤N

yifi(y − 2ei)
(
2fi(y − ei)− fi(y − 2ei)

)}
(6.8)

Proof. The expected squared error can be expanded as:

N2

4
E
{
(ε−MSE)2

}
= E

{(
xTF(y)

)2}︸ ︷︷ ︸
(I)

−2E
{
xTF(y)yTF−(y)

}︸ ︷︷ ︸
(II)

+E
{(

yTF−(y)
)2}

(6.9)

1This unbiased MSE estimate was first presented (without proof) in [164].
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Only the expectations (I) and (II) involve the unknown Poisson intensities x. Using
Proposition 5, we can re-express them as:

(I) E
{(

xTF(y)
)2}

=
∑
i,j

E {xixjfi(y)fj(y)}

=
∑
i,j

E {yiyjfi(y − ei − ej)fj(y − ei − ej)}−∑
i

E
{
yif

2
i (y − 2ei)

}
(II) E

{
xTF(y)yTF−(y)

}
=

∑
i,j

E {xiyjfi(y)fj(y − ej)}

=
∑
i,j

E {yiyjfi(y − ei)fj(y − ei − ej)}−∑
i

E {yifi(y − ei)fi(y − 2ei)}

The desired result (6.8) is finally demonstrated by putting back (I) and (II) into (6.9).
�

The expression (6.8) is usually very time-consuming to compute for an arbitrary non-
linear processing F, because the computation of all components fi(y−ei−ej), i = 1 . . . N ,
requires the order of N2 applications of the whole denoising process F. However, in the
case of a linear processing F(y) = Ay, where A is an arbitrary N × N matrix, the
expected squared error between the effective part of PURE and the actual MSE becomes:

E
{
(ε−MSE)2

}
=

4

N2
E
{
‖F(y)‖2 + yTF(y)2 − 2yTdiag {A}Tdiag {F(y)yT

}}
(6.10)

where F(y)2 = [f2
n(y)]1≤n≤N .

If we further assume that A has the same structure as the one discussed in Section 2.4
of Chapter 2, i.e. A specifies a pointwise shrinkage in an orthonormal transform-domain,
then all the terms which appear in (6.10) linearly grow with N . Consequently, the overall
squared error decreases linearly as the number of measurements N increases. The reli-
ability of PURE as an estimate of the MSE for a Poisson process is thus similar to the
reliability of SURE discussed in Section 2.4.

6.5 Optimal/PURE-LET Estimator

As in the AWGN case, it is possible to find the processing Fopt that minimizes the
expected MSE/PURE, without an explicit knowledge of the PDF of the original noise-
free signal p(x). We denote the joint density of x and y by:

p(x,y) = p(y|x)p(x) (6.11)

and thus the marginal PDF of the noisy observation is r(y) =

∫
R

N
+

p(x,y)dx.
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Theorem 5. The optimal, in the minimum expected MSE/PURE sense, estimate of the
intensity of a Poisson process embedded in an AWGN of variance σ2 is given by:

Fopt(y) =

[
(yn + 1)

r(y + en)

r(y)
+

σ2

r(y)

∂r(y + en)

∂yn

]
1≤n≤N

(6.12)

Proof. Taking the global expectation of PURE (6.3) leads to:

NE {ε} =

∫
R

N
+

∫
RN

(‖F(y)‖2 − 2yTF−(y) + 2σ2div
{
F−(y)

})
p(x,y)dxdy

+E
{‖y‖2 − 1Ty

}−Nσ2

=

∫
RN

(‖F(y)‖2 − 2yTF−(y) + 2σ2div
{
F−(y)

})
r(y)dy

+E
{‖y‖2 − 1Ty

}−Nσ2

=

N∑
n=1

(∫
RN

f2
n(y)r(y)dy − 2

∫
RN

ynfn(y − en)r(y)dy︸ ︷︷ ︸
(I)

+2σ2

∫
RN

∂fn(y − en)

∂yn
r(y)dy︸ ︷︷ ︸

(II)

)
+ E

{‖y‖2 − 1Ty
}−Nσ2

(I) Using a change of variable, (I) can be rewritten as:∫
RN

ynfn(y − en)r(y)dy =

∫
RN

(yn + 1)fn(y)r(y + en)dy

(II) Using an integration by parts followed by a change of variable, (II) can be rewritten
as: ∫

RN

∂fn(y − en)

∂yn
r(y)dy = −

∫
RN

fn(y)
∂r(y + en)

∂yn
dy

where we have assumed that lim
y→±∞ fn(y − en)r(y) = 0.

The expectation of PURE can be thus re-expressed as:

NE {ε} =
N∑

n=1

(∫
RN

(
f2
n(y)r(y)− 2(yn + 1)fn(y)r(y + en)

−2σ2fn(y)
∂r(y + en)

∂yn

)
dy

)
+ E

{‖y‖2 − 1Ty
}−Nσ2

Using calculus of variations, we find that the minimizer of the expected PURE/MSE is
finally given by

fopt
n (y) = (yn + 1)

r(y + en)

r(y)
+

σ2

r(y)

∂r(y + en)

∂yn

�
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As in the AWGN case, the evaluation of the PDF of the noisy data is required to
implement the MMSE estimator of Poisson intensities. The two strategies evoked in Sec-
tion 2.5 (i.e. empirical estimation from the data or prior assumption on the noise-free
data) are still conceivable, but both of them are challenging. Instead, we propose to take
advantage of the quadratic form of PURE to build our Poisson intensity estimator F
as a linear expansion of K thresholds (LET), as in the SURE-LET case (2.19). Conse-
quently, the search for the optimal (in the minimum PURE sense) vector of parameters
a = [a1, a2, . . . , ak]

T boils down to the solution of the following linear system of K
equations:

K∑
l=1

Fk(y)
TFl(y)︸ ︷︷ ︸

[M]k,l

al = yTF−
k (y)− σ2div

{
F−

k (y)
}︸ ︷︷ ︸

[c]k

for k = 1, 2, . . .K

� (6.13)

Ma = c

6.6 Summary

In this chapter, we have shown that it is possible to derive an unbiased estimate of the
MSE beyond the restrictive case of AWGN considered in the original SURE theory. More
generally, we have devised a non-Bayesian procedure (PURE-LET) to estimate Poisson
intensities degraded by AWGN.

Although an optimal MMSE estimator can be theoretically found, its implementation
is hardly feasible in practice. Similarly to the AWGN, we have thus proposed to use the
Poisson’s unbiased risk estimate (PURE) to optimize a linear expansion of thresholds
(LET). Thanks to the quadratic form of PURE, this optimization boils down to the
resolution of a linear system of equations, which ensures a low computational burden.



Chapter 7

PURE-LET in the
Unnormalized Haar Wavelet
Representation

7.1 Motivations

While an independent additive white Gaussian noise (AWGN) model is easily character-
ized in an orthonormal wavelet representation (see Chapter 3), the Poisson statistics are
much more difficult to tract in the wavelet domain, due to their signal-dependent nature.
An independent denoising of each wavelet subband, which ensures a fast algorithm, thus
seems unachievable. However, thanks to a fundamental property of the Poisson distribu-
tion (“conservation under summation”), the oldest wavelet transform comes back in the
forefront. Indeed, the use of the (unnormalized) Haar wavelet transform, which yields
nothing but sums (resp. differences) of Poisson distributions in its lowpass (resp. high-
pass) channel, makes it possible to derive independent Poisson unbiased risk estimate
(PURE) for each wavelet subband. From a practical point of view, the unnormalized
Haar wavelet transform can thus be considered as the most suitable candidate for the
development of a fast PURE-LET algorithm1.

7.2 The Unnormalized Haar WaveletTransform

The unnormalized Haar discrete wavelet transform (DWT) can be seen as a standard two-
channel filterbank (see Figure 7.1). The analysis pair of lowpass/highpass filters is given
in the z-transform domain by Ha(z) = 1 + z−1, Ga(z) = 1− z−1 and the corresponding
synthesis pair is Hs(z) = Ha(z

−1)/2, Gs(z) = Ga(z
−1)/2.

In this chapter, the unnormalized Haar scaling coefficients of the measurement y =
z + b at scales j = 1, . . . , J are denoted by sj ∈ R

Nj , where Nj = N/2j , and dj ∈ R
Nj

1This chapter is an extension to the work presented in our recently published paper [165].

129



130 CHAPTER 7

1− z−1

��
��
↓ 2

��
��
↓ 2 sj

dj

Same scheme 
applied 

recursively

δ̂
j

��
��
↑ 2

��
��
↑ 21 + z−1

1 + z

2

1− z

2

sj−1 ⊕

θj(dj , sj)

ς̂j

ς̂j−1

Figure 7.1: Filter bank implementation of the unnormalized Haar discrete
wavelet transform and principle of the class of denoising algorithms described by
(7.1). The scheme is applied recursively on the low-pass channel output.

stands for the associated wavelet coefficients (we assume that the signal dimension is
divisible by 2J). Setting s0 = y, these coefficients are obtained from the following sums
and differences: {

sjn = sj−1
2n + sj−1

2n−1,

djn = sj−1
2n − sj−1

2n−1,
for j = 1, . . . , J

The original sequence y = s0 is simply recovered by computing{
sj−1
2n = (sjn + djn)/2,

sj−1
2n−1 = (sjn − djn)/2,

for j = J, . . . , 1

Similarly, we denote by ςj and δj the scaling and wavelet coefficients of the original signal
x at a given scale j. Note that, by linearity of the wavelet transform, we have E

{
djn
}
= δjn

and E
{
sjn
}
= ςjn.

The key properties of the unnormalized Haar DWT are the following.

1. It is an orthogonal transform. In particular, we can split the MSE into subband-
specific error terms:

MSE =
2−J

N

∥∥∥ς̂J − ςJ
∥∥∥2 + J∑

j=1

2−j

N

∥∥∥δ̂j − δj
∥∥∥2

This implies that we can minimize the MSE for each subband independently, while
ensuring a global signal-domain MSE minimization.

2. At a given scale j, the scaling coefficients of an input vector of independent Poisson
random variables are also independent Poisson random variables, because the sum
of independent Poisson random variables is also a Poisson random variable with
intensity equal to the summed intensities.
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7.3 Haar-Wavelet-Domain PURE

In principle, the estimate δ̂
j
may be constructed using all available subbands of the

measurement y; in practice, however, standard thresholding techniques only use the cor-
responding wavelet subband of the measurement, dj . In the sequel, we will consider

denoising algorithms where δ̂
j
also depends on the scaling coefficients at the same scale

sj . This means that we have the following functional relationship:

δ̂
j
= θj(dj , sj). (7.1)

As usual, the lowpass residual is not processed, i.e. ς̂J = sJ . Our algorithmic framework
is illustrated in Figure 7.1.

The above choice is advantageous from a computational standpoint because such a
restoration procedure can be implemented in parallel with the wavelet decomposition,
which yields the scaling coefficients sj as by-products. Furthermore, this framework
comprises advanced denoising schemes that exploit interscale dependencies via the scaling
coefficients sj (recall Section 3.3 and see Section 7.5.2). Finally, it allows us to minimize
MSEj = ‖θj(dj , sj) − δj‖2/Nj independently for each wavelet subband. We will thus
focus on a fixed scale and drop the superscript j to simplify the notations.

In the Gaussian case, the scaling coefficients sj are statistically independent of the
wavelet coefficients dj (in an orthogonal wavelet domain). This is in contrast with the
Poisson case, for which dj and sj are statistically dependent and even correlated. This
makes the derivation of a bivariate (i.e. involving both dj and sj) SURE-like MSE
estimate less obvious. In the following theorem, we give an expression of an unbiased
estimate of the MSE in a given subband j of the unnormalized Haar DWT defined in
Section 7.2. This result serves as a data-dependent quantitative measure to be minimized
for Poisson intensity estimation in AWGN.

We recall that the family of vectors (en)n=1,...,Nj
denotes the canonical basis of RNj ,

i.e. all components of en are zero, except for the nth component, which is equal to one.

Theorem 6. Let θ(d, s) = θj(dj , sj) be an estimate of the noise-free wavelet coefficients
δ = δj. Define θ+(d, s) and θ−(d, s) by{

θ+n (d, s) = θn(d+ en, s− en)
θ−n (d, s) = θn(d− en, s− en)

(7.2)

Then the random variable

εj =
1

Nj

(
‖θ(d, s)‖2 + ‖d‖2 − 1Ts−Njσ

2
j

−dT
(
θ−(d, s) + θ+(d, s)

)− sT
(
θ−(d, s)− θ+(d, s)

)
(7.3)

+σ2
j

(
divd

{
θ−(d, s) + θ+(d, s)

}
+ divs

{
θ−(d, s)− θ+(d, s)

}))
is an unbiased estimate of the expected MSE for the subband under consideration, i.e.,
E {εj} = E {MSEj}.
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Proof. The proof relies centrally on the fact that, within a given scale, the scaling
coefficients are independent Poisson random variables degraded by AWGN of variance
σ2
j = 2jσ2. We consider the case where j = 1, so that we can use y = sj−1 and x = ςj−1

to avoid superscripts.

