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1. INTRODUCTION

Since the seminal papers of Belavin et al. [BPZ] and of Borcherds
[Bol] there has been a great deal of work towards understanding the
algebraic structures underlying the notion of operator product expansion
(OPE) of chiral fields in conformal field theory.

In physics literature the OPE of local chiral fields ¢ and  is written in
the form [ BPZ]

QD(W)(]') Y(w)

(z—w)/*1 7

Pp(z)Y(w)= )

J<< o

(1.1)

where ¢(w)(;, ¥(w) are some new fields, which may be viewed as bilinear
products of fields ¢ and  for all je Z (see, e.g., [ K2] for a rigorous inter-
pretation of (1.1)). If now V is a space of pairwise local chiral fields which
contains 1, is invariant with respect to the derivative 0 =0,,, and is closed
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under all jth products, jeZ, we obtain an algebraic structure which
physicists (respectively mathematicians) call a chiral (respectively vertex)
algebra. In more abstract terms, V is a module over C[J] with a marked
element 1 and infinitely many bilinear over C products ¢ ;,¥, j€ Z, satisfy-
ing a certain system of identities, first written down by Borcherds [ Bol].
(An equivalent system of axioms, which is much easier to verify, may be
found in [K27.)

One of the important features of the OPE (1.1) is that its singular part
encodes the commutation relations of fields, namely one has (see, e.g.,
[K2])

[o(2), y(w)]= ) (@(w)) w(w)) 05,0(z = w)/j!, (1.2)
j=0

where d(z—w)=Y,.7z"w "' is the delta-function. This leads to the
notion of a Lie conformal algebra, which is a C[ d]-module with C-bilinear
products ¢,y for all non-negative integers j, subject to certain identities
[K2]. In order to write down these identities in a compact form, it is con-
venient to consider the formal Fourier transform of (1.2), called the
A-bracket (where A is an indeterminate):

27
[p¥]= Z ]*, ((P(j)‘//)-

j=0J"

Then a Lie conformal algebra L is defined as a C[0]-module endowed with
a C-linear map

L®L-C[A]®L,  a®b—[a;b]

satisfying the following axioms [ DK ] («, b, ce L):

(sesquilinearity) [O0a,b]l=—2[a;b], [a,0b]=(0+A)[a,b],
(skew-commutativity) [b,al=—[a_,_5b],
(Jacobi identity) La,[b,c]ll=[[a;,b]l, c]+[b,[ac]].

In the past few years a structure theory [ DK ], representation theory
[CK, CKW], and cohomology theory [BKV] of finite (i.., finitely
generated as C[ 0 ]-modules) Lie conformal algebras have been worked out.
For example, one of the main results of [ DK ] states that any finite simple
Lie conformal algebra is isomorphic either to the Virasoro conformal
algebra:

Vir=C[0]¢, [/(,;/1=(0+20)¢ (1.3)
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or to the current conformal algebra associated to a simple finite-dimen-
sional Lie algebra g,

Curg=C[0]®g, [a;b]=]a,b], a,beg. (1.4)

The objective of the present paper is to develop a theory of “multi-
dimensional” Lie conformal algebras, i.e., a theory where the algebra of
polynomials C[ 0] is replaced by a “multi-dimensional” associative algebra
H. In order to explain the definition, let us return to the singular part (1.2)
of the OPE. Choosing a set of generators a’ of the C[d]-module L, we can
write

[aba’]=) 0%(2,0)d",
%

where QY are some polynomials in A and 0. The corresponding singular
part of the OPE is

[a'(2), a’(w)] =} Q(0,, 0,)(a" (1) (z=w))|,-

k

Letting PY(x, y) = Q%(—x, x+ ), we can rewrite this in a more symmetric
form

[d'(z),a’(w)]=) P{(D,,0,)(d"(w)d(z—w)). (1.5)

k

We thus obtain an H = C[ d]-bilinear map (i.e., a map of H® H-modules):
L®L->(HRH)RyL, a®br [axb]

(where H acts on H® H via the comultiplication map 4(0)=0® 1+
1 ® 0), defined by

[a'*a’] :ZPZ(8®1’ 1®0)®yd".
k

Hence the notion of A-bracket [a,;b] is equivalent to the notion of the
x-bracket [a = b] introduced by Beilinson and Drinfeld [ BD], the relation
between the two brackets being given by letting A= —0® 1. For example,
the Virasoro conformal algebra (1.3) corresponds to the Virasoro pseudo-
algebra

