5 research outputs found

    Data Mining Technology for Structural Control Systems: Concept, Development, and Comparison

    Get PDF
    Structural control systems are classified into four categories, that is, passive, active, semi-active, and hybrid systems. These systems must be designed in the best way to control harmonic motions imposed to structures. Therefore, a precise powerful computer-based technology is required to increase the damping characteristics of structures. In this direction, data mining has provided numerous solutions to structural damped system problems as an all-inclusive technology due to its computational ability. This chapter provides a broad, yet in-depth, overview in data mining including knowledge view (i.e., concept, functions, and techniques) as well as application view in damped systems, shock absorbers, and harmonic oscillators. To aid the aim, various data mining techniques are classified in three groups, that is, classification-, prediction-, and optimization-based data mining methods, in order to present the development of this technology. According to this categorization, the applications of statistical, machine learning, and artificial intelligence techniques with respect to vibration control system research area are compared. Then, some related examples are detailed in order to indicate the efficiency of data mining algorithms. Last but not least, capabilities and limitations of the most applicable data mining-based methods in structural control systems are presented. To the best of our knowledge, the current research is the first attempt to illustrate the data mining applications in this domain

    Multiplicative neuron model artificial neural network based on Gaussian activation function

    No full text
    Multiplicative neuron model-based artificial neural networks are one of the artificial neural network types which have been proposed recently and have produced successful forecasting results. Sigmoid activation function was used in multiplicative neuron model-based artificial neural networks in the previous studies. Although artificial neural networks which involve the use of radial basis activation function produce more successful forecasting results, Gaussian activation function has not been used for multiplicative neuron model yet. In this study, rather than using a sigmoid activation function, Gaussian activation function was used in multiplicative neuron model artificial neural network. The weights of artificial neural network and parameters of activation functions were optimized by guaranteed convergence particle swarm optimization. Two major contributions of this study are as follows: the use of Gaussian activation function in multiplicative neuron model for the first time and the optimizing of central and propagation parameters of activation function with the weights of artificial neural network in a single optimization process. The superior forecasting performance of the proposed Gaussian activation function-based multiplicative neuron model artificial neural network was proved by applying it to real-life time series

    Multiplicative neuron model artificial neural network based on Gaussian activation function

    No full text
    Multiplicative neuron model-based artificial neural networks are one of the artificial neural network types which have been proposed recently and have produced successful forecasting results. Sigmoid activation function was used in multiplicative neuron model-based artificial neural networks in the previous studies. Although artificial neural networks which involve the use of radial basis activation function produce more successful forecasting results, Gaussian activation function has not been used for multiplicative neuron model yet. In this study, rather than using a sigmoid activation function, Gaussian activation function was used in multiplicative neuron model artificial neural network. The weights of artificial neural network and parameters of activation functions were optimized by guaranteed convergence particle swarm optimization. Two major contributions of this study are as follows: the use of Gaussian activation function in multiplicative neuron model for the first time and the optimizing of central and propagation parameters of activation function with the weights of artificial neural network in a single optimization process. The superior forecasting performance of the proposed Gaussian activation function-based multiplicative neuron model artificial neural network was proved by applying it to real-life time series
    corecore