165 research outputs found

    Multirate explicit Adams methods for time integration of conservation laws

    Get PDF
    This paper constructs multirate linear multistep time discretizations based on Adams-Bashforth methods. These methods are aimed at solving conservation laws and allow different timesteps to be used in different parts of the spatial domain. The proposed family of discretizations is second order accurate in time and has conservation and linear and nonlinear stability properties under local CFL conditions. Multirate timestepping avoids the necessity to take small global timesteps - restricted by the largest value of the Courant number on the grid - and therefore results in more efficient computations. Numerical results obtained for the advection and Burgers' equations confirm the theoretical findings

    Explicit local time-stepping methods for time-dependent wave propagation

    Get PDF
    Semi-discrete Galerkin formulations of transient wave equations, either with conforming or discontinuous Galerkin finite element discretizations, typically lead to large systems of ordinary differential equations. When explicit time integration is used, the time-step is constrained by the smallest elements in the mesh for numerical stability, possibly a high price to pay. To overcome that overly restrictive stability constraint on the time-step, yet without resorting to implicit methods, explicit local time-stepping schemes (LTS) are presented here for transient wave equations either with or without damping. In the undamped case, leap-frog based LTS methods lead to high-order explicit LTS schemes, which conserve the energy. In the damped case, when energy is no longer conserved, Adams-Bashforth based LTS methods also lead to explicit LTS schemes of arbitrarily high accuracy. When combined with a finite element discretization in space with an essentially diagonal mass matrix, the resulting time-marching schemes are fully explicit and thus inherently parallel. Numerical experiments with continuous and discontinuous Galerkin finite element discretizations validate the theory and illustrate the usefulness of these local time-stepping methods.Comment: overview paper, typos added, references updated. arXiv admin note: substantial text overlap with arXiv:1109.448

    Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation

    Get PDF
    Local adaptivity and mesh refinement are key to the efficient simulation of wave phenomena in heterogeneous media or complex geometry. Locally refined meshes, however, dictate a small time-step everywhere with a crippling effect on any explicit time-marching method. In [18] a leap-frog (LF) based explicit local time-stepping (LTS) method was proposed, which overcomes the severe bottleneck due to a few small elements by taking small time-steps in the locally refined region and larger steps elsewhere. Here a rigorous convergence proof is presented for the fully-discrete LTS-LF method when combined with a standard conforming finite element method (FEM) in space. Numerical results further illustrate the usefulness of the LTS-LF Galerkin FEM in the presence of corner singularities

    A high-order, conservative integrator with local time-stepping

    Get PDF
    We present a family of multistep integrators based on the Adams-Bashforth methods. These schemes can be constructed for arbitrary convergence order with arbitrary step size variation. The step size can differ between different subdomains of the system. It can also change with time within a given subdomain. The methods are linearly conservative, preserving a wide class of analytically constant quantities to numerical roundoff, even when numerical truncation error is significantly higher. These methods are intended for use in solving conservative PDEs in discontinuous Galerkin formulations or in finite-difference methods with compact stencils. A numerical test demonstrates these properties and shows that significant speed improvements over the standard Adams-Bashforth schemes can be obtained.Comment: 29 page

    Discontinuous Galerkin Discretizations of the Boltzmann Equations in 2D: semi-analytic time stepping and absorbing boundary layers

    Get PDF
    We present an efficient nodal discontinuous Galerkin method for approximating nearly incompressible flows using the Boltzmann equations. The equations are discretized with Hermite polynomials in velocity space yielding a first order conservation law. A stabilized unsplit perfectly matching layer (PML) formulation is introduced for the resulting nonlinear flow equations. The proposed PML equations exponentially absorb the difference between the nonlinear fluctuation and the prescribed mean flow. We introduce semi-analytic time discretization methods to improve the time step restrictions in small relaxation times. We also introduce a multirate semi-analytic Adams-Bashforth method which preserves efficiency in stiff regimes. Accuracy and performance of the method are tested using distinct cases including isothermal vortex, flow around square cylinder, and wall mounted square cylinder test cases.Comment: 37 pages, 11 figure
    • …
    corecore