Vie=C[01/, [/+/]1=(1®0—0®1)®cpo1/. (1.6)
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It is natural to introduce the general notion of a conformal algebra
as a C[0]-module L endowed with a C-linear map LR L->C[A]®L,
a® b a,b satisfying the sesquilinearity property

(0a),b=—A(a;b),  a;(0b)=(0+A)(a,b).
Such a conformal algebra is called associative (respectively commutative) if
a,(b,c)=(a;b),,, c (respectively bya=a_,_,b),
and the A-product of an associative conformal algebra defines a A-bracket
[a,b]l=a,b—b_,_,a,

making it a Lie conformal algebra [ K4, DK ].
As above, we have the equivalent notion of a =-product on an
H=C[0]-module L, which is an H-bilinear map

LIL—->(HR®H)Q®yL, a®br>axb. (L.7)

Now it is clear that the notion of a *-product can be defined by (1.7) for
any Hopf algebra H by making use of the comultiplication 4: H > H® H
to define (H® H)®y L. A pseudoalgebra is a (left) H-module L endowed
with an H-bilinear map (1.7). The name is motivated by the fact that this
is an algebra in a pseudotensor category (introduced in [ L, BD]). Accord-
ingly, the x-product will be called a pseudoproduct.

One is able to define a pseudoproduct as soon as a structure of a
bialgebra is given on H. However, in order to generalize the equivalence of
a pseudoalgebra and an H-conformal algebra structure on an H-module L,
we need H to be a Hopf algebra. In this case any element of H® H can be
uniquely written as a (finite) sum:

Y (h; ®1) A(f), where £, are linearly independent.
Hence the pseudoproduct on L can be written in the form
axb=) (h; ®1)®y c;. (1.8)

The corresponding H-conformal algebra structure is then a C-linear map
L®L— H® L given by

ab=Y h, ®c;. (1.9)
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Every element x of H* then defines an x-product LQ L — L,
acb=% {x,S(hy)> c;, (1.10)

where S is the antipode of H.

The H-bilinearity property of the pseudoproduct (1.8) is, of course,
easily translated to certain sesquilinearity properties of the products (1.9)
and (1.10). In particular, in the case H=C[0], the product (1.9) is the
J-product if we let A= —0, and the product (1.10) for x=1¢’/ is the jth
product described above, where H* ~ C[[¢]], (¢, 0) = 1. The equivalence
of these three structures (discussed in Section 9) is very useful in the study
of pseudoalgebras.

In order to define associativity of a pseudoproduct, we extend it from
LOL->H®®yLto(H®QyL)QL—> H®®yLandto LQ® (H®*®yL)
— H®*®, L by letting

(/®pa) *b=Z (/®1)(4®id)(g) ®uc;,

ax(f@ub)=3 (1®f) ([d®4)(g)®uc;.

13

where axb=) g, ®pc;.

Then the associativity property is given by the usual equality (in
H®*®,L):

(axb)xc=ax=(b=c).

The easiest example of a pseudoalgebra is a current pseudoalgebra,
defined as follows. Let H' be a Hopf subalgebra of H and let 4 be an
H'-pseudoalgebra (for example, if H'=C, then 4 is an ordinary algebra
over C). Then the associated current H-pseudoalgebra is Cur A = H®y A
with the pseudoproduct

(f®u a) * (g®u b)=((f®L) @y 1) (a*b).

The H-pseudoalgebra Cur 4 is associative iff the H'-pseudoalgebra A is.
The most important example of an associative H-pseudoalgebra is the
pseudoalgebra of all pseudolinear endomorphisms of a finitely generated
H-module ¥V, which is denoted by Cend V (see Section 10). A pseudolinear
endomorphism of V is a C-linear map ¢: V— (H® H) ®g V such that

d(h)=((1QN)®yx1)d(v), heH, veV.
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The space Cend V' of all such ¢ becomes a (left) H-module if we define
(hg)(v) =((h®1)®g 1) $(v).

The definition of a pseudoproduct on Cend V is especially simple when V'
is a free H-module, V'=H® V,, where V, is a finite-dimensional vector
space over C with a trivial action of H. Then Cend V' is isomorphic to
H® H® End V,, with H acting by left multiplication on the first factor,
with the pseudoproduct

(f®a®A)*(g®b®B)=) (f®gd)®y(1®baj ® AB),

1

where A(a) =3, a; ® a’.

