747 research outputs found

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    Mobile and Wireless Information Systems: Applications, Networks, and Research Problems

    Get PDF
    Mobile and Wireless Information Systems received considerable interest in research and development communities. As a result, significant advances were made, which will affect our life both as users and researchers of mobile and wireless technologies. In this paper, we discuss both the current state of mobile and wireless information systems and the challenges in the wide-scale deployment and use of these systems. In particular, we address applications, wireless networks, mobile payments, security, challenges and research problems

    MAC Aspects of Millimeter-Wave Cellular Networks

    Get PDF
    The current demands for extremely high data rate wireless services and the spectrum scarcity at the sub-6 GHz bands are forcefully motivating the use of the millimeter-wave (mmWave) frequencies. MmWave communications are characterized by severe attenuation, sparse-scattering environment, large bandwidth, high penetration loss, beamforming with massive antenna arrays, and possible noise-limited operation. These characteristics imply a major difference with respect to legacy communication technologies, primarily designed for the sub-6 GHz bands, and are posing major design challenges on medium access control (MAC) layer. This book chapter discusses key MAC layer issues at the initial access and mobility management (e.g., synchronization, random access, and handover) as well as resource allocation (interference management, scheduling, and association). The chapter provides an integrated view on MAC layer issues for cellular networks and reviews the main challenges and trade-offs and the state-of-the-art proposals to address them

    Potentzia domeinuko NOMA 5G sareetarako eta haratago

    Get PDF
    Tesis inglés 268 p. -- Tesis euskera 274 p.During the last decade, the amount of data carried over wireless networks has grown exponentially. Several reasons have led to this situation, but the most influential ones are the massive deployment of devices connected to the network and the constant evolution in the services offered. In this context, 5G targets the correct implementation of every application integrated into the use cases. Nevertheless, the biggest challenge to make ITU-R defined cases (eMBB, URLLC and mMTC) a reality is the improvement in spectral efficiency. Therefore, in this thesis, a combination of two mechanisms is proposed to improve spectral efficiency: Non-Orthogonal Multiple Access (NOMA) techniques and Radio Resource Management (RRM) schemes. Specifically, NOMA transmits simultaneously several layered data flows so that the whole bandwidth is used throughout the entire time to deliver more than one service simultaneously. Then, RRM schemes provide efficient management and distribution of radio resources among network users. Although NOMA techniques and RRM schemes can be very advantageous in all use cases, this thesis focuses on making contributions in eMBB and URLLC environments and proposing solutions to communications that are expected to be relevant in 6G

    A Survey of Satellite Communications System Vulnerabilities

    Get PDF
    The U.S. military’s increasing reliance on commercial and military communications satellites to enable widely-dispersed, mobile forces to communicate makes these space assets increasingly vulnerable to attack by adversaries. Attacks on these satellites could cause military communications to become unavailable at critical moments during a conflict. This research dissected a typical satellite communications system in order to provide an understanding of the possible attacker entry points into the system, to determine the vulnerabilities associated with each of these access points, and to analyze the possible impacts of these vulnerabilities to U.S. military operations. By understanding these vulnerabilities of U.S. communications satellite systems, methods can be developed to mitigate these threats and protect future systems. This research concluded that the satellite antenna is the most vulnerable component of the satellite communications system’s space segment. The antenna makes the satellite vulnerable to intentional attacks such as: RF jamming, spoofing, meaconing, and deliberate physical attack. The most vulnerable Earth segment component was found to be the Earth station network, which incorporates both Earth station and NOC vulnerabilities. Earth segment vulnerabilities include RF jamming, deliberate physical attack, and Internet connection vulnerabilities. The most vulnerable user segment components were found to be the SSPs and PoPs. SSPs are subject to the vulnerabilities of the services offered, the vulnerabilities of Internet connectivity, and the vulnerabilities associated with operating the VSAT central hub. PoPs are susceptible to the vulnerabilities of the PoP routers, the vulnerabilities of Internet and Intranet connectivity, and the vulnerabilities associated with cellular network access

    Full Stack 5G Physical Layer Transceiver Design for NOMA in Mobile Heterogeneous Networks

