7 research outputs found

    Provably good scheduling of sporadic tasks with resource sharing on a two-type heterogeneous multiprocessor platform

    Get PDF
    Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform where a task may request at most one of |R| shared resources. There are m1 processors of type-1 and m2 processors of type-2. Tasks may migrate only when requesting or releasing resources. We present a new algorithm, FF-3C-vpr, which offers a guarantee that if a task set is schedulable to meet deadlines by an optimal task assignment scheme that only allows tasks to migrate when requesting or releasing a resource, then FF-3Cvpr also meets deadlines if given processors 4+6*ceil(|R|/min(m1,m2)) times as fast. As far as we know, it is the first result for resource sharing on heterogeneous platforms with provable performance

    On-Device Deep Learning Inference for System-on-Chip (SoC) Architectures

    Get PDF
    As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can provide the low-latency, deterministic execution required for embedded, and potentially safety-critical, applications at the edge. Despite this, studies considering the integration of real-time operating systems, specialized hardware, and machine learning/deep learning algorithms remain limited. In particular, better mechanisms for real-time scheduling in the context of machine learning applications will prove to be critical as these technologies move to the edge. In order to address some of these challenges, we present a resource management framework designed to provide a dynamic on-device approach to the allocation and scheduling of limited resources in a real-time processing environment. These types of mechanisms are necessary to support the deterministic behavior required by the control components contained in the edge nodes. To validate the effectiveness of our approach, we applied rigorous schedulability analysis to a large set of randomly generated simulated task sets and then verified the most time critical applications, such as the control tasks which maintained low-latency deterministic behavior even during off-nominal conditions. The practicality of our scheduling framework was demonstrated by integrating it into a commercial real-time operating system (VxWorks) then running a typical deep learning image processing application to perform simple object detection. The results indicate that our proposed resource management framework can be leveraged to facilitate integration of machine learning algorithms with real-time operating systems and embedded platforms, including widely-used, industry-standard real-time operating systems

    Real-time scheduling with resource sharing on heterogeneous multiprocessors

    Get PDF
    Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors

    Real-Time Scheduling for GPUs with Applications in Advanced Automotive Systems

    Get PDF
    Self-driving cars, once constrained to closed test tracks, are beginning to drive alongside human drivers on public roads. Loss of life or property may result if the computing systems of automated vehicles fail to respond to events at the right moment. We call such systems that must satisfy precise timing constraints “real-time systems.” Since the 1960s, researchers have developed algorithms and analytical techniques used in the development of real-time systems; however, this body of knowledge primarily applies to traditional CPU-based platforms. Unfortunately, traditional platforms cannot meet the computational requirements of self-driving cars without exceeding the power and cost constraints of commercially viable vehicles. We argue that modern graphics processing units, or GPUs, represent a feasible alternative, but new algorithms and analytical techniques must be developed in order to integrate these uniquely constrained processors into a real-time system. The goal of the research presented in this dissertation is to discover and remedy the issues that prevent the use of GPUs in real-time systems. To overcome these issues, we design and implement a real-time multi-GPU scheduler, called GPUSync. GPUSync tightly controls access to a GPU’s computational and DMA processors, enabling simultaneous use despite potential limitations in GPU hardware. GPUSync enables tasks to migrate among GPUs, allowing new classes of real-time multi-GPU computing platforms. GPUSync employs heuristics to guide scheduling decisions to improve system efficiency without risking violations in real-time constraints. GPUSync may be paired with a wide variety of common real-time CPU schedulers. GPUSync supports closed-source GPU runtimes and drivers without loss in functionality. We evaluate GPUSync with both analytical and runtime experiments. In our analytical experiments, we model and evaluate over fifty configurations of GPUSync. We determine which configurations support the greatest computational capacity while maintaining real-time constraints. In our runtime experiments, we execute computer vision programs similar to those found in automated vehicles, with and without GPUSync. Our results demonstrate that GPUSync greatly reduces jitter in video processing. Research into real-time systems with GPUs is a new area of study. Although there is prior work on such systems, no other GPU scheduling framework is as comprehensive and flexible as GPUSync.Doctor of Philosoph
    corecore