The main objects of our study are Lie pseudoalgebras. The correspond-
ing pseudoproduct is conventionally called a pseudobracket and denoted by
[a+b]. Given an associative pseudoalgebra with pseudoproduct a = b
we may give it a structure of a Lie pseudoalgebra by defining the
pseudobracket

[axb]=a+b—(6®yid) b = a,

where o: H® H— H® H is the permutation of factors. It is immediate to
see that this pseudobracket satisfies the following skew-commutativity and
Jacobi identity axioms:

[bxa]l=—(c®gid) [a*b], (1.11)
[ax[bxc]]=[[axb]*c]+((c®id)®zid) [b*[axc]]. (1.12)

It is important to point out here that the above pseudobracket and both
identities are well defined, provided that the Hopf algebra H is cocom-
mutative. A pseudoalgebra with pseudoproduct [a * b] satisfying identities
(1.11) and (1.12) is called a Lie pseudoalgebra. We will always assume that
H is cocommutative when talking about Lie pseudoalgebras. Of course, the
simplest examples of Lie pseudoalgebras are Cur 4, where A isa H'(c H)
Lie pseudoalgebra (= Lie algebra if H' = C). It is needless to say that in
the case H=C[0], 4(0)=0®1+1®03, the H-conformal algebras
associated to Lie pseudoalgebras are nothing else but the Lie conformal
algebras discussed above.

We will explain now the connection of the notion of a Lie pseudoalgebra
to the more classical notion of a differential Lie algebra studied in
[RI-R4], [C, NW] and many other papers (see Section 7). Let Y be a
commutative associative algebra over C with compatible left and right
actions of the Hopf algebra H. Then, given a Lie pseudoalgebra L, we let
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AyL =Y ® L with the obvious left H-module structure and the following
Lie algebra (over C) structure:

[(x®pga), (yQub)] :Z (xf)(rg) ®pc;

1

it [axb]=Y (f; ®g)®nec;.

1

Provided that L is a free H-module, the Lie algebra .o/, L is a free
Y-module, hence .o/, L is a differential Lie algebra in the sense of [ NW].
The most classical case is again H=C[d], when Y is simply a com-
mutative associative algebra with a (left and right) derivation 0, and we get
the differential Lie algebras of Ritt [ RI-R4]. Thus, the notion of a Lie
pseudoalgebra is reminiscent of the notion of a group scheme: each Lie
pseudoalgebra L, which is free as an H-module, gives rise to a functor .o/
from the category of commutative associative algebras with compatible left
and right actions of H to the category of differential Lie algebras
( = category of formal differential groups).

For example, the functor .o/ corresponding to the Virasoro pseudo-
algebra (1.6) associates to any commutative associative algebra Y with a
derivation ' the differential Lie algebra Y with bracket [u, v] =uv' —u'v,
called the substitutional Lie algebra by Ritt. The current pseudoalgebra
Cur g, where g is a Lie algebra over C, associates to Y the obvious differen-
tial Lie algebra Y ® g. Thus, a result of [ DK ] asserts that any simple finite
differential Lie algebra with “constant coefficients” is isomorphic either to
the substitutional Lie algebra or to Y ® g where g is a simple finite-dimen-
sional Lie algebra. In the rank 1 case, but without the constant coefficients
assumption, this is the main result of [ R1].

The main tool in the study of pseudoalgebras is the annihilation algebra
oy L, where X = H* is the associative algebra dual to the coalgebra H. We
find it remarkable that the annihilation algebra of the associative
pseudoalgebra Cend H= H® H is nothing else but the Drinfeld double
(with the obvious comultiplication) of the Hopf algebra H. Note that in the
associative case Y need not be commutative in order to define the functor
oy, but in the Lie algebra case it must be. So, in order to construct the
annihilation Lie algebra we again use cocommutativity of H.

Recall that, by Kostant’s theorem (Theorem 2.1), any cocommutative
Hopf algebra H is a smash product of a group algebra C[/'] and the
universal enveloping algebra U(d) of a Lie algebra d. In Sections 5 and 13.7
we show that the theory of pseudoalgebras over a smash product of C[ 1]
and any Hopf algebra H reduces to that over H. This allows us in many
cases to assume, without loss of generality, that H is the universal envelop-
ing algebra of a Lie algebra D.
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However, for most of our results we have to assume that D is finite
dimensional. In this case the algebra H = U(d) is Noetherian, and the
annihilation algebra ./, L is linearly compact, provided that L is finite
(ie., finitely generated as an H-module). Recall that a topological Lie
algebra is called linearly compact if its underlying topological vector space
is a topological product of finite-dimensional vector spaces with the dis-
crete topology (see Section 6).

