48,484 research outputs found
Queueing analysis of a canonical model of real-time multiprocessors
A logical classification of multiprocessor structures from the point of view of control applications is presented. A computation of the response time distribution for a canonical model of a real time multiprocessor is presented. The multiprocessor is approximated by a blocking model. Two separate models are derived: one created from the system's point of view, and the other from the point of view of an incoming task
An Algorithm for Dynamic Load Balancing of Synchronous Monte Carlo Simulations on Multiprocessor Systems
We describe an algorithm for dynamic load balancing of geometrically
parallelized synchronous Monte Carlo simulations of physical models. This
algorithm is designed for a (heterogeneous) multiprocessor system of the MIMD
type with distributed memory. The algorithm is based on a dynamic partitioning
of the domain of the algorithm, taking into account the actual processor
resources of the various processors of the multiprocessor system.Comment: 12 pages, uuencoded figures included, 75.93.0
Multiprocessor Global Scheduling on Frame-Based DVFS Systems
In this ongoing work, we are interested in multiprocessor energy efficient
systems, where task durations are not known in advance, but are know
stochastically. More precisely, we consider global scheduling algorithms for
frame-based multiprocessor stochastic DVFS (Dynamic Voltage and Frequency
Scaling) systems. Moreover, we consider processors with a discrete set of
available frequencies
A fault-tolerant multiprocessor architecture for aircraft, volume 1
A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed
Multiprocessor task scheduling in multistage hyrid flowshops: a genetic algorithm approach
This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The objective is to minimize the make-span, that is, the completion time of all the tasks in the last stage. This problem is of practical interest in the textile and process industries. A genetic algorithm (GA) is developed to solve the problem. The GA is tested against a lower bound from the literature as well as against heuristic rules on a test bed comprising 400 problems with up to 100 jobs, 10 stages, and with up to five processors on each stage. For small problems, solutions found by the GA are compared to optimal solutions, which are obtained by total enumeration. For larger problems, optimum solutions are estimated by a statistical prediction technique. Computational results show that the GA is both effective and efficient for the current problem. Test problems are provided in a web site at www.benchmark.ibu.edu.tr/mpt-h; fsp
On the periodic behavior of real-time schedulers on identical multiprocessor platforms
This paper is proposing a general periodicity result concerning any
deterministic and memoryless scheduling algorithm (including
non-work-conserving algorithms), for any context, on identical multiprocessor
platforms. By context we mean the hardware architecture (uniprocessor,
multicore), as well as task constraints like critical sections, precedence
constraints, self-suspension, etc. Since the result is based only on the
releases and deadlines, it is independent from any other parameter. Note that
we do not claim that the given interval is minimal, but it is an upper bound
for any cycle of any feasible schedule provided by any deterministic and
memoryless scheduler
- …
