759 research outputs found

    Mutually Unbiased Bases, Generalized Spin Matrices and Separability

    Get PDF
    A collection of orthonormal bases for a complex dXd Hilbert space is called mutually unbiased (MUB) if for any two vectors v and w from different bases the square of the inner product equals 1/d: || ^{2}=1/d. The MUB problem is to prove or disprove the the existence of a maximal set of d+1 bases. It has been shown in [W. K. Wootters, B. D. Fields, Annals of Physics, 191, no. 2, 363-381, (1989)] that such a collection exists if d is a power of a prime number p. We revisit this problem and use dX d generalizations of the Pauli spin matrices to give a constructive proof of this result. Specifically we give explicit representations of commuting families of unitary matrices whose eigenvectors solve the MUB problem. Additionally we give formulas from which the orthogonal bases can be readily computed. We show how the techniques developed here provide a natural way to analyze the separability of the bases. The techniques used require properties of algebraic field extensions, and the relevant part of that theory is included in an Appendix

    Universally Decodable Matrices for Distributed Matrix-Vector Multiplication

    Get PDF
    Coded computation is an emerging research area that leverages concepts from erasure coding to mitigate the effect of stragglers (slow nodes) in distributed computation clusters, especially for matrix computation problems. In this work, we present a class of distributed matrix-vector multiplication schemes that are based on codes in the Rosenbloom-Tsfasman metric and universally decodable matrices. Our schemes take into account the inherent computation order within a worker node. In particular, they allow us to effectively leverage partial computations performed by stragglers (a feature that many prior works lack). An additional main contribution of our work is a companion matrix-based embedding of these codes that allows us to obtain sparse and numerically stable schemes for the problem at hand. Experimental results confirm the effectiveness of our techniques.Comment: 6 pages, 1 figur

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date

    Quantum Block and Convolutional Codes from Self-orthogonal Product Codes

    Get PDF
    We present a construction of self-orthogonal codes using product codes. From the resulting codes, one can construct both block quantum error-correcting codes and quantum convolutional codes. We show that from the examples of convolutional codes found, we can derive ordinary quantum error-correcting codes using tail-biting with parameters [[42N,24N,3]]_2. While it is known that the product construction cannot improve the rate in the classical case, we show that this can happen for quantum codes: we show that a code [[15,7,3]]_2 is obtained by the product of a code [[5,1,3]]_2 with a suitable code.Comment: 5 pages, paper presented at the 2005 IEEE International Symposium on Information Theor

    Coding theory and applications, solved exercises and problems of cyclic codes

    Get PDF

    Theory of Finite Pseudoalgebras

    Get PDF
    Conformal algebras, recently introduced by Kac, encode an axiomatic description of the singular part of the operator product expansion in conformal field theory. The objective of this paper is to develop the theory of ``multi-dimensional'' analogues of conformal algebras. They are defined as Lie algebras in a certain ``pseudotensor'' category instead of the category of vector spaces. A pseudotensor category (as introduced by Lambek, and by Beilinson and Drinfeld) is a category equipped with ``polylinear maps'' and a way to compose them. This allows for the definition of Lie algebras, representations, cohomology, etc. An instance of such a category can be constructed starting from any cocommutative (or more generally, quasitriangular) Hopf algebra HH. The Lie algebras in this category are called Lie HH-pseudoalgebras. The main result of this paper is the classification of all simple and all semisimple Lie HH-pseudoalgebras which are finitely generated as HH-modules. We also start developing the representation theory of Lie pseudoalgebras; in particular, we prove analogues of the Lie, Engel, and Cartan-Jacobson Theorems. We show that the cohomology theory of Lie pseudoalgebras describes extensions and deformations and is closely related to Gelfand-Fuchs cohomology. Lie pseudoalgebras are closely related to solutions of the classical Yang-Baxter equation, to differential Lie algebras (introduced by Ritt), and to Hamiltonian formalism in the theory of nonlinear evolution equations. As an application of our results, we derive a classification of simple and semisimple linear Poisson brackets in any finite number of indeterminates.Comment: 102 pages, 7 figures, AMS late
    • …
    corecore