108 research outputs found

    A Quality and Cost Approach for Comparison of Small-World Networks

    Full text link
    We propose an approach based on analysis of cost-quality tradeoffs for comparison of efficiency of various algorithms for small-world network construction. A number of both known in the literature and original algorithms for complex small-world networks construction are shortly reviewed and compared. The networks constructed on the basis of these algorithms have basic structure of 1D regular lattice with additional shortcuts providing the small-world properties. It is shown that networks proposed in this work have the best cost-quality ratio in the considered class.Comment: 27 pages, 16 figures, 1 tabl

    Forwarding and optical indices of 4-regular circulant networks

    Get PDF
    An all-to-all routing in a graph GG is a set of oriented paths of GG, with exactly one path for each ordered pair of vertices. The load of an edge under an all-to-all routing RR is the number of times it is used (in either direction) by paths of RR, and the maximum load of an edge is denoted by π(G,R)\pi(G,R). The edge-forwarding index π(G)\pi(G) is the minimum of π(G,R)\pi(G,R) over all possible all-to-all routings RR, and the arc-forwarding index π→(G)\overrightarrow{\pi}(G) is defined similarly by taking direction into consideration, where an arc is an ordered pair of adjacent vertices. Denote by w(G,R)w(G,R) the minimum number of colours required to colour the paths of RR such that any two paths having an edge in common receive distinct colours. The optical index w(G)w(G) is defined to be the minimum of w(G,R)w(G,R) over all possible RR, and the directed optical index w→(G)\overrightarrow{w}(G) is defined similarly by requiring that any two paths having an arc in common receive distinct colours. In this paper we obtain lower and upper bounds on these four invariants for 44-regular circulant graphs with connection set {±1,±s}\{\pm 1,\pm s\}, 1<s<n/21<s<n/2. We give approximation algorithms with performance ratio a small constant for the corresponding forwarding index and routing and wavelength assignment problems for some families of 44-regular circulant graphs.Comment: 19 pages, no figure in Journal of Discrete Algorithms 201

    Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback

    Full text link
    We consider distributed consensus and vehicular formation control problems. Specifically we address the question of whether local feedback is sufficient to maintain coherence in large-scale networks subject to stochastic disturbances. We define macroscopic performance measures which are global quantities that capture the notion of coherence; a notion of global order that quantifies how closely the formation resembles a solid object. We consider how these measures scale asymptotically with network size in the topologies of regular lattices in 1, 2 and higher dimensions, with vehicular platoons corresponding to the 1 dimensional case. A common phenomenon appears where a higher spatial dimension implies a more favorable scaling of coherence measures, with a dimensions of 3 being necessary to achieve coherence in consensus and vehicular formations under certain conditions. In particular, we show that it is impossible to have large coherent one dimensional vehicular platoons with only local feedback. We analyze these effects in terms of the underlying energetic modes of motion, showing that they take the form of large temporal and spatial scales resulting in an accordion-like motion of formations. A conclusion can be drawn that in low spatial dimensions, local feedback is unable to regulate large-scale disturbances, but it can in higher spatial dimensions. This phenomenon is distinct from, and unrelated to string instability issues which are commonly encountered in control problems for automated highways.Comment: To appear in IEEE Trans. Automat. Control; 15 pages, 2 figure

    Topology-Aware Exploration of Energy-Based Models Equilibrium: Toric QC-LDPC Codes and Hyperbolic MET QC-LDPC Codes

    Full text link
    This paper presents a method for achieving equilibrium in the ISING Hamiltonian when confronted with unevenly distributed charges on an irregular grid. Employing (Multi-Edge) QC-LDPC codes and the Boltzmann machine, our approach involves dimensionally expanding the system, substituting charges with circulants, and representing distances through circulant shifts. This results in a systematic mapping of the charge system onto a space, transforming the irregular grid into a uniform configuration, applicable to Torical and Circular Hyperboloid Topologies. The paper covers fundamental definitions and notations related to QC-LDPC Codes, Multi-Edge QC-LDPC codes, and the Boltzmann machine. It explores the marginalization problem in code on the graph probabilistic models for evaluating the partition function, encompassing exact and approximate estimation techniques. Rigorous proof is provided for the attainability of equilibrium states for the Boltzmann machine under Torical and Circular Hyperboloid, paving the way for the application of our methodology. Practical applications of our approach are investigated in Finite Geometry QC-LDPC Codes, specifically in Material Science. The paper further explores its effectiveness in the realm of Natural Language Processing Transformer Deep Neural Networks, examining Generalized Repeat Accumulate Codes, Spatially-Coupled and Cage-Graph QC-LDPC Codes. The versatile and impactful nature of our topology-aware hardware-efficient quasi-cycle codes equilibrium method is showcased across diverse scientific domains without the use of specific section delineations.Comment: 16 pages, 29 figures. arXiv admin note: text overlap with arXiv:2307.1577

    Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning

    Full text link
    The paper introduces the application of information geometry to describe the ground states of Ising models by utilizing parity-check matrices of cyclic and quasi-cyclic codes on toric and spherical topologies. The approach establishes a connection between machine learning and error-correcting coding. This proposed approach has implications for the development of new embedding methods based on trapping sets. Statistical physics and number geometry applied for optimize error-correcting codes, leading to these embedding and sparse factorization methods. The paper establishes a direct connection between DNN architecture and error-correcting coding by demonstrating how state-of-the-art architectures (ChordMixer, Mega, Mega-chunk, CDIL, ...) from the long-range arena can be equivalent to of block and convolutional LDPC codes (Cage-graph, Repeat Accumulate). QC codes correspond to certain types of chemical elements, with the carbon element being represented by the mixed automorphism Shu-Lin-Fossorier QC-LDPC code. The connections between Belief Propagation and the Permanent, Bethe-Permanent, Nishimori Temperature, and Bethe-Hessian Matrix are elaborated upon in detail. The Quantum Approximate Optimization Algorithm (QAOA) used in the Sherrington-Kirkpatrick Ising model can be seen as analogous to the back-propagation loss function landscape in training DNNs. This similarity creates a comparable problem with TS pseudo-codeword, resembling the belief propagation method. Additionally, the layer depth in QAOA correlates to the number of decoding belief propagation iterations in the Wiberg decoding tree. Overall, this work has the potential to advance multiple fields, from Information Theory, DNN architecture design (sparse and structured prior graph topology), efficient hardware design for Quantum and Classical DPU/TPU (graph, quantize and shift register architect.) to Materials Science and beyond.Comment: 71 pages, 42 Figures, 1 Table, 1 Appendix. arXiv admin note: text overlap with arXiv:2109.08184 by other author
    • …
    corecore