We first develop the squared error between δ and its estimate θ(d, s), using the fact
that δ is a deterministic quantity:

E
{‖θ(d, s)− δ‖2} = E

{‖θ(d, s)‖2}+ ‖δ‖2︸︷︷︸
(I)

−2E
{
δTθ(d, s)

}
︸ ︷︷ ︸

(II)

(7.4)

Now, we evaluate the two expressions (I) and (II) that involve the unknown data δ.

(I) ‖δ‖2 =

N1∑
n=1

(δn)
2
: We notice that

(δn)
2 = E {x2n(y2n − y2n−1)}+ E {x2n−1(y2n−1 − y2n)}

By applying Lemma 4 and Lemma 1 for θ(y) = y − y2n−1 and for θ(y) = y − y2n,
by using the fact that y2n and y2n−1 are statistically independent, we get

(δn)
2
= E

{
(y2n − y2n−1)

2 − (y2n + y2n−1)
}
− 2σ2 = E

{
d2n − sn

}− σ2
1

Therefore ‖δ‖2 = E
{‖d‖2 − 1Ts

}−N1σ
2
1

(II) E
{
δTθ(d, s)

}
=

N1∑
n=1

E {δnθn(d, s)}: We can successively write

E {δnθn(d, s)}
= E {x2nθn(d, s)} − E {x2n−1θn(d, s)}

Lemma 4
= E {y2nθn(d− en, s− en)} − E {y2n−1θn(d+ en, s− en)} −

E {b2nθn(d− en, s− en)}+ E {b2n−1θn(d+ en, s− en)}
Lemma 1

= E

{
y2n − y2n−1

2

(
θ−n (d, s) + θ+n (d, s)

)}
+

E

{
y2n + y2n−1

2

(
θ−n (d, s)− θ+n (d, s)

)}−

σ2

(
E

{
∂θ−n (d, s)

∂dn
+

∂θ−n (d, s)
∂sn

}
+ E

{
∂θ+n (d, s)

∂dn
− ∂θ+n (d, s)

∂sn

})
=

1

2
E
{
dn
(
θ−n (d, s) + θ+n (d, s)

)
+ sn

(
θ−n (d, s)− θ+n (d, s)

)}−

σ2E

{
∂

∂dn

(
θ−n (d, s) + θ+n (d, s)

)
+

∂

∂sn

(
θ−n (d, s)− θ+n (d, s)

)}
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and thus, since σ2
1 = 2σ2,

2E
{
δTθ(d, s)

}
= E

{
dT

(
θ−(d, s) + θ+(d, s)

)
+ sT

(
θ−(d, s)− θ+(d, s)

)}
+

σ2
1E

{
divd

{
θ−(d, s) + θ+(d, s)

}
+ divs

{
θ−(d, s)− θ+(d, s)

}}
Putting these two results (I),(II) back into (7.4) gives the desired equality. For j ≥ 2, the
proof is based on the same idea. �

Recently, a result similar to Equ. (7.3) was independently derived by Hirakawa et. al.
in [166] for the pure Poisson case (σ = 0).

7.4 Haar-Wavelet-Domain PUREshrink

As a benchmark for illustrating our approach, we propose a wavelet-domain estimator
which consists in applying the popular soft-threshold (ST) with a PURE-optimized thresh-
old. Our PUREshrink estimator can be viewed as the transposition of Donoho and John-
stone’s Gaussian SUREshrink [71] to Poisson noise removal. An important difference is
that the method described in [71] forces the threshold to be smaller than the universal
threshold (otherwise it is set to the value of the universal threshold); this is known to be
suboptimal for image-denoising applications. Our threshold optimization totally relies on
the minimization of PURE (without restrictions).

Contrary to the Gaussian case, where the noise is stationary and completely described
by its variance2, for Poisson data, the amount of noise directly depends on the intensity
we want to estimate. In the unnormalized Haar wavelet-domain, each wavelet coefficient
follows a Skellam distribution [167], whose variance is equal to the sum of the two un-
derlying Poisson intensities. By further considering the variance induced by the AWGN,
the overall variance of each wavelet coefficient djn is given by var

{
djn
}

= ςjn + σ2
j , which

can be roughly approximated by var
{
djn
} � sjn + σ2

j . Note that in the Haar-Fisz
transform [156], devised to stabilize the variance of a pure Poisson process, the scaling
coefficients are also considered as an estimate of the local noise variance. The PUREshrink
estimator can therefore be defined as

θSTn (d, s; a) = sign(dn) max(|dn| − a
√
|sn|+ σ2, 0), (7.5)

where, for each wavelet subband, the parameter a is set to the value that minimizes the
PURE (7.3) with θ(d, s) = θST(d, s; a). As observed in Figure 7.2, the minimum of the
PURE curve for various values of a closely coincides with the minimum of the MSE curve,
confirming the reliability of PURE as an estimate of the MSE.

2The noise is usually assumed to be zero-mean.
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(A) (B)

Figure 7.2: Reliability of PURE as an estimate of the MSE. (A) For a 32× 32
Haar wavelet subband of the Cameraman image at PSNR = 15.89 dB. (B) For
a 64× 64 Haar wavelet subband of the Boat image at PSNR = 12.18 dB.

7.5 Haar-Wavelet-Domain PURE-LET

Following the PURE-LET strategy introduced in Section 6.5, we propose to consider a
wavelet estimator that is formulated as a linear expansion of K thresholds (LET):

θLET(d, s;a) =
K∑

k=1

akθk(d, s),

where the θk’s are generic estimators that will be specified later in this section. Thanks to
this linear parameterization, the unbiased estimate of the MSE given in (7.3) is quadratic
with respect to the parameters a ∈ R

K . Therefore, its minimization boils down to the
resolution of a linear system of equations with small dimension K:

a = M−1c (7.6)

where for 1 ≤ k, l ≤ K,⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mk,l = θk(d, s)

Tθl(d, s)

ck =
1

2

(
dT(θ−

k (d, s) + θ+
k (d, s)) + sT(θ−

k (d, s)− θ+
k (d, s))

)
−

σ2

2

(
divd

{
θ−(d, s) + θ+(d, s)

}
+ divs

{
θ−(d, s)− θ+(d, s)

}) (7.7)

The definition of θ+
k (d, s) and θ−

k (d, s) is similar to (7.2).
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7.5.1 Pointwise Thresholding

Similarly to the AWGN case, we propose a linearly-parameterized thresholding function
with K = 2 parameters (a1 and a2), whose nth component is defined by

θLET0
n (d, s; [a1 a2]

T) = a1dn + a2

(
1− exp

(
− d2n
2T 2

n

))
dn (7.8)

In this expression, the linear parameters a1 and a2 define a compromise between two
regimes: either the wavelet coefficient dn is kept as is (signal preservation) or it is shrinked
towards zero (noise suppression). The exponential function has the advantage of being
smooth, which reduces the variance of the estimator.

As in the PUREshrink estimator, the threshold Tn is directly linked to the local
noise variance, estimated from the magnitude of the corresponding scaling coefficient
|sn|. However, thanks to the degrees of freedom provided by the two linear parameters
a1 and a2, the value of this threshold does not need to be optimized. By running several
simulations, we found that T 2

n = 6(|sn| + σ2) constituted a good choice, inducing
no significant loss compared to a subband-optimized threshold. Our experiments (see
Figure 7.4) show that the above thresholding function is already more efficient (approx.
+0.25 dB) than the previously presented PUREshrink (7.5).

7.5.2 Interscale Estimator

Interscale sign dependencies

The integration of interscale dependencies has already been shown to bring a substantial
improvement in the context of AWGN removal (Section 3.3). Therefore, we propose here
an analogous interscale wavelet thresholding, but for Poisson intensity estimation. The
idea is to exploit the scaling coefficients s to “predict” and reinforce the significant wavelet
coefficients of d at the same scale. Indeed, the scaling coefficients offer improved SNR
because they arise from Poisson random variables with summed intensities. They also
contain all the information about coarser-scale wavelet coefficients.

To construct an interscale predictor of the wavelet coefficient dn, we simply compute
the difference between the two scaling coefficients that surround sn:

d̃n = sn−1 − sn+1

Indeed, the lowpass and highpass Haar filters have the same group delay. The whole
procedure thus boils down to applying a centered gradient filter on the lowpass subband,
as illustrated in the diagram of Figure 7.3.

By taking a closer look at Figure 7.3, it can be observed that the signs of the interscale
predictor coefficients are consistent with those of the corresponding highpass subband.
This suggests adding a term proportional to this interscale predictor into the simple
thresholding function (7.8), leading to

θLET1
n (d, s; [a1 a2 a3]

T) = θLET0
n (d, s; [a1 a2]

T) + a3 (sn−1 − sn+1)︸ ︷︷ ︸
d̃n

(7.9)
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Lowpass: s Interscale Predictor: d̃ Highpass: d

Used to estimate
z−1 − z

Figure 7.3: The interscale predictor of subband HLj (resp. LHj , resp. HHj)
is obtained by horizontally (resp. vertically, resp. horizontally and vertically)
filtering the same-scale lowpass subband LLj with the centered gradient filter,
whose z-transform is z−1 − z.

This simple strategy brings significant improvements (approximately +0.5 dB). This
was confirmed by multiple experiments on standard grayscale images; some of these sim-
ulations are reported in Figure 7.4.

Interscale amplitude-sign dependencies

Further improvements can be obtained by grouping together wavelet coefficients of similar
magnitudes (Section 3.3). To increase the robustness w.r.t. noise, this grouping is based
on the magnitude of a smoothed version p of the previously defined interscale predictor
d̃. The smoothed version of the interscale predictor is simply obtained by applying a
normalized Gaussian kernel on the absolute value of d̃, i.e., pn =

∑
k |d̃k|fn−k, where

fk = e−k2/2/
√
2π. The proposed interscale wavelet thresholding is thus finally defined as

θLET2
n (d, s;a,b)

= exp

(
− p2n
2T 2

n

)
θLET1
n (d, s;a) +

(
1− exp

(
− p2n
2T 2

n

))
θLET1
n (d, s;b) (7.10)

where T 2
n = 6(|sn|+ σ2) is the same threshold as the one that appears in LET0 (7.8).

The above thresholding function has mainly two regimes: when the squared magnitude
of the predictor pn is small with respect to the local noise variance, LET2 essentially
behaves like LET1 with parameter a; when p2n is large with respect to the local noise
variance, LET2 essentially behaves like LET1 with parameter b. This “classification”
based on the predictor coefficients increases the adaptivity of the denoising process.

In Figure 7.4 and 7.5, it is seen that this latter interscale wavelet estimator clearly
gives the best results, both quantitatively and visually, among all estimators presented in
this section. Note that the PURE-based adjustment of the parameters a and b gives a
SNR gain that is very close to the optimum (which is obtained from an oracle adjustment
of these parameters using the knowledge of the original image).
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Cameraman 256 × 256 Lena 512 × 512

Figure 7.4: PSNR improvements brought by the PURE-LET strategy over
PUREshrink (Formula (7.5): “◦” markers), for two standard grayscale images.
Formula (7.8): “�” markers. Formula (7.9): “�” markers. Formula (7.10): “�”
markers). Oracle results for Formula (7.10) are shown with “∗” markers.

7.5.3 Multichannel Estimator

In this section, we propose a multichannel extension of the interscale Haar wavelet esti-
mator (7.10). According to the notations introduced in Section 3.4, Equ. (3.19), the MSE
inside each C ×Nj Haar wavelet subband j is defined as:

MSEj =
1

CNj
trace

{
(θj(dj , sj)− δj)(θj(dj , sj)− δj)T

}
(7.11)

Multichannel Haar-Wavelet-Domain PURE

We assume that the noisy measurements yc,n follow i.i.d. Poisson laws degraded by i.i.d.
AWGNs of variance σ2. In this framework, we can state the following result:

Corollary 7. Let θ(d, s) = θj(dj , sj) be an estimate of the noise-free wavelet coefficients
δ = δj and let ec,n denote a C ×N matrix filled with zeros, except at the position (c, n)
which is set to one. Define θ+(d, s) and θ−(d, s) by

{
θ+(d, s) = [θc,n(d+ ec,n, s− ec,n)]1≤c≤C,1≤n≤Nj

θ−(d, s) = [θc,n(d− ec,n, s− ec,n)]1≤c≤C,1≤n≤Nj

(7.12)
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(A) (B)

(C) (D)

(E) (F)

Figure 7.5: (A) Part of the original MRI slice ( Imax = 20). (B) Noisy
realization of it: PSNR = 17.99 dB. (C) Denoised by PUREshrink (7.5):
PSNR = 27.83 dB. (D) Denoised by PURE-LET 0 (7.8): PSNR = 28.03 dB.
(E) Denoised by PURE-LET 1 (7.9): PSNR = 29.17 dB. (F) Denoised by
PURE-LET 2 (7.10): PSNR = 29.73 dB.



