8,683 research outputs found

    Performance analysis of MIMO techniques for a pyramid receiver in an indoor MIMO-VLC system

    Get PDF
    In an indoor multiple-input multiple-output (MIMO) visible light communication (VLC) system, line of sight (LoS) channel links are present between a light-emitting diode (LED) based transmitter and a photodetector (PD) based receiver. The PDs in the receiver are closely packed resulting in a high channel correlation. To overcome channel correlation and improve the performance of the MIMO-VLC system, angle diversity receivers (ADRs) are commonly employed. The channel matrix entries depend on the normal vectors of the PDs, which in turn depend on the elevation angle (EA) of the PDs. Thus, by having normal vectors pointing in different directions, the channel correlation can be considerably reduced. This paper considers a special type of ADR called pyramid receiver (PR) and employs a 4x4 MIMO-VLC system. In this paper, different MIMO algorithms such as repetition coding (RC) and spatial multiplexing (SMP) are considered to exhibit and compare the bit-error-rate (BER) performance of the fixed and variable EA MIMO-VLC systems. The results show that an SMP-employed MIMO-VLC system outperforms the RC-employed MIMO-VLC system. SMP results in an spatial multiplexing gain that varies linearly with the number of LEDs whereas RC does not yield any spatial multiplexing gain. To attain the same spectral efficiency i.e. 4 bit/s/Hz, a larger signal constellation size is required for RC employed MIMO-VLC system to achieve the same BER as of an SMP employed MIMO-VLC system. Similarly, the BER performance of variable EA MIMO-VLC systems is better as compared to fixed EA MIMO-VLC systems

    Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

    Full text link
    We consider a general multiple antenna network with multiple sources, multiple destinations and multiple relays in terms of the diversity-multiplexing tradeoff (DMT). We examine several subcases of this most general problem taking into account the processing capability of the relays (half-duplex or full-duplex), and the network geometry (clustered or non-clustered). We first study the multiple antenna relay channel with a full-duplex relay to understand the effect of increased degrees of freedom in the direct link. We find DMT upper bounds and investigate the achievable performance of decode-and-forward (DF), and compress-and-forward (CF) protocols. Our results suggest that while DF is DMT optimal when all terminals have one antenna each, it may not maintain its good performance when the degrees of freedom in the direct link is increased, whereas CF continues to perform optimally. We also study the multiple antenna relay channel with a half-duplex relay. We show that the half-duplex DMT behavior can significantly be different from the full-duplex case. We find that CF is DMT optimal for half-duplex relaying as well, and is the first protocol known to achieve the half-duplex relay DMT. We next study the multiple-access relay channel (MARC) DMT. Finally, we investigate a system with a single source-destination pair and multiple relays, each node with a single antenna, and show that even under the idealistic assumption of full-duplex relays and a clustered network, this virtual multi-input multi-output (MIMO) system can never fully mimic a real MIMO DMT. For cooperative systems with multiple sources and multiple destinations the same limitation remains to be in effect.Comment: version 1: 58 pages, 15 figures, Submitted to IEEE Transactions on Information Theory, version 2: Final version, to appear IEEE IT, title changed, extra figures adde

    Diversity-Multiplexing Tradeoffs in MIMO Relay Channels

    Full text link
    A multi-hop relay channel with multiple antenna terminals in a quasi-static slow fading environment is considered. For both full-duplex and half-duplex relays the fundamental diversity-multiplexing tradeoff (DMT) is analyzed. It is shown that, while decode-and-forward (DF) relaying achieves the optimal DMT in the full-duplex relay scenario, the dynamic decode-and-forward (DDF) protocol is needed to achieve the optimal DMT if the relay is constrained to half-duplex operation. For the latter case, static protocols are considered as well, and the corresponding achievable DMT performance is characterized.Comment: To appear at IEEE Global Communications Conf. (Globecom), New Orleans, LA, Nov. 200

    Multipath Multiplexing for Capacity Enhancement in SIMO Wireless Systems

    Full text link
    This paper proposes a novel and simple orthogonal faster than Nyquist (OFTN) data transmission and detection approach for a single input multiple output (SIMO) system. It is assumed that the signal having a bandwidth BB is transmitted through a wireless channel with LL multipath components. Under this assumption, the current paper provides a novel and simple OFTN transmission and symbol-by-symbol detection approach that exploits the multiplexing gain obtained by the multipath characteristic of wideband wireless channels. It is shown that the proposed design can achieve a higher transmission rate than the existing one (i.e., orthogonal frequency division multiplexing (OFDM)). Furthermore, the achievable rate gap between the proposed approach and that of the OFDM increases as the number of receiver antennas increases for a fixed value of LL. This implies that the performance gain of the proposed approach can be very significant for a large-scale multi-antenna wireless system. The superiority of the proposed approach is shown theoretically and confirmed via numerical simulations. {Specifically, we have found {upper-bound average} rates of 15 bps/Hz and 28 bps/Hz with the OFDM and proposed approaches, respectively, in a Rayleigh fading channel with 32 receive antennas and signal to noise ratio (SNR) of 15.3 dB. The extension of the proposed approach for different system setups and associated research problems is also discussed.Comment: IEEE Transactions on Wireless Communication
    • …
    corecore