    Get PDF
    The Fifth Generation (5G) and Beyond 5G (B5G) wireless networks are emerging with a variety of new capabilities, focusing on Massive Machine-Type Communications (mMTC), enabling new use cases and services. With this massive increment of mMTC along with increasing users, higher network capacity is a must for 5G and B5G. The integration of mMTC with traditional user traffic creates a heterogeneous network landscape. To address this challenge, future network designs must prioritize optimizing spectrum efficiency while meeting diverse service demands. Non-Orthogonal Multiple Access (NOMA) stands out as a promising technology for enhancing both system capacity and operational efficiency in such heterogeneous networks. Due to its non-orthogonal resource allocation, NOMA outperforms Orthogonal Multiple Access (OMA) in spectral efficiency, throughput, and user capacity, while also offering superior scalability and adaptability to network heterogeneity. Despite its promising advantages, large-scale implementation of NOMA in cellular systems remains elusive due to various challenges, making it a focal point of current research in cellular network technology. While there has been considerable progress in implementing NOMA for broadcast and multicast services, notably with Layer Division Multiplexing (LDM) in next-generation digital TV, the challenges of unicast downlink transmission in NOMA remain largely unexplored. Unicast transmission requires a highly tailored network configuration adaptable to individual user requirements and dynamic channel conditions. Clustering users under a single NOMA channel must be both efficient and adaptive to ensure successful transmission, especially for mobile receiver. Besides, the interplay between NOMA and other 5G technologies remains insufficiently explored, in part due to the lack of an established NOMA-5G framework. Specifically, the collective impact of 5G physical layer technologies such as Low-Density Parity Check (LDPC) coding, Multiple-Input Multiple-Output (MIMO) Beamforming, and mmWave transmission on NOMA’s performance has not been comprehensively studied. Furthermore, in NOMA schemes involving more than two multiplexed users, known as Multilayer NOMA (N-NOMA), the system becomes increasingly complex and susceptible to noise. While N-NOMA holds considerable promise for scalability, its performance metrics are not yet fully characterized, due to challenges ranging from resource allocation complexities to transceiver design issues. Additionally, existing analytical models for performance evaluation are developed for orthogonal systems, are not fully applicable for assessing NOMA performance. Developing new models that incorporate the impact of non-orthogonality could provide more accurate performance assessments and offer valuable insights for future NOMA research. Initially this thesis investigates the feasibility of LDM for unicast & multicast downlink transmission scenarios for Internet of Things (IoT)- user pairs. The findings indicate the Core Layer (CL) performance aligns with IoT requirements while Enhance Layer (EL) layer is suitable for users. A specialized Bit Error Rate (BER) expression is formulated to precisely predict CL performance, considering Lower Layer (LL) interference with predefined power ratio. Subsequently, the thesis employs a novel surface mobility model and adaptive power ratio allocation to evaluate LDM pair sustainability under various receiver mobility conditions. Extending the LDM-Orthogonal Frequency Division Multiplexing (OFDM) model, this thesis presents a Third Generation Partnership Project (3GPP)-compliant 5G transceiver incorporating N-NOMA. This design incorporates a strategically-arranged set of NOMA functionalities and undergoes a rigorous performance evaluation. In particular, the transceiver provides a comprehensive assessment of N-NOMA performance, considering various transmission parameters such as LDPC code rate, MIMO order, modulation schemes, and channel specifications. These considerations not only provide new insights into non-orthogonal access technologies but also highlight dependencies on these factors for network configuration and optimization. To further advance this work, a one-shot N-NOMA multiplexing technique is developed and implemented, simplifying multi-layer standard sequential combiners to reduce transmission latency and transceiver complexity. A more accurate analytical BER expression is also formulated that considers the impact of both residual and non-residual Successive Interference Cancellation (SIC) errors across NOMA layers. To build upon these advancements, an adaptive Power Allocation (PA) technique is introduced to optimize NOMA cluster sustainability and throughput. Employing a greedy algorithmic approach, this method uses real-time transmission feedback to dynamically allocate power across NOMA layers. In addition, a new Three Dimensional (3D) mobility model has been developed, consistent with existing 3GPP standards, capturing vehicular and pedestrian movement across urban and rural macro & micro-cell environments. When integrated with the PA technique, this model allows for real-time adjustments in the NOMA power ratio, effectively adapting to fluctuating receiver channel conditions. Collectively, the findings from this research not only indicate significant physical layer performance improvements but also provide new insights into the potential of non-orthogonal access technologies. In the LDM-OFDM setup presented in Chapter 3, the EL layer needs 15 dB more Signal-to-Noise Ratio (SNR) than the CL to achieve the same BER, but allows for higher data rates. When it comes to mobility, IoT movement accounts for about 70% of link terminations in scenarios with similar mobility patterns. The N-NOMA-5G shows significant improvement in low SNR performance compared to existing literature. The 3 layer simulations shows on average a 60% reduction in the SNR requirements to achieve similar BER. The implementation of a one-shot multiplexer has demonstrated a substantial reduction in N-NOMA multiplexing time, particularly with the growing number of NOMA layers, as detailed in Chapter 4. Notably, the simulation outcomes spanning 2 to 10 layers of NOMA multiplexing indicate an remarkable 52% reduction in processing time. This underscores the effectiveness of the one-shot multiplexer in enhancing efficiency, particularly as the complexity of the NOMA setup intensifies. The developed analytical model also shows over 95% similarities with the simulation results. The impact of dynamic PA for both static and mobile receivers demonstrates on average, over 40% improvements in link sustainability time for mobile users and for static users, it achieves optimal PA and fast convergence within just 12 iterations, as detailed in Chapter 5

