184 research outputs found

    Superpixel nonlocal weighting joint sparse representation for hyperspectral image classification.

    Get PDF
    Joint sparse representation classification (JSRC) is a representative spectral–spatial classifier for hyperspectral images (HSIs). However, the JSRC is inappropriate for highly heterogeneous areas due to the spatial information being extracted from a fixed-sized neighborhood block, which is often unable to conform to the naturally irregular structure of land cover. To address this problem, a superpixel-based JSRC with nonlocal weighting, i.e., superpixel-based nonlocal weighted JSRC (SNLW-JSRC), is proposed in this paper. In SNLW-JSRC, the superpixel representation of an HSI is first constructed based on an entropy rate segmentation method. This strategy forms homogeneous neighborhoods with naturally irregular structures and alleviates the inclusion of pixels from different classes in the process of spatial information extraction. Afterwards, the superpixel-based nonlocal weighting (SNLW) scheme is built to weigh the superpixel based on its structural and spectral information. In this way, the weight of one specific neighboring pixel is determined by the local structural similarity between the neighboring pixel and the central test pixel. Then, the obtained local weights are used to generate the weighted mean data for each superpixel. Finally, JSRC is used to produce the superpixel-level classification. This speeds up the sparse representation and makes the spatial content more centralized and compact. To verify the proposed SNLW-JSRC method, we conducted experiments on four benchmark hyperspectral datasets, namely Indian Pines, Pavia University, Salinas, and DFC2013. The experimental results suggest that the SNLW-JSRC can achieve better classification results than the other four SRC-based algorithms and the classical support vector machine algorithm. Moreover, the SNLW-JSRC can also outperform the other SRC-based algorithms, even with a small number of training samples

    Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification

    Full text link
    Hyperspectral image (HSI) classification, which aims to assign an accurate label for hyperspectral pixels, has drawn great interest in recent years. Although low rank representation (LRR) has been used to classify HSI, its ability to segment each class from the whole HSI data has not been exploited fully yet. LRR has a good capacity to capture the underlying lowdimensional subspaces embedded in original data. However, there are still two drawbacks for LRR. First, LRR does not consider the local geometric structure within data, which makes the local correlation among neighboring data easily ignored. Second, the representation obtained by solving LRR is not discriminative enough to separate different data. In this paper, a novel locality and structure regularized low rank representation (LSLRR) model is proposed for HSI classification. To overcome the above limitations, we present locality constraint criterion (LCC) and structure preserving strategy (SPS) to improve the classical LRR. Specifically, we introduce a new distance metric, which combines both spatial and spectral features, to explore the local similarity of pixels. Thus, the global and local structures of HSI data can be exploited sufficiently. Besides, we propose a structure constraint to make the representation have a near block-diagonal structure. This helps to determine the final classification labels directly. Extensive experiments have been conducted on three popular HSI datasets. And the experimental results demonstrate that the proposed LSLRR outperforms other state-of-the-art methods.Comment: 14 pages, 7 figures, TGRS201

    Multiscale spatial-spectral convolutional network with image-based framework for hyperspectral imagery classification.

    Get PDF
    Jointly using spatial and spectral information has been widely applied to hyperspectral image (HSI) classification. Especially, convolutional neural networks (CNN) have gained attention in recent years due to their detailed representation of features. However, most of CNN-based HSI classification methods mainly use patches as input classifier. This limits the range of use for spatial neighbor information and reduces processing efficiency in training and testing. To overcome this problem, we propose an image-based classification framework that is efficient and straight forward. Based on this framework, we propose a multiscale spatial-spectral CNN for HSIs (HyMSCN) to integrate both multiple receptive fields fused features and multiscale spatial features at different levels. The fused features are exploited using a lightweight block called the multiple receptive field feature block (MRFF), which contains various types of dilation convolution. By fusing multiple receptive field features and multiscale spatial features, the HyMSCN has comprehensive feature representation for classification. Experimental results from three real hyperspectral images prove the efficiency of the proposed framework. The proposed method also achieves superior performance for HSI classification

    Superpixel based feature specific sparse representation for spectral-spatial classification of hyperspectral images.

    Get PDF
    To improve the performance of the sparse representation classification (SRC), we propose a superpixel-based feature specific sparse representation framework (SPFS-SRC) for spectral-spatial classification of hyperspectral images (HSI) at superpixel level. First, the HSI is divided into different spatial regions, each region is shape- and size-adapted and considered as a superpixel. For each superpixel, it contains a number of pixels with similar spectral characteristic. Since the utilization of multiple features in HSI classification has been proved to be an effective strategy, we have generated both spatial and spectral features for each superpixel. By assuming that all the pixels in a superpixel belongs to one certain class, a kernel SRC is introduced to the classification of HSI. In the SRC framework, we have employed a metric learning strategy to exploit the commonalities of different features. Experimental results on two popular HSI datasets have demonstrated the efficacy of our proposed methodology

    Multiscale 2-D singular spectrum analysis and principal component analysis for spatial–spectral noise-robust feature extraction and classification of hyperspectral images.

    Get PDF
    In hyperspectral images (HSI), most feature extraction and data classification methods rely on corrected dataset, in which the noisy and water absorption bands are removed. This can result in not only extra working burden but also information loss from removed bands. To tackle these issues, in this article, we propose a novel spatial-spectral feature extraction framework, multiscale 2-D singular spectrum analysis (2-D-SSA) with principal component analysis (PCA) (2-D-MSSP), for noise-robust feature extraction and data classification of HSI. First, multiscale 2-D-SSA is applied to exploit the multiscale spatial features in each spectral band of HSI via extracting the varying trends within defined windows. Taking the extracted trend signals at each scale level as the input features, the PCA is employed to the spectral domain for dimensionality reduction and spatial-spectral feature extraction. The derived spatial-spectral features in each scale are separately classified and then fused at decision-level for efficacy. As our 2-D-MSSP method can extract features and simultaneously remove noise in both spatial and spectral domains, which ensures it to be noise-robust for classification of HSI, even the uncorrected dataset. Experiments on three publicly available datasets have fully validated the efficacy and robustness of the proposed approach, when benchmarked with 10 state-of-the-art classifiers, including six spatial-spectral methods and four deep learning classifiers. In addition, both quantitative and qualitative assessment has validated the efficacy of our approach in noise-robust classification of HSI even with limited training samples, especially in classifying uncorrected data without filtering noisy bands

    A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

    Get PDF
    A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI's) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region at the second step. The algorithm namely sparse representation has applied to get the coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For each test pixel, the class label is determined with the help of obtained coefficients. The performances of MFASR have much better classification results than other classifiers in the terms of quantitative and qualitative percentage of results. This MFASR will make benefit of strong correlations that are obtained from different extracted features and this make use of effective features and effective adaptive sparse representation. Thus, the very high classification performance was achieved through this MFASR technique
    • …
    corecore