SECTION 7.5 139

Then the random variable

εj =
1

CNj
trace

{
θ(d, s)θ(d, s)T + ddT − 1sT

}− σ2 −
1

CNj
trace

{
d
(
θ−(d, s) + θ+(d, s)

)T
+ s

(
θ−(d, s)− θ+(d, s)

)T}
+

σ2
j

CNj

(
divd

{
θ−(d, s) + θ+(d, s)

}
+ divs

{
θ−(d, s)− θ+(d, s)

})
(7.13)

is an unbiased estimate of the MSE (7.11) for the subband under consideration, i.e.
E {εj} = E {MSEj}.

Here, divd {θ(d, s)} =
∑
c,n

∂θc,n(d, s)

∂dc,n
and divs {θ(d, s)} =

∑
c,n

∂θc,n(d, s)

∂sc,n
are two

generalized divergence operators. The result provided in Corollary 7 directly comes from
a natural vector/matrix extension of Theorem 6.

Multichannel Haar-Wavelet-Domain PURE-LET

In the PURE-LET framework, the proposed multichannel Haar-wavelet-domain estimator
is built as a linear expansion of K thresholds, i.e.

θ(d, s) = [aT1 aT2 . . .aTK ]︸ ︷︷ ︸
AT

⎡⎢⎢⎢⎣
θ1(d, s)
θ2(d, s)

...
θK(d, s)

⎤⎥⎥⎥⎦ (7.14)

Thanks to this linear parameterization, the optimal set of KC×C parameters A (i.e.
the minimizer of (7.13)) is the solution of a linear system of equations:

Aopt = M−1C (7.15)

where for 1 ≤ k, l ≤ K

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mk,l = θk(d, s)θl(d, s)

T

Ck =
1

2

(
d
(
θ−
k (d, s) + θ+

k (d, s)
)T

+ s
(
θ−
k (d, s)− θ+

k (d, s)
)T)−

σ2

2

(
div1

{
θ−
k (d, s) + θ+

k (d, s)
}
+ div2

{
θ−
k (d, s)− θ+

k (d, s)
}) (7.16)
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Multichannel Haar-Wavelet-Domain Interscale Thresholding

Similarly to the multichannel denoising of AWGN (Section 3.4.3), we propose to use the
following multichannel Haar-wavelet-domain interscale thresholding:

θn(d, s)

= γn(p
T
npn)γn(d

T
ndn)︸ ︷︷ ︸

small predictors and small coefficients

aT1 dn + γn(p
T
npn)γn(d

T
ndn)︸ ︷︷ ︸

large predictors and small coefficients

aT2 dn +

γn(p
T
npn)γn(d

T
ndn)︸ ︷︷ ︸

small predictors and large coefficients

aT3 dn + γn(p
T
npn)γn(d

T
ndn)︸ ︷︷ ︸

large predictors and large coefficients

aT4 dn +

γn(p
T
npn)a

T
5 d̃n + γn(p

T
npn)a

T
6 d̃n︸ ︷︷ ︸

sign consistency enhancement

(7.17)

where γn(x) = exp
(
− |x|

2
√
CT 2

n

)
and γn(x) = 1− γn(x) are the two complementary group-

ing functions. The signal-dependent threshold is straightforwardly extended from the
monochannel case, i.e. T 2

n = 6|1Tsn| + Cσ2. When C = 1, we obviously recover the
monochannel denoiser defined in Equ. (7.10).

7.6 Experiments

In this section, we propose to compare our Haar-Wavelet-Domain PURE-LET approach
with three multiscale-based methods in simulated experiments:

• A variant of the Haar-Fisz algorithm described in [156]: the Haar-Fisz variance-
stabilizing transform (VST) is followed by a translation-invariant (TI) SURE-shrink
[71], obtained by averaging several cycle-spins (CS) of a non-redundant wavelet
transform. Due to the non shift-invariance of the Haar-Fisz transform, some “ex-
ternal” cycle-spins are also performed to the whole algorithm (Haar-Fisz VST +
TI-SUREshrink + Haar-Fisz inverse VST), as suggested in [156]. The use of a
“smooth” wavelet is also recommended: we have thus considered Daubechies’ sym-
lets with eight vanishing moments (sym8 ) [39].

• A standard variance-stabilizing transform followed by a high-quality AWGN removal
algorithm: as VST, we have retained the popular generalized Anscombe transform
(GAT) [168], which can also stabilize Poisson processes embedded in AWGN. For
the denoising part, we have considered Portilla et. al. BLS-GSM [81], applied both
in a non-redundant wavelet representation (sym8 ) and in a full steerable pyramid
(FSP).

• A state-of-the-art denoising algorithm specifically designed for Poisson intensity
estimation: we have retained Willett and Nowak’s Platelet approach3 [153]. Their
Poisson intensity estimation consists in optimizing (through a penalized likelihood)

3Matlab code available at: http://nislab.ee.duke.edu/NISLab/Platelets.html
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the coefficients of polynomials fitted to a recursive dyadic partition of the support
of the Poisson intensity. The shift-invariance of their approach can be increased by
performing several cycle-spins.

For all wavelet-based methods presented in this section, we use the same number of
decomposition levels, i.e. 4 (resp. 5) for 256 × 256 (resp. 512 × 512) images. Standard
periodic boundary conditions have been applied. The input peak signal-to-noise ratios
(PSNR4) are adjusted by rescaling the original test images, from a maximum intensity
Imax of 120 to a minimum of 1.

7.6.1 Poisson Noise Removal

In this section, we only consider the estimation of the intensity of a pure Poisson process,
i.e. without further AWGN degradation.

Table 7.1 summarizes the PSNRs obtained by the various algorithms applied in a
non-redundant framework. It can be observed that the PURE-based approach clearly
outperforms (over 1 dB, on average) the VST-based (standard or sophisticated) wavelet
denoisers. Note that the retained basis (sym8 ) is smoother, and thus more suitable for
image-restoration tasks, than the basic Haar wavelet that we use. Our solution also
gives significantly better PSNRs (∼ 1 dB) than the non-redundant version of the Platelet
approach.

In Figure 7.6, we compare the various algorithms applied in redundant representa-
tions. For the Haar-Fisz+SUREshrink and Platelet algorithms, as well as for the pro-
posed PURE-LET (7.10), near translation invariance is achieved by performing several
cycle-spins, respectively 20 internal and 5 external5, 10, and 10. The redundant BLS-
GSM consists in applying the BLS-GSM in a full steerable pyramid. We observe that
the non-redundant version of the PURE-LET (7.10), which serves as a benchmark in this
comparison, is already competitive with the redundant variants of the VST-based de-
noisers. Nevertheless, it is usually outperformed by its redundant version and by the
state-of-the-art Platelet algorithm.

Two important aspects are not reflected in these comparisons: the visual quality and
the computation time. Some denoised images are given in Figure 7.7 and Table 7.2
gives more insights regarding the tradeoff between the degree of redundancy and the
computation time of the various algorithms. The Platelet procedure achieves the best
PSNRs when considering a high number (25) of cyclic shifts. However, these results are
obtained at a prohibitive computational cost for a routine use in real applications. Cyclic
shifts of our PURE-based approach also brings some gains (around 1 dB), despite the
fact that an independent “shift-wise” PURE minimization is sub-optimal (as shown in
Chapter 4 for the Gaussian case). This suggests that deriving a rigorous unbiased estimate
of the MSE for redundant processing of Poisson data could bring further improvement;
this aspect will be examined in the next chapter.

Finally, we also compared the proposed PURE-LET algorithm with the interscale
SURE-LET strategy, specifically devised for Gaussian noise statistics (see Chapter 3). For

4Defined as: PSNR = 10 log10
I2max

MSE
, where Imax is the maximum intensity of the noise-free image.

5Due to the non-shift-invariance of the Haar-Fisz variance-stabilizing transform.
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Table 7.1: Comparison of non-redundant multiscale Poisson noise removal algorithms
Image Peppers 256 × 256
Imax 120 60 30 20 10 5 1

Input PSNR 23.92 20.92 17.91 16.17 13.14 10.12 3.14

Haar-Fisz+SUREshrink
(OWT sym8)

29.27 27.30 24.54 23.82 21.98 21.03 18.69

GAT+BLS-GSM
(OWT sym8)

29.90 28.02 26.16 25.13 23.10 20.48 15.55

Platelet (1 CS) 29.07 27.44 25.73 24.92 23.23 21.57 18.17

PURE-LET(7.10)
(OWT Haar)

30.28 28.51 26.72 25.70 23.81 21.99 18.92

Image Cameraman 256 × 256
Imax 120 60 30 20 10 5 1

Input PSNR 24.08 21.07 18.05 16.29 13.28 10.27 3.28

Haar-Fisz+SUREshrink
(OWT sym8)

28.55 26.42 24.40 23.10 22.40 20.97 18.68

GAT+BLS-GSM
(OWT sym8)

29.68 27.79 25.95 24.88 22.82 20.55 15.49

Platelet (1 CS) 28.29 26.79 25.44 24.60 23.24 21.49 18.70

PURE-LET(7.10)
(OWT Haar)

30.13 28.30 26.58 25.56 23.93 22.41 19.32

Image MIT 256 × 256
Imax 120 60 30 20 10 5 1

Input PSNR 25.77 22.78 19.77 18.00 15.01 12.00 5.00

Haar-Fisz+SUREshrink
(OWT sym8)

28.81 26.77 24.26 22.90 21.76 19.98 16.08

GAT+BLS-GSM
(OWT sym8)

29.83 27.70 25.57 24.38 22.07 19.83 14.30

Platelet (1 CS) 28.25 26.44 24.70 23.47 21.65 20.18 16.24

PURE-LET(7.10)
(OWT Haar)

30.06 27.97 25.99 24.87 23.00 21.20 17.39

Image Moon 512 × 512
Imax 120 60 30 20 10 5 1

Input PSNR 26.25 23.24 20.24 18.48 15.46 12.46 5.46

Haar-Fisz+SUREshrink
(OWT sym8)

29.03 26.83 25.02 24.33 23.56 22.79 21.97

GAT+BLS-GSM
(OWT sym8)

29.10 27.35 25.66 24.71 23.41 21.94 18.77

Platelet (1 CS) 27.16 26.01 25.05 24.60 23.96 23.63 22.97

PURE-LET(7.10)
(OWT Haar)

29.62 27.96 26.57 25.88 24.92 24.24 23.16

Note: The output PSNRs have been averaged over ten noise realizations, except for the Platelet approach.
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Peppers 256 × 256 Cameraman 256 × 256

MIT 256 × 256 Moon 512 × 512

Figure 7.6: Comparison between the non-redundant PURE-LET (7.10) (“◦”
markers), a nearly translation invariant (TI) version of it (“∗” markers), TI-
Haar-Fisz+TI-SUREshrink (“♦” markers), GAT+BLS-GSM applied in a FSP
(“�” markers), and TI-Platelet(“�” markers).

a fair comparison, we used an adapted implementation of the interscale SURE-LET algo-
rithm that involved the same number of parameters as the present PURE-LET method.
We also considered the same wavelet transformation, i.e. OWT Haar, for both techniques.
As can be seen in Figure 7.8, applying the SURE-LET strategy in the VST-domain is
less efficient for small intensities (over 0.5 dB loss for intensities lower than 10). This
can be attributed to the rigorous minimization of an estimate of the actual MSE that is
performed by the proposed PURE-LET algorithm.
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(A) (B)

(C) (D)

(E) (F)

Figure 7.7: (A) The original Pneumatix image, by courtesy of the follow-
ing website: http://pubimage.hcuge.ch:8080/. (B) Noisy realization of it:
PSNR = 20.27 dB. (C) Denoised with TI-Haar-Fisz + TI-SUREshrink :
PSNR = 29.08 dB in 1.3s. (D) Denoised with Platelet (25 CS): PSNR =
29.52 dB in 960s. (E) Denoised with our non-redundant PURE-LET (7.10):
PSNR = 29.21 dB in 0.2s. (F) Denoised with our redundant PURE-LET (7.10)
(25 CS): PSNR = 29.73 dB in 4.4s.
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Table 7.2: Cycle-spinning: PSNR improvement vs computation time

Cameraman at 17.25 dB

Algorithms
Non-redundant 25 cycle-spins

PSNR [ dB] Time [s] PSNR [ dB] Time [s]

Haar-Fisz + SUREshrink 24.01 0.06 24.83 1.3
PURE-LET (7.10) 26.09 0.19 26.75 4.6

Platelet 25.01 44.5 27.17 1112

MIT at 18.98 dB

Algorithms
Non-redundant 25 cycle-spins

PSNR [ dB] Time [s] PSNR [ dB] Time [s]

Haar-Fisz + SUREshrink 23.47 0.06 24.64 1.3
PURE-LET (7.10) 25.48 0.19 26.43 4.6

Platelet 24.10 36 26.80 891

Note: Output PSNRs and computation times have been averaged over ten noise realizations, except for
the Platelet approach.

