640 research outputs found

    Sparse signal representation for complex-valued imaging

    Get PDF
    We propose a sparse signal representation-based method for complex-valued imaging. Many coherent imaging systems such as synthetic aperture radar (SAR) have an inherent random phase, complex-valued nature. On the other hand sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. For complex-valued problems, the key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. We propose a mathematical framework and an associated optimization algorithm for a sparse signal representation-based imaging method that can deal with these issues. Simulation results show that this method offers improved results compared to existing powerful imaging techniques

    High Speed Dim Air Target Detection Using Airborne Radar under Clutter and Jamming Effects

    Get PDF
    The challenging potential problems associated with using airborne radar in detection of high Speed Maneuvering Dim Target (HSMDT) are the highly noise, jamming and clutter effects. The problem is not only how to remove clutter and jamming as well as the range migration and Doppler ambiguity estimation problems due to high relative speed between the targets and airborne radar. Some of the recently published works ignored the range migration problems, while the others ignored the Doppler ambiguity estimation. In this paper a new hybrid technique using Optimum Space Time Adaptive Processing (OSTAP), Second Order Keystone Transform (SOKT), and the Improved Fractional Radon Transform (IFrRT) was proposed. The OSTAP was applied as anti-jamming and clutter rejection method, the SOKT corrects the range curvature and part of the range walk, then the IFrRT estimates the target’ radial acceleration and corrects the residual range walk. The simulation demonstrates the validity and effectiveness of the proposed technique, and its advantages over the previous researches by comparing its probability of detection with the traditional methods. The new approach increases the probability of detection, and also overcomes the limitation of Doppler frequency ambiguity

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 903-94-C6071Maryland Procurement Office Contract MDA 904-93-C4169U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0028U.S. Army Research Office Grant DAAHO4-95-1-0494U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0126U.S. Army Research Office Grant DAAHO4-93-G-018

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 903-94-C6071Maryland Procurement Office Contract MDA 904-93-C4169U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0028U.S. Army Research Office Grant DAAH04-95-1-0494U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0505U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0126U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-018

    Multiscale segmentation of SAR imagery

    Get PDF
    Caption title.Includes bibliographical references (p. [11]).Sponsored in part by Advanced Research Projects Agency under Air Force Contract. F19628-95-C-0002 Sponsored in part by Air Force Office of Scientific Research Grant. F49620-93-1-0604, F49620-95-1-0083C.H. Fosgate ... [et al.]

    Multiple feature-enhanced synthetic aperture radar imaging

    Get PDF
    Non-quadratic regularization based image formation is a recently proposed framework for feature-enhanced radar imaging. Specific image formation techniques in this framework have so far focused on enhancing one type of feature, such as strong point scatterers, or smooth regions. However, many scenes contain a number of such features. We develop an image formation technique that simultaneously enhances multiple types of features by posing the problem as one of sparse signal representation based on overcomplete dictionaries. Due to the complex-valued nature of the reflectivities in SAR, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field in terms of multiple features, which turns the image reconstruction problem into a joint optimization problem over the representation of the magnitude and the phase of the underlying field reflectivities. We formulate the mathematical framework needed for this method and propose an iterative solution for the corresponding joint optimization problem. We demonstrate the effectiveness of this approach on various SAR images

    Review of radar classification and RCS characterisation techniques for small UAVs or drones

    Get PDF
    This review explores radar-based techniques currently utilised in the literature to monitor small unmanned aerial vehicle (UAV) or drones; several challenges have arisen due to their rapid emergence and commercialisation within the mass market. The potential security threats posed by these systems are collectively presented and the legal issues surrounding their successful integration are briefly outlined. Key difficulties involved in the identification and hence tracking of these `radar elusive' systems are discussed, along with how research efforts relating to drone detection, classification and radar cross section (RCS) characterisation are being directed in order to address this emerging challenge. Such methods are thoroughly analysed and critiqued; finally, an overall picture of the field in its current state is painted, alongside scope for future work over a broad spectrum

    Sparse representation-based synthetic aperture radar imaging

    Get PDF
    There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, we develop an image formation method which formulates the SAR imaging problem as a sparse signal representation problem. Sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. However, for problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since we are usually interested in features of the magnitude of the SAR reflectivity field, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimization problem over the representation of magnitude and phase of the underlying field reflectivities. We develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimization problem. Our experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high quality SAR images as well as exhibiting robustness to uncertain or limited data
    • …
    corecore