In Section 11 we prove “reconstruction” theorems, which claim that,
under some mild assumptions, a Lie pseudoalgebra is completely deter-
mined by its annihilation Lie algebra along with the action of d. This
reduces the classification of finite simple Lie pseudoalgebras to the well
developed structure theory of linearly compact Lie algebras, which goes
back to E. Cartan (see [ G1, G2] and Section 6).

We turn now to examples of finite Lie pseudoalgebras beyond the rather
obvious examples of current Lie pseudoalgebras. The first example is the
generalization of the Virasoro pseudoalgebra (1.6) defined for H=C[0]
(which is the universal enveloping algebra of the 1-dimensional Lic algebra)
to the case H= U(D), where D is any finite-dimensional Lie algebra. This is
the Lie pseudoalgebra W(d)= H ®d with pseudobracket

[((1®a)«(1®Db)]
=(1®1)®x(1Q [a,b])+(b®1)®y (1Qa) - (1Qa)®y (1®D).

Since the associated annihilation algebra .o/, W(d) ~ X ® D is isomorphic to
the Lie algebra of formal vector fields on the Lie group D with Lie algebra
D, it is natural to call W(d) the pseudoalgebra of all vector fields. In fact
we develop (in Section 8) a formalism of pseudoforms similar to the usual
formalism of differential forms, which may be viewed as the beginning of a
“pseudo differential geometry.”

This allows us to define the remaining three series of finite simple Lie
pseudoalgebras: S(d, y), H(D, y, w), and K(d, ). The annihilation algebras
of the simple Lie pseudoalgebras W(bd), S(d, x), H(d, v, ®) and K(D, 0) are
isomorphic to the four series of Lie—Cartan linearly compact Lie algebras
W, Sy, Py (which is an extension of H, by a I-dimensional center) and
Ky, where N =dim d. However, the Lie pseudoalgebras S(, ), H(D, y, ®)
and K(D, 0) depend on certain parameters y, w and 6, due to inequivalent
actions of D on the annihilation algebra. The parameter y is a 1-dimen-
sional representation of d, i.e., y €ed* such that y([d, d])=0. The param-
eter w is an element of d* A d* such that @™?#0 and dw+y A @ =0 in
the case H(D, y, w), when N is even. The parameter 6ed* is such that
O A (dO)N—D220 in the case K(D,0), when N is odd. In the cases
H(D, y, w), K(d, 0), these parameters are in one-to-one correspondence with
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“nondegenerate” skew-symmetric solutions a=r+s®1 —1®s (red A D,
seDd) of a modification of the classical Yang—Baxter equation, which is a
special case of the dynamical classical Yang—Baxter equation (see [Fe,
ES]).

The central result of the paper is the classification of finite simple Lie
pseudoalgebras over the Hopf algebra H= U(d). As usual, a Lie
pseudoalgebra L is called simple if it is nonabelian (i.e., [ L * L] #0) and
its only ideals are 0 and L. Our Theorem 13.2 states that any such Lie
pseudoalgebra is isomorphic either to a current pseudoalgebra Cur g=
Curd g over a simple finite-dimensional Lie algebra g, or to a current
pseudoalgebra Cur, L' over one of the Lie pseudoalgebras L' = W(d'),
S, x'), HY, x', »") or K(d', 0"), where H' = U(d') and D' is a subalgebra
of d.

A Lie pseudoalgebra L is called semisimple if it contains no nonzero
abelian ideals. One also defines in the usual way the derived pseudoalgebra,
solvable and nilpotent pseudoalgebras, and for a finite Lie pseudoalgebra
L one has the solvable radical Rad L (so that L/Rad L is semisimple).

Our Theorem 13.3 states that any finite semisimple Lie U(D)-pseudo-
algebra is a direct sum of finite simple Lie pseudoalgebras and of Lie
pseudoalgebras of the form A x Cur g, where A4 is a subalgebra of W(d) and
g is a simple finite-dimensional Lie algebra. In addition, in Theorem 13.4
we show that any subalgebra of W(b) is simple, and in Corollary 13.6 we
give a complete list of all these subalgebras. (A more concise formulation
of Theorem 13.2 is that any finite simple Lie pseudoalgebra over U(Dd) is
either a current pseudoalgebra Cur g over a simple finite-dimensional Lie
algebra g, or a nonzero subalgebra of W(d).)