7.6.2 Poisson and Gaussian Noise Removal

Unfortunately, there are only few algorithms (e.g. [169]) specifically designed for the
estimation of Poisson intensities in AWGN. In Figure 7.9, we thus propose to compare our
PURE-LET algorithm (7.10) with the GAT+BLS-GSM applied both in a non-redundant
and in a redundant representation. For input PSNRs lower than ∼ 12 dB, the VST-based
approach is outperformed by the proposed PURE-LET estimator, no matter the level
of redundancy of the considered transform. For higher PSNRs, the GAT+BLS-GSM
applied in a full steerable pyramid gives similar results than a nearly shift-invariant (10
CS) version of our PURE -based approach.

In Figure 7.10, we show a strongly noisy color image denoised by our multichannel
PURE-LET algorithm (7.17). As a comparison, we have also displayed the result of the
GAT+BLS-GSM applied separately on each of the color channel. Beside having higher
PSNRs, we can notice that the PURE-LET denoised images are not over-smoothed. For
instance, the number “20”, which is hardly distinguishable in the noisy image and com-
pletely blurred after the GAT+BLS-GSM processing, becomes visible after the PURE-
LET denoising.

7.7 Summary

In this chapter, we have derived an analytical expression of a Haar wavelet domain unbi-
ased MSE estimate for a Poisson process degraded by AWGN (PURE). The unnormalized
Haar wavelet transform turns out to be the only multiresolution transform which propa-
gates the Poisson statistics in its lowpass channel.

In the proposed PURE-LET Haar wavelet thresholding, the scaling coefficients play
multiple roles. First, they naturally appear in the derivation of PURE, although the latter
is only used to optimize the denoising of the wavelet coefficients. Second, they serve as
an estimate of the signal-dependent variance of the noise contaminating the same-scale
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Peppers 256 × 256 Lena 512 × 512

Figure 7.8: PSNR improvements brought by the direct handling of Poisson
statistics (PURE-LET (OWT Haar): “+” markers) over VST + SURE-LET
schemes (Anscombe + SURE-LET (OWT Haar): “◦” markers; Haar-Fisz +
SURE-LET (OWT Haar): “∗” markers).

Peppers 256 × 256 MIT 256 × 256

Figure 7.9: Comparison between the non-redundant PURE-LET (7.10) (“+”
markers), a nearly translation invariant version of it (“∗” markers), and
GAT+BLS-GSM applied in an orthonormal wavelet representation (“◦” mark-
ers) or in a FSP (“�” markers).

wavelet coefficients. Third, they are used to built an interscale predictor for each wavelet
coefficients at the same scale.

The performance of the resulting interscale PURE-LET estimator for denoising mono-
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and multichannel images has been assessed in various simulated experiments. The main
conclusions that could be drawn from the comparisons with the state-of-the-art algorithms
were the following:

• Although restricted to the maximally decimated Haar wavelet transform, the pro-
posed solution yields results that are comparable or superior to the standard VST-
based approaches, even when the latter are applied in a redundant representation.

• A nearly shift-invariant version of our algorithm (obtained by averaging the results
of a few cycle-spins) is competitive with the sophisticated Platelet method, while
being two orders of magnitude faster.
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(A) (B)

(C) (D)

(E)

Figure 7.10: (A) Part of the original 512 × 512 Yacht image. (B) Noisy re-
alization of it: PSNR = 10.77 dB. (C) Denoised with GAT + BLS-GSM
(FSP): PSNR = 23.29 dB in 88s. (D) Denoised with our non-redundant
multichannel PURE-LET (7.17): PSNR = 24.35 dB in 4.4s. (F) Denoised
with a slightly redundant (4 CS) variant of our multichannel PURE-LET (7.17):
PSNR = 25.23 dB in 17.5s.



Chapter 8

PURE-LET for Arbitrary
Transform-Domain Processing

8.1 Motivations

In Chapter 7, we have presented a PURE-LET algorithm restricted to the use of the
unnormalized Haar wavelet transform. In this chapter, we propose to generalize the
PURE-LET strategy to devise and optimize a broad class of nonlinear processing applied
in an arbitrary linear transform domain. In particular, our goal is to fully take advantage
of the improved denoising quality achievable by the use of redundant transformations.

8.2 Taylor Series Approximation of PURE

PURE, as defined in Theorem 4, is generally time-consuming to evaluate for an arbitrary
nonlinear processing, due to the presence of the term F−(y). Indeed, to compute a single
component fn(y − en) of F−(y), one needs to apply the whole denoising process to a
slightly perturbed version of the noisy input. This operation has to be repeated N times
to get the full vector F−(y). Such a “brute force” approach is thus prohibitive in practice,
considering that a typical image contains N = 2562 pixels. Instead, we propose to use a
first order Taylor series expansion of F−(y), i.e. for all n = 1 . . . N :

fn(y − en) = fn(y)− ∂fn(y)

∂yn
+

∫ 1

0

(1− t)
∂2

∂y2n
fn(y − ten)dt︸ ︷︷ ︸

Cn(y)

where we have assumed that fn ∈ C2(RN ), ∀n.
The remainder Cn(y) of the first order Taylor series approximation of each component

149
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of F−(y) is upper-bounded by

|Cn(y)| ≤ 1

2
sup

t∈[0,1]

∣∣∣∣ ∂2

∂y2n
fn(y − ten)

∣∣∣∣ , ∀n = 1 . . . N (8.1)

Consequently, provided that the above upper bounds (8.1) remain negligible compared
to the lower order terms, F−(y) is well approximated by F(y) − ∂F(y), where ∂F(y) =

diag {JF(y)} = [∂fn(y)∂yn
]n=1...N is the N × 1 vector made of the first derivative of each

function fn with respect to yn. The PURE unbiased MSE estimate defined in (6.3) is, in
turn, well approximated by:

ε̃ =
1

N

(‖F(y)‖2 − 2yT(F(y)− ∂F(y)) + 2σ2div {F(y)− ∂F(y)})+
1

N
(‖y‖2 − 1Ty)− σ2 (8.2)

If the processing F is linear, then the two MSE estimates (6.3) and (8.2) are obviously
equivalent.

Note that a first order Taylor series approximation was also proposed by Yuan in [170]
to derive a computable unbiased estimate of the Kullback-Leibler distance1 for a gener-
alized Poisson process. The so-built unbiased estimate was then used to optimize the
smoothing parameter of a penalized likelihood estimator of the Poisson intensities.

8.3 PURE for Transform-Domain Denoising

In this section, we derive an expression for the approximated PURE given in Equ. (8.2), in
the particular case of a transformed domain processing Θ. Dealing with signal-dependent
noise makes it generally difficult to express the observation model in the transformed
domain. Therefore, we assume here that a (coarse) “map” of the signal-dependent noise
variance can be obtained in the transformed domain, by applying a linear transformation
(typically a smoothing) D̃ = [d̃i,j ](i,j)∈[1;L]×[1;N ] to the noisy data y. The denoised
estimate x̂ can be thus expressed as a function F of the noisy signal y:

x̂ = F(y) = RΘ(Dy︸︷︷︸
w

, D̃y︸︷︷︸
w̃

) (8.3)

where Θ(w, w̃) = [θl(w, w̃)]l∈[1;L] is a possibly multivariate processing.

Note that the PUREshrink and the PURE-LET algorithms introduced in Sections 7.4
and 7.5 belong to the general class of processing defined in Equ. (8.3). In their case, D
(resp. R) implements the (unnormalized) Haar wavelet decomposition (resp. reconstruc-
tion) and w (resp. w̃) represents the Haar wavelet (resp. scaling) coefficients.

1The Kullback-Leibler (KL) distance is a non-symmetric measure between two continuous (resp. dis-

crete) PDF p1 and p2, defined as: KL(p1, p2) =
∫
p1(x) log

p1(x)
p2(x)

dx (resp.
∑

i p1(xi) log
p1(xi)
p2(xi)

).
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Corollary 8. For a transform-domain processing as defined in (8.3), the first order
approximation of the MSE estimate given in Equ. (8.2) can be reformulated as:

ε̃ =
1

N

(‖F(y)− y‖2 − 1Ty
)− σ2 +

2

N
yTdiag

{
RJΘ(w)D+RJΘ(w̃)D̃

}
+ (8.4)

2σ2

N
trace

{
DRJΘ(w) + D̃RJΘ(w̃)

}
−

2σ2

N
div

{
diag

{
RJΘ(w)D+RJΘ(w̃)D̃

}}
where

� JΘ(w) =
[
∂θk(w,w̃)

∂wl

]
1≤k,l≤L

is the L × L Jacobian matrix of the transform-domain

processing Θ, made of the first-order partial derivative of each function θk(w, w̃)
w.r.t. the components of its first variable w.

� JΘ(w̃) =
[
∂θk(w,w̃)

∂w̃l

]
1≤k,l≤L

is the L × L Jacobian matrix of the transform-domain

processing Θ, made of the first-order partial derivative of each function θk(w, w̃)
w.r.t. the components of its second variable w̃.

Proof. Using the result given in (8.2), we only have to further develop the Jacobian

matrix of the denoising process JF(y) = [∂fi(y)∂yj
]1≤i,j≤N which appears in yT∂F(y) =

yTdiag {JF(y)}, div {F(y)} = trace {JF(y)} and div {∂F(y)} = div {diag {JF(y)}}:
∂fi(y)

∂yj
=

L∑
l=1

ri,l
∂θl(w, w̃)

∂yj

=
L∑

l=1

ri,l

L∑
k=1

(∂θl(w, w̃)

∂wk

∂wk

∂yj︸︷︷︸
dk,j

+
∂θl(w, w̃)

∂w̃k

∂w̃k

∂yj︸︷︷︸
d̃k,j

)

=
L∑

l=1

L∑
k=1

ri,l

( ∂θl(w, w̃)

∂wk︸ ︷︷ ︸
[JΘ(w)]l,k

dk,j +
∂θl(w, w̃)

∂w̃k︸ ︷︷ ︸
[JΘ(w̃)]l,k

d̃k,j

)
(8.5)

Hence, JF(y) = RJΘ(w)D+RJΘ(w̃)D̃ and consequently,

yT∂F(y) = yTdiag
{
RJΘ(w)D+RJΘ(w̃)D̃

}
(8.6)

div {F(y)} = trace
{
DRJΘ(w) + D̃RJΘ(w̃)

}
(8.7)

div {∂F(y)} = div
{
diag

{
DRJΘ(w) + D̃RJΘ(w̃)

}}
(8.8)

Putting back Equ. (8.6), (8.7) and (8.8) into formula (8.2) finally gives the desired re-
sult (8.4). �
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8.4 Pointwise Estimator for Undecimated Filterbank
Transforms

In this section, we show how to use the general result of Corollary 8 to globally optimize
a simple pointwise thresholding applied to the coefficients of a J-band undecimated filter-
bank (similar to the one depicted in Figure 4.1 and described in Section 4.3.2). Although
all the results presented in this section are derived for 1D signals, they can be straight-
forwardly extended to higher dimensional signals, when considering separable filters.

8.4.1 Pointwise PURE

In Corollary 8, we gave the expression of the first order Taylor series approximation of
PURE for an arbitrary transformed domain processing Θ. We now restrict our study to
the particular case of a pointwise processing, i.e. Θ(w, w̃) = [θl(wl, w̃l)]l∈[1;L].

Corollary 9. For a transformed domain pointwise processing, PURE can be approxi-
mated by:

ε̃ =
1

N

(‖F(y)− y‖2 − 1Ty
)− σ2 +

2

N

(
Θ1(w, w̃)T(D •RT)y +Θ2(w, w̃)T(D̃ •RT)y

)
+

2σ2

N

(
diag {DR}TΘ1(w, w̃) + diag

{
D̃R

}T

Θ2(w, w̃) (8.9)

−diag
{
D2R

}T
Θ11(w, w̃)− diag

{
D̃2R

}T

Θ22(w, w̃)

−2 diag
{
(D • D̃)R

}T

Θ12(w, w̃)
)

where

� Θ1(w, w̃) =
[
∂θl(wl,w̃l)

∂wl

]
l∈[1;L]

is the L × 1 vector made of the first derivative, with

respect to its first variable, of each function θl.

� Θ2(w, w̃) =
[
∂θl(wl,w̃l)

∂w̃l

]
l∈[1;L]

is the L × 1 vector made of the first derivative, with

respect to its second variable, of each function θl.

� Θ12(w, w̃) =
[
∂2θl(wl,w̃l)

∂wl∂w̃l

]
l∈[1;L]

is the L × 1 vector made of the first derivative, with

respect to its first variable and second variable, of each function θl.

� Θ11(w, w̃) =
[
∂2θl(wl,w̃l)

∂w2
l

]
l∈[1;L]

is the L×1 vector made of the second derivative, with

respect to its first variable, of each function θl.