    Field Measurements in Determining Incumbent Spectrum Utilization and Protection Criteria in Wireless Co-existence Studies

    Get PDF
    Studies of spectrum sharing and co-existence between different wireless communication systems are important, as the current aim is to optimize their spectrum utilization and shift from static exclusive spectrum allocation to more dynamic co-existence of different systems within same frequency bands. The main goal of this thesis is to provide measurement methodologies for obtaining realistic results in modeling incumbent spectrum utilization and in determining incumbent protection criteria. The following research questions are considered in this thesis: Q1) How should field measurements be conducted and used to model incumbent spectrum utilization? Q2) How should field measurements be conducted and used to determine protection criteria for incumbents in a co-existence scenario with mobile broadband? and Q3) Which licensing methods and technological solutions are feasible to enable spectrum sharing in frequency bands with incumbents? To answer to Q1, this thesis describes the development of a spectrum observatory network concept created through international collaboration and presents measurement methodologies, which allow to obtain realistic spectrum occupancy data over geographical areas using interference map concept. A cautious approach should be taken in making strong conclusions from previous single fixed location spectrum occupancy studies, and measurements covering larger geographical areas might be needed if the measurement results are to be used in making spectrum management decisions. The field interference measurements considered in Q2 are not covered well in the current research literature. The measurements are expensive to conduct as they require substantial human resources, test network infrastructure, professional level measurement devices and radio licenses. However, field measurements are needed to study and verify hypotheses from computer simulations or theoretical analyses in realistic operating conditions, as field measurement conditions can not or are not practical to be adequately modeled in simulations. This thesis proposes measurement methodologies to obtain realistic results from field interference measurements, taking into account the propagation environments and external sources of interference. Less expensive simulations and laboratory measurements should be used both to aid in the planning of field measurements and to complement the results obtained from field measurements. Q3 is investigated through several field interference measurement campaigns to determine incumbent protection criteria and by analyzing the spectrum observatory data to determine the occupancy and trends in incumbent spectrum utilization. The field interference measurement campaigns have been conducted in real TV White Space, LTE Supplemental Downlink and Licensed Shared Access test network environments, and the obtained measurement results have been contributed to the development of the European spectrum regulation. In addition, field measurements have been conducted to contribute to the development and technical validation of the spectrum sharing frameworks. This thesis also presents an overview of the current status and possible directions in spectrum sharing. In conclusion, no single spectrum sharing method can provide universally optimal efficiency in spectrum utilization. Thus, an appropriate spectrum sharing framework should be chosen taking into account both the spectrum utilization of the current incumbents and the future needs in wireless communications.Siirretty Doriast
    corecore