Note, however, that Levi’s theorem on L being a semidirect sum of
L/Rad L and Rad L is not true even in the case dim d = 1. This stems from
the fact that the cohomology of simple Lie pseudoalgebras with nontrivial
coefficients is (highly) nontrivial (see Section 15 and [ BKV]), in a sharp
contrast with the Lie algebra case. For example, it follows from [ BKV]
that there are precisely five cases (three isolated examples and two families)
of non-split extensions of Vir by Cur C. Translated into the language of
differential Lie algebras, this result goes back to Ritt [R3].

Closely related to the present paper are the papers [ Ki, NW ], where (in
our terminology) the annihilation algebras of rank 1 over H Lie pseudo-
algebras, and of simple Lie pseudoalgebras of arbitrary finite rank, respectively,
are studied. In fact, our Theorems 13.2 and 13.3 provide a completed form
of the classification results of [NW] (in the “constant coefficients” case).

The structural results of the present paper in the simplest case dim d =1
reproduce the results of [ DK ]. However, this case is much easier than the
case dim D > 1, mainly due to the fact that only in this case is any finite tor-
sionless H-module free.
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Note also the close connection of our work to Hamiltonian formalism in
the theory of nonlinear evolution equations (see the review [ DN2], the
book [Do] and references there, and also [GD, DNI1, Z, M, X], and
many other papers). In Section 16 we derive, as a corollary of Theorems
13.2 and 13.3, a classification of simple and semisimple linecar Poisson
brackets in any finite number of indeterminates.

In Section 14 we develop a representation theory of finite Lie
pseudoalgebras. First, we prove an analogue of Lie’s Lemma that any
weight space for an ideal of a Lie pseudoalgebra L acting on a finite
module is an L-submodule (Proposition 14.1). This implies an analogue of
Lie’s Theorem that a solvable Lie pseudoalgebra has an eigenvector in any
finite module (Theorem 14.1), and an analogue of Cartan—Jacobson
Theorem that describes all finite Lie pseudoalgebras which have a finite
faithful irreducible module (Theorem 14.2). Finally, we reduce the
classification and construction of finite irreducible modules over semisimple
Lie psecudoalgebras to that of irreducible modules over linearly compact
Lie algebras of the type studied by Rudakov [Rul, Ru2] (the complete
classification will appear in a future publication). Note that complete
reducibility fails already in the simplest case of Lie pseudoalgebras with
dimd=1[CKW].

In Section 15 we define cohomology of Lie pseudoalgebras and show
that it describes module extensions, abelian pseudoalgebra extensions, and
pseudoalgebra deformations. We also relate this cohomology to the
Gelfand—Fuchs cohomology [Fu]. These results generalize those of
[BKV] in the dim d =1 case.

Note that in the case dim d =1 Lie pseudoalgebras are closely related to
vertex algebras in a way similar to the relation of Lie algebras to universal
enveloping algebras [ K2]. We expect that, under certain conditions, there
is a similar relation of “multi-dimensional” Lie pseudoalgebras to “multi-
dimensional” vertex algebras defined in [Bo2]. In the case of a com-
mutative Lic algebra d the Lie pseudoalgebras encode the OPE between
ultralocal fields (as well as the linear Poisson brackets). However, it is not
clear how Lie pseudoalgebras are related to the OPE of realistic quantum
field theories.

In order to end the introduction on a more optimistic note, we would
like to point out that in the definition of a Lie pseudoalgebra one may
replace the permutation ¢ by the map f® g+ (g® f) R where R is an
R-matrix for H, hence one can take for H any quasi-triangular Hopf
algebra (defined in [ D]). This observation, the appearance of the classical
Yang-Baxter equation, and the fact that the annihilation algebra of the
associative pseudoalgebra Cend H is the Drinfeld double of H, lead us to
believe that there should be a deep connection between the theories of
pseudoalgebras and quantum groups.
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Unless otherwise specified, all vector spaces, linear maps, and tensor
products are considered over an algebraically closed field k of characteristic 0.

2. PRELIMINARIES ON HOPF ALGEBRAS

The goal of this section is to gather some facts and notation which will
be used throughout the paper. The material in Sections 2.1 and 2.2 is
standard and can be found, for example, in Sweedler’s book [Sw]. The
material in Section 2.3 seems new.