� Θ22(w, w̃) =
[
∂2θl(wl,w̃l)

∂w̃2
l

]
l∈[1;L]

is the L×1 vector made of the second derivative, with

respect to its second variable, of each function θl.
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� “•” denotes the Hadamard (element-by-element) product between two matrices.

� D2 (resp. D̃2) stands for D •D (resp. D̃ • D̃).

Proof. Setting i = j, k = l and replacing θl(w, w̃) by its pointwise restriction θl(wl, w̃l)
in Equ. (8.5) leads to:

∂fi(y)

∂yi
=

L∑
l=1

ri,l

( ∂θl(wl, w̃l)

∂wl︸ ︷︷ ︸
[Θ1(w,w̃)]l

dl,i +
∂θl(wl, w̃l)

∂w̃l︸ ︷︷ ︸
[Θ2(w,w̃)]l

d̃l,i

)

Similarly, we have:

∂2fi(y)

∂y2i
=

L∑
l=1

ri,l

( ∂2θl(wl, w̃l)

∂w2
l︸ ︷︷ ︸

[Θ11(w,w̃)]l

d2l,i +
∂2θl(wl, w̃l)

∂w̃2
l︸ ︷︷ ︸

[Θ22(w,w̃)]l

d̃2l,i + 2
∂2θl(wl, w̃l)

∂wl∂w̃l︸ ︷︷ ︸
[Θ12(w,w̃)]l

dl,id̃l,i

)
(8.10)

and consequently:

yT∂F(y) =
L∑

l=1

[Θ1(w, w̃)]l

N∑
i=1

dl,iri,l︸ ︷︷ ︸
[D•RT]l,i

yi +
L∑

l=1

[Θ2(w, w̃)]l

N∑
i=1

d̃l,iri,l︸ ︷︷ ︸
[D̃•RT]l,i

yi

= Θ1(w, w̃)T(D •RT)y +Θ2(w, w̃)T(D̃ •RT)y (8.11)

div {F(y)} =

L∑
l=1

[Θ1(w, w̃)]l

N∑
i=1

dl,iri,l︸ ︷︷ ︸
[DR]l,l

+

L∑
l=1

[Θ2(w, w̃)]l

N∑
i=1

d̃l,iri,l︸ ︷︷ ︸
[D̃R]l,l

= diag {DR}TΘ1(w, w̃) + diag
{
D̃R

}T

Θ2(w, w̃) (8.12)

div {∂F(y)} =
L∑

l=1

[Θ11(w, w̃)]l

N∑
i=1

d2l,iri,l︸ ︷︷ ︸
[D2R]l,l

+
L∑

l=1

[Θ22(w, w̃)]l

N∑
i=1

d̃2l,iri,l︸ ︷︷ ︸
[D̃2R]l,l

+

2

L∑
l=1

[Θ12(w, w̃)]l

N∑
i=1

dl,id̃l,iri,l︸ ︷︷ ︸
[(D•D̃)R]l,l

= diag
{
D2R

}T
Θ11(w, w̃) + diag

{
D̃2R

}T

Θ22(w, w̃) +

2 diag
{
(D • D̃)R

}T

Θ12(w, w̃) (8.13)

Putting back Equ. (8.11), (8.12) and (8.13) into formula (8.2) finally gives the desired
result (8.9). �
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8.4.2 Choice of D̃

In a multiscale undecimated filterbank, the scaling coefficients of the lowpass residual at a
given scale j could be used as a reliable estimation of the signal-dependent noise variance2

for each bandpass subband from the same scale j. However, except for the Haar wavelet
filters, there is a group delay difference between the output of the lowpass and bandpass
channels that needs to be compensated for. Contrary to the construction of the interscale
predictor described in Section 3.3.1, we do not want the output of the lowpass channel to
“look like” the output of the bandpass channel. We are therefore looking for a lowpass
filter Q(z), such that:

H(z−1)Q(z) = G(−z−1)R1(z), where R1(z) = ±R1(z
−1) is arbitrary.

Under these design constraints, and using the fact that G(−z−1) = zH(z), one can show
that the desired group delay compensation (GDC) filter is given by:

Q(z) = zH(z)2R(z), where R(z) = ±R(z−1) is arbitrary. (8.14)

In practice, we will consider a normalized filter Q(z), i.e. such that
∑

n∈Z
q2n = 1. Note

that, in the case of symmetric or nearly symmetric filters, such as the Daubechies symlets,
the shortest-support GDC filter is simply given by Q(z) = z, i.e. a one-sample shift.

The L×N matrix D̃ can be then defined as D̃ = [D̃T
1 D̃T

2 . . . D̃T
J+1]

T, with[
D̃j

]
k,l

=
∑
n∈Z

h̃j [l − k + nN ] ,

where h̃j [n] is the nth coefficient of the filter{
H̃j(z) = 2jQ(z2

j−1

)Hj(z) = Q(z2
j−1

)H(z)H(z2) . . . H(z2
j−1

), for j = 1, 2, . . . , J.

H̃J+1(z) = 2JHJ(z) = H(z)H(z2) . . . H(z2
J−1

)

In an overcomplete BDCT representation, the lowpass residual band can directly serve
as a coarse estimate of the noise variance3 for each bandpass subband, since the filters of
the BDCT have the same group delay.

8.4.3 Computation of Transform-dependent Terms

To compute the approximated unbiased MSE estimate of Equ. (8.9), we need to evaluate
several terms that solely depend on the choice of transformation:

1. Computation of diag {DR}:
We have already shown in Section 4.3.2 that, thanks to the biorthogonality condi-

2Up to a scale-dependent factor βj given by: βj =

∑
k g̃j [k]

2

∑
k h̃j [k]

.

3Up to the scaling factor βj = 1/
√
M .
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tion (4.9),

diag {DjRj} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Mj
[1, 1, . . . , 1︸ ︷︷ ︸

N times

]T , for j = 1, 2, . . . , J

1

MJ
[1, 1, . . . , 1︸ ︷︷ ︸

N times

]T , for j = J + 1

where for multiscale filterbanks, Mj = 2j is the downsampling factor. For an
overcomplete BDCT, Mj = M , where M is the size of the considered blocks.

2. Computation of diag
{
D̃R

}
, diag

{
D2R

}
, diag

{
D̃2R

}
and diag

{
(D • D̃)R

}
:

Contrary to the previous diagonal term, the computation of the above diagonal
terms does not generally lead to simple expressions that are independent from the
coefficients of the underlying filters. However, all diagonal terms presented in this
section can be easily computed offline, using the numerical algorithm described in
Section 4.3.4. In particular, when the various matrices are not explicitly given or
when non-periodic boundary extensions are performed, this numerical scheme can
also be applied to compute all these diagonal terms.

Note that the vector (D •RT)y (resp. (D̃ •RT)y) is obtained by analyzing the noisy
data y with the considered undecimated filterbank using modified analysis filters with
coefficients g̃j [k]gj [−k] (resp. h̃j [k]gj [−k]).

8.4.4 Thresholding Function

In the case of a Poisson process, we need a signal-dependent transform-domain threshold
to take into account the non-stationarity of the noise. If we consider unit-norm filters,
the variance σ2 of the AWGN is preserved in the transformed domain. An estimation
of the variance of the Poisson noise component is given by the magnitude of |w̃j | (built
as described in Section 8.4.2), up to the scale-dependent factor βj = 2−j/2 (resp. βj =

1/
√
M) for a multiscale transform (resp. for an overcomplete BDCT). Therefore, we

propose the following signal-dependent threshold, tj(w̃) =
√
βj |w̃|+ σ2, which is then

embedded in a subband-dependent thresholding function, similarly to the one proposed
in Section 4.3.3 for AWGN reduction in redundant representations:

θj(w, w̃) = aj,1 w︸︷︷︸
θj,1(w,w̃)

+aj,2 we
−
(

w
3tj(w̃)

)8︸ ︷︷ ︸
θj,2(w,w̃)

(8.15)

To compute the approximated PURE given in Equ. (8.9), one needs to use a differen-
tiable (at least, up to the second order) approximation of the absolute value function: in
practice, we suggest to use tanh(kw̃)w̃ (typically k = 100) instead of |w̃|.

As observed in Figure 8.1, the proposed thresholding function can be perceived as
a smooth hard-thresholding. Thanks to the use of a signal-dependent threshold, each
transformed coefficient is adaptively thresholded according to its estimated amount of
noise.
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Figure 8.1: A possible realization of the proposed thresholding function (8.15)
in a particular subband of an undecimated Haar wavelet representation.

8.4.5 Reliability

In the generalized PURE-LET framework, the whole transformed domain thresholding
can be rewritten as:

F(y) =

J∑
j=1

2∑
k=1

aj,k RjΘj,k(Djy, D̃jy)︸ ︷︷ ︸
Fj,k(y)

+RJ+1DJ+1y︸ ︷︷ ︸
lowpass

(8.16)

The parameters aj,k that minimize the approximate MSE estimate ε̃ given in Equ. (8.2)
are then the solution of the linear system of 2J equations Ma = c̃, where for k, l ∈
[1; J ]× [1; 2], ⎧⎪⎪⎪⎨⎪⎪⎪⎩

M =
[
Fk(y)

TFl(y)
]
2(k1−1)+k2,2(l1−1)+l2

c̃ =
[
(Fk(y)− ∂Fk(y)

T(Id−RJ+1DJ+1)y−
σ2div {Fk(y)− ∂Fk(y)}

]
2(k1−1)+k2

(8.17)

For very low intensity signals (typically such that xn < 5, ∀n), the first order Tay-
lor series approximation of some nonlinear functions F−

j,2 might be inaccurate, leading

to an unreliable approximation of the (j, 2)th component of the PURE vector c. To
illustrate this scenario (in the case of an undecimated Haar wavelet representation),
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we have plotted in the first row of Figure 8.2 the SNR between cj,2 (for j = 1 and
j = 3) and its approximation c̃j,2 as a function of the average noise-free signal energy
Emean = 1/N ‖x‖2 = 1/N E

{‖y‖2 − 1Ty
} − σ2. Any non-linearly processed subband

Fj,2(y) for which the SNR of the approximation is below a given threshold (typically
around 40 dB), should be disregarded from the LET. In practice, we need to identify the
badly-approximated functions without computing their corresponding SNR. Hereafter,
we detail two approaches for this identification.

The first consists in monitoring the decrease of the approximation quality by the
value of the upper-bound on the Taylor series remainder proposed in Equ. (8.1). In the
particular case of a transformed-domain pointwise processing, this upper-bound |Cn(y)|
can be further developed as:

sup
t∈[0,1]

∣∣∣∣ ∂2

∂y2n
fn(y − ten)

∣∣∣∣
(8.10)

≤ sup
t∈[0,1]

L∑
l=1

∣∣∣∣rn,l(d2l,n ∂2

∂w2
l

θl(wl − tdl,n, w̃l − td̃l,n) + d̃2l,n
∂2

∂w̃2
l

θl(wl − tdl,n, w̃l − td̃l,n)

+2 dl,nd̃l,n
∂2

∂wl∂w̃l
θl(wl − tdl,n, w̃l − td̃l,n)

)∣∣∣∣
≤ sup

t∈[0,1]

L∑
l=1

(∣∣∣∣ ∂2

∂w2
l

θl(wl − tdl,n, w̃l − td̃l,n)

∣∣∣∣+ ∣∣∣∣ ∂2

∂w̃2
l

θl(wl − tdl,n, w̃l − td̃l,n)

∣∣∣∣
+2

∣∣∣∣ ∂2

∂wl∂w̃l
θl(wl − tdl,n, w̃l − td̃l,n)

∣∣∣∣)
≤

L∑
l=1

sup
t∈[−1,1]2

(∣∣∣∣ ∂2

∂w2
l

θl(wl − t1, w̃l − t2)

∣∣∣∣+ ∣∣∣∣ ∂2

∂w̃2
l

θl(wl − t1, w̃l − t2)

∣∣∣∣
+2

∣∣∣∣ ∂2

∂wl∂w̃l
θl(wl − t1, w̃l − t2)

∣∣∣∣) (8.18)

where we have used the fact that |rn,l|, |dn,l|, |d̃n,l| ≤ 1, for n = 1 . . . N and l = 1 . . . L,
since we are considering unit-norm filters. In a J-band undecimated filterbank, the upper-
bound derived in Equ. (8.18) can be further tighten in a subband-adaptive manner, since
|rn,l| ≤ 1/Mj , for all n = 1 . . . N and (j − 1)N + 1 ≤ l ≤ jN (the total number of trans-
formed coefficients being usually given by L = J ×N). In the second row of Figure 8.2,
we have plotted the values of the upper-bound (8.18) as a function of the average energy
of the noise-free signal. In this particular case, the argument of the supremum has been
computed for a discrete set of values t ∈ [−1, 1] × [−1, 1] and we have then retained the
maximum value. Although feasible, this first approach turns out to be sensitive to the
computation of the supremum. Based on the value of this supremum, it becomes then
difficult to find an appropriate image-independent “threshold of reliability”, above which,
a non-linearly processed subband should be disregarded.

