883 research outputs found

    Fractal Descriptors in the Fourier Domain Applied to Color Texture Analysis

    Get PDF
    The present work proposes the development of a novel method to provide descriptors for colored texture images. The method consists in two steps. In the first, we apply a linear transform in the color space of the image aiming at highlighting spatial structuring relations among the color of pixels. In a second moment, we apply a multiscale approach to the calculus of fractal dimension based on Fourier transform. From this multiscale operation, we extract the descriptors used to discriminate the texture represented in digital images. The accuracy of the method is verified in the classification of two color texture datasets, by comparing the performance of the proposed technique to other classical and state-of-the-art methods for color texture analysis. The results showed an advantage of almost 3% of the proposed technique over the second best approach.Comment: Chaos, Volume 21, Issue 4, 201

    Fractal descriptors based on the probability dimension: a texture analysis and classification approach

    Get PDF
    In this work, we propose a novel technique for obtaining descriptors of gray-level texture images. The descriptors are provided by applying a multiscale transform to the fractal dimension of the image estimated through the probability (Voss) method. The effectiveness of the descriptors is verified in a classification task using benchmark over texture datasets. The results obtained demonstrate the efficiency of the proposed method as a tool for the description and discrimination of texture images.Comment: 7 pages, 6 figures. arXiv admin note: text overlap with arXiv:1205.282

    Texture analysis by multi-resolution fractal descriptors

    Full text link
    This work proposes a texture descriptor based on fractal theory. The method is based on the Bouligand-Minkowski descriptors. We decompose the original image recursively into 4 equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by the concatenation of such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the proposed technique achieves better results than classical and state-of-the-art texture descriptors, such as Gabor-wavelets and co-occurrence matrix.Comment: 8 pages, 6 figure

    Characterization of nanostructured material images using fractal descriptors

    Get PDF
    This work presents a methodology to the morphology analysis and characterization of nanostructured material images acquired from FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) technique. The metrics were extracted from the image texture (mathematical surface) by the volumetric fractal descriptors, a methodology based on the Bouligand-Minkowski fractal dimension, which considers the properties of the Minkowski dilation of the surface points. An experiment with galvanostatic anodic titanium oxide samples prepared in oxalyc acid solution using different conditions of applied current, oxalyc acid concentration and solution temperature was performed. The results demonstrate that the approach is capable of characterizing complex morphology characteristics such as those present in the anodic titanium oxide.Comment: 8 pages, 5 figures, accepted for publication Physica

    Multiscale Fractal Descriptors Applied to Nanoscale Images

    Full text link
    This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the}Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application

    Brachiaria species identification using imaging techniques based on fractal descriptors

    Get PDF
    The use of a rapid and accurate method in diagnosis and classification of species and/or cultivars of forage has practical relevance, scientific and trade in various areas of study. Thus, leaf samples of fodder plant species \textit{Brachiaria} were previously identified, collected and scanned to be treated by means of artificial vision to make the database and be used in subsequent classifications. Forage crops used were: \textit{Brachiaria decumbens} cv. IPEAN; \textit{Brachiaria ruziziensis} Germain \& Evrard; \textit{Brachiaria Brizantha} (Hochst. ex. A. Rich.) Stapf; \textit{Brachiaria arrecta} (Hack.) Stent. and \textit{Brachiaria spp}. The images were analyzed by the fractal descriptors method, where a set of measures are obtained from the values of the fractal dimension at different scales. Therefore such values are used as inputs for a state-of-the-art classifier, the Support Vector Machine, which finally discriminates the images according to the respective species.Comment: 7 pages, 5 figure
    corecore