2.1. Notation and Basic Identities

Let H be a Hopf algebra with a coproduct 4, a counit &, and an antipode
S. We will use the following notation (cf. [Sw]):

A(h):h(l) ®h(2): (2.1)
(A4®id) 4(h)=(1d® 4) A(h) =hq) @ h) @ hs,, (2.2)

Note that notation (2.2) uses the coassociativity of 4. The axioms of the
antipode and the counit can be written as

h_vyhay=hayh s =e(h), (2.4)
e(hay) hay=hq)elhg) =h, (2.5)

while the fact that 4 is a homomorphism of algebras translates as

(fg)(l) ® (fg)(z) = f(l)g(l) ® f(z)g(z)- (2.6)

Equations (2.4) and (2.5) imply the following useful relations:
h(_l)h(z)®h(3):l®h://l(1)h(_2)®h(3) (27)

Let G(H) be the subset of group-like elements of H, i.e., g € H such that
Alg)=g®g. Then G(H) is a group, because S(g)g=gS(g)=1 for
g€ G(H). Let P(H) be the subspace of primitive elements of H, i.e., pe H
such that 4(p)=p®1+1®p. This is a Lie algebra with respect to the
commutator [ p, q] = pq—qp. Note that G(H) acts on P(H) by inner
automorphisms: gpg ~' € P(H) for pe P(H), g G(H).

The proof of the following theorem may be found in [ Sw].

THeOREM 2.1 (Kostant). Let H be a cocommutative Hopf algebra over
k (an algebraically closed field of characteristic 0). Then H is isomorphic (as
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a Hopf algebra) to the smash product of the universal enveloping algebra
U(P(H)) and the group algebra k[ G(H)].

An associative algebra A is called an H-differential algebra if it is also a
left H-module such that the multiplication 4 ® 4 — 4 is a homomorphism
of H-modules. In other words,

h(xy) = (h(l)x)(h(z)J’) (2.8)

for he H, x, y e A. The smash product A # H of an H-differential algebra 4
with H is the tensor product 4 ® H of vector spaces but with a new multi-
plication:

(a% g)(b#h):a(g(l)b)# g(z)h~ (2.9)

If both 4 and H are Hopf algebras, then 4 # H is a Hopf algebra if we con-
sider it as a tensor product of coalgebras. In the theorem above, U(P(H))
is a k[ G(H)]-differential algebra with respect to the adjoint action of
G(H) on P(H).

It is worth mentioning that as a byproduct of Kostant’s Theorem, we
obtain that the antipode of a cocommutative Hopf algebra is an involution,
ie, S?=id.

We will often be working with the Hopf algebra H = U(D), where d is a
finite-dimensional Lie algebra. It is well known that this is a Noetherian
domain, and any two nonzero elements f, ge H have a nonzero left
(respectively right) common multiple. In particular, H= U(d) has a skew-
field of fractions K.

LeEMMA 2.1. Let H be a Noetherian domain which has a skew-field of
fractions K, and let L be a finite H-module. Then there is a homomorphism
i: L— F from L to a free H-module F, whose kernel is the torsion submodule
of L. If L is torsion-free, then the module F can be chosen in such a way that
hF < i(L) for some nonzero he H and i(L)/hF is torsion.

Proof. The kernel of the natural map 1: L > Lg:= K®y L is the tor-
sion of L. The image of L under this map is contained inside a free
H-submodule of Lg. In order to see this, let us consider a set of
H-generators {/,,..,1,} of L, and a K-basis {vy, .., v} of Lg. We can
express the elements #(/;) as K-linear combinations of the v;’s, and by
rescaling elements of this basis by a common multiple of the denominators,
we can assume the 1(/;)’s to be H-linear combinations of the v;’s. Hence the
image (L) is contained in the H-module F spanned by the v,’s, which is
free by construction.