In practice, we suggest to consider an alternative empirical approach, based on the
following observation: we notice in the first row of Figure 8.2 that the SNR of the approx-
imation is a nearly linear (in a logarithmic scale) function of the average signal energy.
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We further observe that, for a given average signal energy, the quality of the approxima-
tion increases as the iteration depth j increases. Consequently, we suggest to only keep
those non-linearly processed subbands Fj,2(y) for which Tj = MjEmean is above a given
threshold T ; we experimentally found that any value of T ∈ [5, 15] was a reasonable choice
(see the third row of Figure 8.2). Thanks to this restriction, the PURE-based parameters
optimization gives similar PSNR results to the MSE-based optimization, even when the
latter considers all the non-linearly processed subbands Fj,2(y), as shown in Figure 8.3.

8.5 Experiments

In this section, we propose to compare our PURE-LET thresholding (8.15) applied in
the Haar UWT with three multiscale-based methods in simulated experiments. We have
retained the same algorithms and followed the same protocol as in Section 7.6.

8.5.1 Poisson Noise Removal

Before comparing our approach with the other state-of-the-art methods, we point out
in Figure 8.4 that a PURE-LET thresholding applied in an undecimated Haar wavelet
representation outperforms (over +1dB) the non-redundant interscale thresholding (7.10)
presented in Chapter 7. When several cycle-spins of the latter are considered, the gain
(0.3− 0.5 dB) becomes less important.

In Table 8.1, we compare our method with the retained state-of-the-art multiscale
denoising algorithms. As observed, we obtain, on average, the highest PSNR results.
The TI-Haar-Fisz+TI-SUREshrink algorithm is consistently outperformed by both our
method and the Platelet. We can notice that the GAT+BLS-GSM solution becomes
competitive for averaged intensities Imean above ∼ 10, whereas the other approaches
are not restricted to high intensities images. We obtain similar results to the Platelet
method, which was shown to be competitive with the recent approach described in [159].
However, the major drawback of the Platelet algorithm is its computation time: it may
require around 1300s to denoise a single 256×256 grayscale image. To compare with, the
execution of the GAT+BLS-GSM and of the TI-Haar-Fisz+TI-SUREshrink algorithm
takes respectively ∼ 7.4s and ∼ 2.4s, whereas running the proposed solution only requires
∼ 1.4s, under the same conditions.

In Figure 8.5, we show a visual result of the various algorithms applied on the Moon
image. We can notice that the PURE-LET denoised image exhibits very few artifacts,
without over-smoothing, contrary to the other methods.

8.5.2 Poisson and Gaussian Noise Removal

Figure 8.6 shows the PSNR results obtained by GAT+BLS-GSM and by the proposed
algorithm, when estimating Poisson intensities further degraded by an AWGN. Here again,
our PURE-LET approach gives the best results. In particular, at low intensities, the GAT
fails to stabilize the noise variance and thus, huge gains (> 1 dB) can be obtained with a
direct handling of Poisson statistics. A visual comparison of both algorithms is given in
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Figure 8.2: Validity of the first order Taylor series approximation of some
nonlinear functions F−

j,2. The first row shows the SNR of the approximation of
the component cj,2 of the PURE vector c. The second row displays the upper-
bound on the Taylor series remainder of F−

j,2. In the third row are plotted the
values of Tj = MjEmean.



160 CHAPTER 8

Table 8.1: Comparison of multiscale-based Poisson noise removal algorithms
Images MIT 256 × 256
Imean 38.00 19.00 9.50 6.33 3.17 1.58 0.32

Input PSNR 25.81 22.77 19.78 18.01 14.98 11.97 4.99

TI-Haar-Fisz+
TI-SUREshrink

29.71 27.72 25.25 23.84 22.66 20.89 16.82

GAT+BLS-GSM
(FSP)

30.70 28.71 26.66 25.36 22.84 20.47 14.40

Platelet
25 CS

31.34 29.25 27.44 26.31 24.50 22.96 18.73

PURE-LET (8.15)
(UWT Haar)

31.52 29.43 27.50 26.44 24.57 22.80 18.82

Images Cameraman 256 × 256
Imean 56.52 28.26 14.13 9.42 4.71 2.36 0.47

Input PSNR 24.08 21.08 18.05 16.29 13.27 10.25 3.28

TI-Haar-Fisz+
TI-SUREshrink

29.44 27.35 25.19 24.54 23.08 21.53 18.98

GAT+BLS-GSM
(FSP)

30.76 29.07 27.31 26.18 23.84 21.12 15.56

Platelet
25 CS

30.54 29.00 27.54 26.69 25.33 23.56 20.53

PURE-LET (8.15)
(UWT Haar)

31.03 29.29 27.67 26.72 25.10 23.50 20.48

Images Fluorescent Cells 512 × 512
Imean 21.56 10.78 5.39 3.59 1.80 0.90 0.18

Input PSNR 28.25 25.23 22.23 20.47 17.46 14.45 7.45

TI-Haar-Fisz+
TI-SUREshrink

34.63 32.99 31.47 30.37 28.69 27.42 24.42

GAT+BLS-GSM
(FSP)

35.17 33.35 31.31 30.00 27.47 24.87 20.62

Platelet
25 CS

34.08 32.52 31.10 30.34 28.95 27.83 25.05

PURE-LET (8.15)
(UWT Haar)

34.98 33.29 31.72 30.84 29.41 28.10 25.16

Images Moon 512 × 512
Imean 34.08 17.04 8.52 5.68 2.84 1.42 0.28

Input PSNR 26.26 23.25 20.23 18.48 15.47 12.46 5.47

TI-Haar-Fisz+
TI-SUREshrink

29.63 27.60 25.41 24.71 23.87 23.20 22.13

GAT+BLS-GSM
(FSP)

29.78 27.94 26.31 25.35 23.79 22.43 19.31

Platelet
25 CS

28.82 27.43 26.21 25.66 24.74 24.14 23.28

PURE-LET (8.15)
(UWT Haar)

29.98 28.35 26.95 26.24 25.21 24.47 23.52

Note: Output PSNRs have been averaged over ten noise realizations, except for the Platelet algorithm.
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Cameraman 256 × 256 Moon 512 × 512

Peppers 256 × 256 MIT 256 × 256

Figure 8.3: The blue curve (“◦” markers) represents the output PSNRs ob-
tained by a PURE-based parameters optimization without restriction, i.e. con-
sidering all the nonlinear terms. The red curve (“∗” markers) displays the output
PSNRs obtained by a restricted PURE-based parameters optimization, i.e. all
the non-linearly processed subband Fj,2(y) with Tj < 10 have been disregarded.
The output PSNRs obtained by the MSE-based parameters optimization (with-
out restriction) is the baseline (“+” markers).

Figure 8.7 for the standard Barbara image. As in the AWGN case, it is more advisable to
apply the proposed PURE-LET algorithm with a 12× 12 BDCT for this kind of textured
image. Note that a dictionary-based representation is also conceivable, in order to get
the best performances out of several complementary transforms.

8.6 Summary

In this chapter, the restricted use of the unnormalized Haar wavelet transform has been
lifted: the PURE-LET strategy has been extended to arbitrary (redundant) transform-
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Figure 8.4: PSNR improvements brought by the redundant PURE-LET thresh-
olding 8.15 (“∗” markers). The baseline (“+” markers) is provided by the non-
redundant interscale thresholding (7.10). The red curve (“◦” markers) represents
the output PSNRs obtained by averaging 10 cycle-spins of the non-redundant
interscale thresholding (7.10).

domain processing. In order to obtain a computationally fast and efficient algorithm, we
have proposed a first order Taylor series approximation of PURE. For each non-linearly
processed subband, the reliability of this approximation can be controlled. We have
shown that, provided that a data-dependent quantity remains above a given threshold,
the PURE-based parameters optimization achieves near oracle performances.

As an illustrative algorithm, we have proposed a simple subband-dependent thresh-
olding applied to the coefficients of a J-band undecimated filterbank. In each bandpass
subband, the amount of shrinkage is related to the signal-dependent noise variance, es-
timated from the corresponding lowpass coefficients. The resulting denoising algorithm
has a reasonable computational complexity and is faster than other state-of-the-art ap-
proaches which make use of redundant transforms. It gives better results, both quanti-
tatively (lower MSE) and qualitatively, than the standard VST-based algorithms. The
proposed solution also favorably compares with one of the most recent multiscale methods
specifically devised for Poisson data.
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(A) (B)

(C) (D)

(E) (F)

Figure 8.5: (A) The original 512 × 512 Moon image. (B) Noisy obser-
vation of it: PSNR = 18.48 dB. (C) Denoised with TI-Haar-Fisz+TI-
SUREshrink : PSNR = 24.71 dB in 8.5s. (D) Denoised with GAT+BLS-GSM :
PSNR = 25.31 dB in 39.3s. (E) Denoised with Platelet : PSNR = 25.66 dB in
3500s. (F) Denoised with the proposed algorithm: PSNR = 26.27 dB in 8.4s.
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MIT 256 × 256 Fluorescent Cells 512 × 512
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Figure 8.6: Comparison between the proposed Haar UWT PURE-LET thresh-
olding (8.15) (“◦” markers) and GAT+BLS-GSM applied in a FSP (“+” mark-
ers, benchmark).
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(A) (B)

(C) (D)

(E) (F)

Figure 8.7: (A) Part of the original Barbara image. (B) Noisy observa-
tion of it: PSNR = 15.87 dB. (C) Denoised with UWT Haar PURE-LET:
PSNR = 24.62 dB.(D) Denoised with GAT+BLS-GSM : PSNR = 26.04 dB.
(E) Denoised with 12×12 BDCT PURE-LET: PSNR = 26.87 dB. (F) Denoised
by PURE-LET optimized in a UWT/BDCT dictionary: PSNR = 26.93 dB.
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Chapter 9

Denoising of Fluorescence
Microscopy Data

9.1 Motivations

The incessant development of improved microscopy imaging techniques, as well as the
advent of highly selective fluorescent dyes has made possible the precise identification
of tagged molecules in almost any biological specimen. Of particular interest are the
visualization and the study of living cells, which induce tight constraints on the imaging
process. To avoid the alteration of the sample and to achieve a high temporal resolution,
low fluorophore concentrations, low-power illumination and short exposure time need to
be used in practice. Such restrictions have a tremendous impact on the image quality.
This is why the denoising of fluorescence microscopy images is currently an active area of
research [169,171–174], the main challenge being to provide efficient, fast and automatic
denoising algorithms, capable of processing huge multidimensional biomedical datasets.

Under the imaging constraints previously evoked, the intensity of the measured fluo-
rescent radiations can be very low leading to highly signal-dependent random fluctuations.
A common assumption is then to consider that the noisy measurements are the realiza-
tions of a Poisson process, possibly further degraded by an AWGN. In this chapter, we
first justify the adequacy of this common statistical model in real fluorescence microscopy
data. Secondly, we assess the performance of the proposed PURE-LET denoising strategy
from a quantitative, qualitative and practical (computation time) point of view.

9.2 Principle of Fluorescence Microscopy

In this section, we discuss the two key ingredients involved in fluorescence microscopy: the
fluorophore and the light microscope, either wide-field or confocal. For a more detailed
introduction to fluorescence microscopy, we refer the reader to [142] and to the websites

167
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of the microscope manufacturers1.
A fluorophore is a molecule that can emit lights at a given wavelength, when illumi-

nated by a source of light of a specific, shorter wavelength. The green fluorescent protein
(GFP) discovered by Shimomura et al. in the early sixties, is probably the most popular
fluorescent dye. This intrinsically fluorescent protein is naturally produced by the Ae-
quorea victoria jellyfish. It can be linked to a target protein and then introduced in given
cells or embryos. The latter will finally synthesized the labeled protein.

To observe the molecule of interest, the sample is placed under the objective of a
light microscope. The illuminating source (typically located in the blue range of the
spectrum) excites the specimen, and the light (usually in the green part of the spectrum)
reemitted by the labeled proteins is collected by the microscope sensors. In standard wide-
field microscopy, the illumination is provided by a powerful arc-discharged lamp and the
detection is performed by a charge-coupled device (CCD). In confocal microscopy, a laser
is used as the light source and the detection is usually operated by a photomultiplier
tube (PMT), only occasionally by CCD sensors. The full acquisition process of a confocal
microscope is shown in Figure 9.1. The main difference between this type of microscope
and the conventional wide-field microscope is the presence of a pinhole which can reject
the out-of-focus light, thus increasing the axial resolution. Since one point is imaged at
a time, the blurring effect is highly reduced. However, since less light is collected, the
signal-to-noise ratio is usually lower in confocal microscopy. To acquire the whole sample,
a scanning unit is required to move the focused laser beam across the specimen. The
xy-scanning is usually performed line-by-line, while the axial z-position is adjusted by a
motorized high-precision table.

In light microscopy, the resolution is mainly limited by diffraction. Theoretically, it
is proportional to the wavelength of the light emitted by the fluorophores and inversely
proportional to the numerical aperture of the objective lens. In confocal microscopy, the
axial resolution is approximately three times that of the lateral resolution. In practice,
the lateral resolution of a standard light microscope can rarely go below 200nm.

9.3 Noise in Fluorescence Microscopy

We now briefly review the main sources of noise in fluorescence microscopy. For a more
detailed investigation, the reader can refer to [142,175].

9.3.1 Photon-Counting Noise

Photon-counting noise is probably the major source of noise in fluorescence microscopy.
Indeed, light emission, whether during illumination, observation or detection, is a random
process where photons are emitted at random time intervals. This inherent statistical
variation in the emission rate of photons is well-described by a Poisson process.

In confocal microscopy, the measurement process is the same for every scan position
(pixel); it is illustrated in Figure 9.2 and can be summarized as follows. The random
number of photons arriving at the PMT during the integration time follows a Poisson

1For instance, the following website: http://www.microscopyu.com/
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Figure 9.1: Schematic representation of a confocal microscope (extracted from
a Zeiss datasheet and re-editated).

distribution of mean λ determined by the source intensity. Each photon may traverse
the protection window, penetrate the photocathode and be converted to an electron with
a certain probability η; this probability is known as the quantum efficiency of the PMT
and is on the order of 30% for the best models. The conversion process can be seen as a
binomial selection [176, 177] and thus, the number of electrons at the output of the pho-
tocathode (photoelectrons) follows a Poisson distribution of mean x = ηλ. The number
of photoelectrons represents a shot-noise-corrupted measurement y of the intensity signal
x in our framework.

The electrons are then multiplied (via several amplification stages) and converted to
an electric current that is integrated and quantized. The recorded signal is essentially
proportional to the number of photoelectrons; although the amplification factor may
fluctuate in practice, recent work [178] suggests that the newest PMTs with high first-
stage gain have the ability to discriminate between multi-photoelectron events, at least
for low count numbers.

9.3.2 Measurement Noise

In addition to photon counting noise, signal-independent noise contributions also exist
due to the imperfection of the electronic devices and the analog to digital conversion. In
particular, even when no signal is transmitted, the output of the detectors might fluctuate
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Figure 9.2: Schematic representation of a photomultiplier tube (PMT).

around a non-zero value, known as the dark current. These fluctuations are mainly due
to the intrinsic thermal instabilities of the detectors. They can be reduced by cooling
the detectors. When all put together, these signal-independent noise contributions can
be considered as normally distributed.

9.3.3 Sample-Dependent Noise

Finally, one can also encounter two main sources of signal degradation that come from
the sample itself.

The first is due to potential intrinsic fluorescence properties of the specimen. Some
non-labeled molecules can also emit fluorescence radiation which may interfere with that
of the tagged molecule, a phenomenon coined autofluorescence. Autofluorescence alters
the extraction of the signal of interest if the emission wavelengths of the non-labeled
molecules overlap with that of the tagged molecules.

The second comes from the loss of fluorescence abilities of the fluorophore due to
chemical reactions induced by the source of illumination. This phenomenon, called pho-
tobleaching, leads to a significant drop of signal intensities. It can be reduced by limiting
the exposure time of the fluorophores, lowering the energy of the illuminating source
and/or increasing the fluorophores concentration. Nevertheless, these techniques also
reduce the number of detected photons, and consequently, decrease the SNR.

9.4 Noise Parameters Estimation

To account for the various sources of noise described in Section 9.3, we propose to consider
the following (simplified) noisy measurements model: a scaled Poisson law degraded by
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an AWGN with a possibly non-zero mean, i.e.

y ∼ αP(x) +N (δ, σ2) (9.1)

where α and δ respectively model the gain and the offset of the detectors.
The knowledge of the parameters (α, δ, σ2) is essential for the calibration of our noisy

measurements. δ and σ2 may be measured by running separate calibration experiments
[179] or by computing the sample-mean and sample-variance in signal-free (background)
regions of the noisy image. The parameter α is usually not equivalent to the gain factor
that is typically provided in microscopes and therefore, it must be estimated from the
given data. For this, we devise a simple mechanism to estimate α and (σ2 − αδ) based
on the following identities:

μy
def
= E {y} = αx+ δ (9.2)

σ2
y

def
= Var{y} = α2x+ σ2 (9.3)

This leads to the relationship:

σ2
y = αμy + (σ2 − δα)︸ ︷︷ ︸

β

(9.4)

μy and σ2
y are robustly estimated by computing the sample-mean and sample-variance

inside every non-overlappingM×M (usually 8×8) blocks of the image. Once that is done,
we simply perform a robust linear regression (e.g. an iterative weighted least-square fit)
on the set of points (μy, σ

2
y): the slope yields an estimate of the gain α and the intercept

at μy = 0 yields an estimate of β. The robustness of the estimation can be increased
by repeating this simple procedure to several cycle-spins of the input image, and then
averaging the parameters estimated for each cycle-spin. Note that a similar procedure
was already proposed by Lee et. al. in 1989 for the estimation of the variances of a
multiplicative and an additive noise [97], and more recently by Boulanger in [180].

An example on simulated noisy data (Fluorescent Cells) (α = 5, δ = 120, σ2 = 16) is

provided in Figure 9.3. The parameters have been accurately estimated as (α̂ = 4.99, δ̂ =
121.58, σ̂2 = 16.81).

9.5 Experimental Results

9.5.1 2D Fixed Sample

In this section, we want to validate the statistical observation model and to assess the de-
noising quality of the proposed PURE-LET approach on fluorescence-microscopy images.
The two considered datasets contain 100 images of a fixed sample acquired under low
illumination intensity, i.e. mainly shot-noise limited. For these datasets, we thus assume
that each noisy pixel y is distributed according to

y ∼ αP(x) + δ
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Figure 9.3: Automatic noise parameters estimation.

First Dataset

The first dataset contains 100 3-channel 512× 512 images acquired on a Leica TCS SP5
confocal microscope at the Imaging Center of the IGBMC (Institut de Génétique et de
Biologie Moléculaire et Cellulaire, Illkirch, France). This microscope is equipped with a
water-cooled scan-head and low-noise photomultiplier tubes (PMTs). The fixed sample
is a C. elegans embryo labeled with three fluorescent dyes (Figure 9.6(A)). Very noisy
experimental conditions were reproduced by reducing the laser power and using short
exposure times. The three color channels were processed separately.

The parameters α and δ have been estimated by the procedure described in Sec-
tion 9.4. In Figure 9.4, we show the computed mean/variance couples (μy, σ

2
y) and the

corresponding robust linear regression.

After subtracting the estimated detector offset δ and dividing the input data by the
estimated gain α, the frequency distribution of the pixel values was found to be in good
agreement with Poisson statistics. Figure 9.5 shows the histogram of the normalized
pixel values of the green channel for those pixels whose mean was equal to a given value
x (±5%).

In Figure 9.6, we show the denoising result obtained by the proposed solution and by
the TI-SUREShrink algorithm with a TI-Haar-Fisz variance-stabilizing transform (Fig-
ure 9.6(C)). The result of our PURE-LET algorithm, either applied in a non-redundant
representation (Figure 9.6(D)) or using the undecimated Haar wavelet (Figure 9.6(E)),
is sharper and shows less artifacts. Besides, it is less noisy than the image shown in
Figure 9.6(B), which corresponds to a 4 times longer exposure time.
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Figure 9.4: Automatic noise parameters estimation for the green channel of
one particular image from the first fluorescence-microscopy dataset.

Second Dataset

The second dataset contains 100 512 × 512 images of fixed GFP-labeled tobacco cells
acquired on a Leica SP5 confocal laser scanning microscope at the Department of Biology
of the Chinese University of Hong Kong2. The noise parameters (α, δ) have been estimated

as α̂ = 1087.04 and δ̂ = 792 (see Figure 9.7).

Since the tobacco cells were perfectly fixed, we can assume that the averaged of the
100 images constitutes a reliable estimate of the underlying true Poisson intensities. Con-
sidering this averaged image as the ground truth allows us to compute the signal-to-noise
ratio (SNR) of any image of the dataset, and also compared various denoising algorithms.
In Table 9.1, we have thus reported the SNR values obtained by the proposed PURE-
LET methods, as well as those achieved by a standard median filter (with optimal support
size) and by some state-of-the-art approaches. As observed our non-redundant PURE-
LET (7.10) significantly outperforms the simple median filter (+2 dB), a sophisticated
AWGN denoiser combined with a standard variance-stabilizing transform (+1.2 dB), and
the non-redundant variant of the state-of-the-art Platelet algorithm (+1dB). The redun-
dant variants of our PURE-LET strategy are competitive with the redundant Platelet
method, while being one order of magnitude faster.

2We are especially grateful to Prof. Liwen Jiang and Dr. Yansong Miao for the preparation of the
biological sample and their help on acquiring the images.
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Figure 9.5: Comparison of the Poisson distribution with the histogram of the
normalized data for underlying intensities x = 2, 5, 7, 10.

Table 9.1: SNR and computation time of various Poisson denoising algorithms
applied on the Tobacco Cells fluorescence microscopy dataset.

Tobacco Cells at 4.59 dB

Method SNR [dB]
Computation

Time [s]

9 × 9 Median 14.82 2.15
GAT+BLS-GSM (FSP) 15.58 34.81

Platelet (1 CS) 15.89 41.83
PURE-LET (7.10) (1 CS) 16.77 0.62
PURE-LET (7.10) (10 CS) 17.33 6.03

Platelet (10 CS) 17.56 410
PURE-LET (8.15) (UWT Haar) 17.65 8.42
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Figure 9.6: (A) Raw input image (scan frequency of 1000 Hz). (B) Aver-
age of 4 images at 1000 Hz). (C) Input image denoised with TI-Haar-Fisz
+ TI-SUREshrink. (D) Input image denoised with our non-redundant inter-
scale PURE-LET (7.10). (E) Input image denoised with our undecimated Haar
wavelet PURE-LET thresholding (8.15).
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Figure 9.7: Automatic noise parameters estimation for one particular image
from the second fluorescence-microscopy dataset.

9.5.2 3D Sample

We acquired a 1024×1024×64 stack of fluorescence images at the BioImaging and Optics
platform (BIOP) at EPFL. We used a confocal microscope equipped with a 63X PL-APO
objective. The X-Y pixel size was set to 0.09 μm× 0.09 μm and the Z-step was 0.37μm.
In addition to fibroblast cells labeled with a DiO dye (which is predominantly retained
by the cell membranes), the sample contained 100-nm fluorescent microbeads acting as
point sources (see Figure 9.9(A)).

The noise parameters (α, δ, σ2) have been estimated as α̂ = 125.01, δ̂ = 56.59 and
σ̂2 = 11.72 on the 30th slice of the 3D stack (see Figure 9.8). Estimations performed on
the other slices led to similar values for these parameters, confirming that the illumination
conditions were identical for the whole stack.

In Figure 9.9, we display the denoising results of the standard 3D median filter (B),
the recent Platelets approach (C) and the proposed algorithm (D). Observe that our
solution compares favorably with the state-of-the-art Platelets technique, while being
approximately three orders of magnitude faster.
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Figure 9.8: Automatic noise parameters estimation for one particular slice of
the considered 3D fluorescence-microscopy stack.

9.5.3 2D Video Sequence

Finally, we show the result of the proposed PURE-LET denoising strategy applied on
a real timelapse fluorescence microscopy image sequence3 of C. elegans embryos4. The
embryos were imaged with an Olympus IX 81 motorized inverted microscope equipped
with a spinning disk Perkin Elmer Ultra View ERS. 1000 512×448 frames were imaged at
2 Hz for a total duration of 8min20sec. Frame number 47 is displayed in Figure 9.11(A).

In this special worm line, a GFP encoding cassette was inserted under the promoter
of tubulin, a major cell cytoskeleton component active during cellular division. The green
fluorophore thus tags the tubulin molecules in the embryos. More precisely, we see two
C. elegans embryos at different stages of early development. The lower embryo has just
gone through its very first division, whereas the upper embryo has already gone through
multiple divisions.

With the estimation procedure described in Section 9.4 applied on the 47th frame (see

Figure 9.10), we obtained the following noise parameters: α̂ = 9.83, δ̂ = 455.02 and
σ̂2 = 164.86. Here again, we noticed that all frames follow the same observation model.

As can be seen in Figure 9.11, the denoising quality of the proposed interscale multi-
channel PURE-LET (7.17) (D) is much higher than a standard procedure such as the 3D
median filtering (B). The proposed solution also exhibits fewer artifacts than the GAT

3Acquired with the invaluable help of the BIOP team at EPFL.
4Kindly provided by Prof. Pierre Gönczy, UPGON, ISREC, EPFL.



178 CHAPTER 9

(A) (B)

(C) (D)

(E)

Figure 9.9: Part of a particular 1024× 1024 slice of the 3D fluorescence stack.
(A) Raw slice. (B) 7× 7× 3 Median filter: 8.4s. (C) 25 cycle-spins of Platelet :
42min. (D) The proposed interscale multichannel PURE-LET (7.17) using C =
3 adjacent slices: 3.5s. (E) Zoom in images A, B, C and D.
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Figure 9.10: Automatic noise parameters estimation for one particular frame
of the considered fluorescence-microscopy video sequence.

followed by the sophisticated BLS-GSM applied in a full steerable pyramid (C), while
being one order of magnitude faster. Many relevant details are extracted from the noisy
image (A). Polar bodies that were ejected during meiosis get clearly visible as two different
entities in the lower embryo, whereas as a single entity with the conventional 3D median
filter. The linear shape of microtubules appears more clearly, in a star-like disposal from
the centrosome to the periphery in the right cell (E) and globally dispersed in the left cell
of the lower embryo, enabling both cells to be visually easily separable from one another.
In the upper embryo, the various cells can now be distinguished from one another, with
internal filamentous structure appearing in each cell.

9.6 Summary

In this chapter, we have briefly recalled the principle of fluorescence microscopy and
discussed the various sources of noise inherent to this type of imaging technique.

We have then propose a simplified statistical measurement model that accounts for
the signal-dependent and independent noise contributions. We have provided a simple
and robust procedure to automatically estimate the underlying noise parameters. Such
an observation model has been shown to properly reflects the statistics of real fluorescence
measurements.

Finally, we have presented promising denoising results of 3D and timelapse fluorescence
microscopy data. In particular, we have shown that the proposed PURE-LET approach
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was very competitive with the state-of-the-art, while being order(s) of magnitude faster.
This latter point is really valuable in real applications, where large datasets have to be
routinely processed.

(A) (B)

(C) (D)

(E)

Figure 9.11: (A) Part of a particular 512 × 448 frame of the fluorescence
microscopy image sequence. (B) 7 × 7 × 5 Median filter: 9s. (C) GAT+BLS-
GSM (FSP): 37s. (D) The proposed interscale multichannel PURE-LET (7.17)
using C = 5 adjacent slices: 3s. (E) Zoom in images A, B, C and D.
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Epilogue

10.1 Summary

In this work, we proposed a novel prior-free approach for image denoising. In order to
come up with fast and high-quality denoising algorithms, we devised a generic “URE-
LET” framework. Indeed, the development of data-driven unbiased risk (expected MSE)
estimates (UREs) allows to monitor the denoising quality, while a linear parameterization
of the denoising process through a linear expansion of thresholds (LET) leads to a direct
(i.e. non-iterative) parameters optimization.

In the first part of this thesis, we tackled the classical problem of additive white
Gaussian noise (AWGN) reduction. In particular, we revitalized a relatively old statis-
tical result, nowadays known as Stein’s unbiased risk estimate (SURE). We worked out
several SURE-based estimators applicable in arbitrary linear transformed domains. For
non-orthogonal transforms, we pointed out the sub-optimality of a transform-domain op-
timization compared to a global image-domain SURE/MSE minimization. In the context
of orthonormal wavelet denoising, we developed a rigorous procedure based on group
delay compensation to take full advantage of the interscale dependencies that are natu-
rally present in the wavelet representation of most images. We showed that a suitable
integration of these interscale dependencies, combined with an efficient incorporation of
the intrascale correlations of the wavelet coefficients, places the proposed SURE-LET
estimators among the best state-of-the-art multiresolution-based denoising algorithms.

In the second part of this thesis, we considered a more realistic measurement model,
where the observed noisy image is assumed to be the realization of a Poisson process
degraded by an AWGN. Such a model accounts for the hybrid nature of real-world noise
in images, which contains both a signal-dependent (due to the random nature of photon
counting) and a signal-independent (due to the imperfections of the light detectors) com-
ponent. In a Bayesian framework, it becomes much more difficult to derive closed-formed
estimators for this non-Gaussian observation model, whereas the proposed URE-LET
paradigm is still applicable. Indeed, we derived a novel unbiased estimate of the MSE,
coined PURE, that can be used to optimize a large class of Poisson intensity estimators
(in particular of LET type). We showed that the (unnormalized) Haar wavelet transform

181
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is the only multiresolution transform where the global image-domain PURE can be split
into independent subband-PUREs. We then proposed an interscale Haar wavelet domain
PURE-LET estimator that turns out to be competitive with the standard VST-based
denoisers applied in a redundant wavelet representation. For an arbitrary transform, the
exact PURE becomes time-consumming to compute for non-linear processing. We thus
proposed a reliable first order Taylor series approximation of PURE that can be used
in practice. As an illustrative example, we devised a novel undecimated Haar wavelet
PURE-LET estimator that is found to compare favorably to the state-of-the-art methods
for Poisson intensities estimation, while having a lighter computational burden.

The PURE-LET estimators were finally tested on real multidimensional fluorescence
microscopy images. A simple procedure to estimate the various parameters involved in
the observation model was proposed and validated experimentally. We also provided some
denoising results for 2D+time and 3D datasets, which indicates that large fluorescence
microscopy data can be efficiently denoised in a reasonable computation time.

10.2 Perspectives

We believe that the generic “URE-LET” strategy presented in this thesis could be ex-
tended along the following directions:

Other noise models We only derived unbiased estimates of the MSE for either an
AWGN or a Poisson process degraded by an AWGN. In fact, it is possible to find
unbiased estimates of the MSE for a much broader class of noise statistics, such as
additive perturbations with arbitrary probability density function (PDF) or PDF
from the exponential family. This direction of research has been recently taken by
Raphan and Simoncelli in [86], and Eldar in [181].

Other quadratic quality metrics We focused on the minimization of the MSE due
to its popularity and its convenient mathematical properties. However, unbiased
estimates can be derived for other quadratic quality metrics, such as the weighted
MSE (Proposition 1 of Section 2.3). A possible axis of research could consist in
designing a perceptual-based weighting matrix.

In the case of a Poisson process with strictly positive intensities, the normalized
MSE defined as

NMSE =
1

N

N∑
n=1

(fn(y)− xn)
2

xn
(10.1)

is sometimes used to evaluate the denoising quality (e.g. in [159]). Using a similar
result to the one given in Lemma 4 of Section 6.3, it is also possible to derive an
unbiased estimate of the NMSE.

Inverse problems We restricted our investigations to a pure denoising scenario. How-
ever, in many applications, the following linear inverse problem (that must be solved
for x) is often encountered:

y = Hx+ b (10.2)
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where H is an arbitrary (but deterministic) L×N (L ≥ N) distorsion matrix and
b is an additive random perturbation independent of x. x is estimated from the
observed distorted measurements y, as x̂ = F(y), where F is a possibly non-linear
processing involving several parameters that need to be optimized in the minimum
MSE sense. Therefore, a generalized “URE-LET” strategy seems to be appropriate
for solving such problem.

When H = Id, we come back to the denoising problem taken up in this thesis.
If H (or HTH) is non-singular, then a SURE-like unbiased MSE estimate can be
straightforwardly obtained. However, when H (or HTH) is singular, which might
be the case for convolutive distortion, the obtention of an unbiased estimate of the
MSE for an arbitrary (non-linear) processing is much more challenging. Several
works along this line have been recently undertaken [85,181–184].

Density estimation We pointed out in Section 2.5 (and 6.5) that the expression of the
optimal MMSE estimator involves the PDF of the noisy data r(y). If we assume
that a LET estimator constitutes a good approximation of the MMSE estimator,
we can then use it to estimate r(y). For instance, consider the AWGN scenario,
where the pointwise MMSE estimator is given by θopt(y) = y + σ2 d

dy ln r(y), and

a LET estimator of the form θLET(y) = y +
∑K

k=1 akθk(y). If one assumes that,
for a suitable choice of θk, θLET(y) � θopt(y), the PDF of the noisy data could be
estimated as:

r̂(y) = cst · exp
(

1

σ2

K∑
k=1

ak

∫
θk(y)dy

)

where cst =

(∫ ∞

−∞
exp

(
1

σ2

K∑
k=1

ak

∫
θk(y)dy

)
dy

)−1

.

Note that the MMSE estimator could also be used to find out which prior (among a
family of parametric densities) is the best representative of the PDF of the noise-free
data.
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Maturité fédérale, type C (scientific), graduation in 2000.
Secondary school examination giving university entrance qualification.
Swiss equivalent to US high-school diploma.



204 Curriculum Vitæ

TEACHING EXPERIENCE

Swiss Federal Institute of Technology, Lausanne, Switzerland

• 2005-2009
Teaching Assistant for the Master course “Image Processing I+II ”.
Supervisor of several semester projects carried out by EPFL
Master students.

PROFESSIONAL ACTIVITIES

Membership

• Graduate Student Member of the Institute of Electrical and Electronics Engineers
(IEEE).

• Member of the Swiss Society for Biomedical Engineering (SSBE).

Review

• Reviewer for various international scientific journals, including IEEE Transactions
on Image Processing and IEEE Transactions on Signal Processing.

• Reviewer for the European Signal Processing Conference (EUSIPCO), 2008.

PUBLICATIONS

Journal Articles

1. F. Luisier, C. Vonesch, T. Blu, M. Unser, “Fast Interscale Wavelet Denoising of
Poisson-corrupted Images”, Signal Processing, vol. 90, no. 2, pp. 415-427, February
2010.

2. F. Luisier, T. Blu, “SURE-LET Multichannel Image Denoising: Interscale Or-
thonormal Wavelet Thresholding,” IEEE Transactions on Image Processing, vol.
17, no. 4, pp. 482-492, April 2008.

3. T. Blu, F. Luisier, “The SURE-LET Approach to Image Denoising,” IEEE Trans-
actions on Image Processing, vol. 16, no. 11, pp. 2778-2786, November 2007.

4. F. Luisier, T. Blu, M. Unser, “A New SURE Approach to Image Denoising: Inter-
scale Orthonormal Wavelet Thresholding,” IEEE Transactions on Image Processing,
vol. 16, no. 3, pp. 593-606, March 2007.

5. Y. Lopez de Meneses, P. Roduit, F. Luisier, J. Jacot, “Trajectory Analysis for
Sport and Video Surveillance,” Electronic Letters on Computer Vision and Image
Analysis, vol. 5, no. 3, pp. 148-156, August 2005.



Curriculum Vitæ 205

Conference Articles

1. F. Luisier, C. Vonesch, T. Blu, M. Unser, “Fast Haar-Wavelet Denoising of Multidi-
mensional Fluorescence Microscopy Data”, Proceedings of the Sixth IEEE Interna-
tional Symposium on Biomedical Imaging: From Nano to Macro (ISBI’09), Boston
MA, USA, June 28-July 1, 2009, pp. 310-313.

2. S. Delpretti, F. Luisier, S. Ramani, T. Blu, M. Unser, “Multiframe SURE-LET
Denoising of Timelapse Fluorescence Microscopy Images,” Proceedings of the Fifth
IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IS-
BI’08), Paris, France, May 14-17, 2008, pp. 149-152.

3. F. Luisier, T. Blu, “SURE-LETMultichannel Image Denoising: UndecimatedWavelet
Thresholding,” Proceedings of the Thirty-Third IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’08), Las Vegas NV, USA, March
30-April 4, 2008, pp. 769-772.

4. F. Luisier, T. Blu, “SURE-LET Interscale-Intercolor Wavelet Thresholding for Color
Image Denoising,” Proceedings of the SPIE Optics and Photonics 2007 Conference
on Mathematical Methods: Wavelet XII, San Diego CA, USA, August 26-29, 2007,
vol. 6701, pp. 67011H-1/67011H-10.

5. F. Luisier, T. Blu, “Image Denoising by Pointwise Thresholding of the Undeci-
mated Wavelet Coefficients: A Global SURE Optimum,” Proceedings of the Thirty-
Second IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’07), Honolulu HI, USA, April 15-20, 2007, pp. I-593-I-596.

6. F. Luisier, T. Blu, M. Unser, “SURE-Based Wavelet Thresholding Integrating Inter-
Scale Dependencies,” Proceedings of the 2006 IEEE International Conference on
Image Processing (ICIP’06), Atlanta GA, USA, October 8-11, 2006, pp. 1457-1460.

7. F. Luisier, T. Blu, B. Forster, M. Unser, “Which Wavelet Bases Are the Best for
Image Denoising ?,” Proceedings of the SPIE Optics and Photonics 2005 Conference
on Mathematical Methods: Wavelet XI, San Diego CA, USA, July 31-August 3,
2005, vol. 5914, pp. 59140E-1/59140E-12.

AWARDS

• Student travel grant to attend the Thirty-Second IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’07).

• Finalist of the Student Paper Contest of the Thirty-Second IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’07).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Generic RGB Profile)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Monitor Color)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