The fact that F/L is torsion is clear because there exist nonzero elements
h; € H such that h;v, e L. If h is a common multiple of the 4;’s, then hF
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is contained in L. On the other hand, the inclusion L < F implies AL < hF,
hence A(L/hF)=0 and L/hF is torsion. ||

2.2. Filtration and Topology
We define an increasing sequence of subspaces of a Hopf algebra H
inductively by
F'H=0 for n<O, F°H=k[G(H)], (2.10)
F"H =span,{he H| A(h)e F°H®h+h® F°H

n—1
+Y FHQF'~'H} for n>1. (2.11)

i=1

It has the following properties (which are immediate from definitions):

(F"H)(F"H) = F"+"H, (2.12)
A(F"H) < Z FHQF"'H, (2.13)

i=0
S(F"H)< F"H. (2.14)

When H is cocommutative, using Theorem 2.1, one can show that:

U F'H=H. (2.15)

(This condition is also satisfied when H is a quantum universal enveloping
algebra.) Provided that (2.15) holds, we say that a nonzero element ae H
has degree n if ae F"H\F"~'H.

When H is a universal enveloping algebra, we get its canonical filtration.
Later in some instances we will also impose the following finiteness condi-
tion on H:

dmF'"H<w  Vn (2.16)

It is satisfied when H is a universal enveloping algebra of a finite-dimen-
sional Lie algebra, or its smash product with the group algebra of a finite
group.

Now let X=H* := Hom,(H, k) be the dual of H. Recall that H acts on
X by the formula (4, fe H, xe X):

Chx, 5 =<x, S(h) [, (2.17)
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so that X is an associative H-differential algebra (see (2.8)). Moreover, X

is commutative when H is cocommutative. Similarly, one can define a right
action of H on X by

{xh, [ =<x, fS(h), (2.18)
and then we have
(xy) h = (xh1))(Yh(a). (2.19)
Associativity of H implies that X is an H-bimodule, i.e.,
fxg)=(fx)g,  f.geH, xeX (2.20)

Let X=F_; XoF,X> ... be the decreasing sequence of subspaces of X
dual to F"H: F,X=(F"H)*. It has the following properties:

(F,, X)(F,X)<F, .. X, (2.21)
(F"H)(F,X)=F,_,X, (2.22)

and
() F,X=0, provided that (2.15) holds. (2.23)

n

We define a topology of X by considering {F,X} as a fundamental system
of neighborhoods of 0. We will always consider X with this topology, while
H with the discrete topology. It follows from (2.23) that X is Hausdorff,
provided that (2.15) holds. By (2.21) and (2.22), the multiplication of X
and the action of H on it are continuous; in other words, X is a topological
H-differential algebra.

We define an antipode S: X' — X as the dual of that of H:

{S(x), hy =<x,S(h)). (2.24)

Then we have
S(ab)=S(b) S(a) for a,be X or H. (2.25)
We will also define a comultiplication 4: X — X ® X as the dual of the

multiplication H® H — H, where X ® X :=(H® H)* is the completed
tensor product. Formally, we will use the same notation for X as for H (see
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(2.1)~(2.3)), writing for example, 4(x) =X, ® x5 for x € X. By definition,
for x, ye X, f, ge H, we have:

Cxp, [ =Kx®p, A(f)) =X, fay><¥s fi2))> (2.26)
(x, fg) =<4(x), f®g) =<{xq), [){xp), &- (2.27)

We have
S(F,X)<F,X, (2.28)

AF,X) < Z F,X®F,_,

i=—1

X, (2.29)

—1

If H satisfies the finiteness condition (2.16), then the filtration of X satisfies
dim X/F, X< o Vn, (2.30)

which implies that X is linearly compact (see Section 6 below).

By a basis of X we will always mean a topological basis {x,} which tends
to 0, i.e., such that for any » all but a finite number of x; belong to F,X.
Let {h;} be a basis of H (as a vector space) compatible with the filtration.
Then the set of elements {x;} of X defined by {x;, h;> =0, is called the
dual basis of X. If H satisfies (2.16), then {x,} is a basis of X in the above
sense, i.e., it tends to 0. We have for ge H, ye X,

g:Z<g7xi>hi’ y:Z<y9hi>xia
where the first sum is finite, and the second one is convergent in X.

ExampLE 2.1. Let H= U(Dd) be the universal enveloping algebra of an
N-dimensional Lie algebra b le a basis {0;} of d, and for I=
(i1 iny)€ZY let @0 =0...0% /i\!---iy!. Then {3P} is a basis of H
(the Poincaré—Birkhoff- Wltt ba51s) Moreover, it is easy to see that

AoV = Y VX, (2.31)

J+K=1

If {#,} is the dual basis of X, defined by <7;,9) =6, ,, then (2.31)
implies ¢,tx=1;,x. Therefore, X can be identified with the ring
Oy=K[[?;, .., ty]] of formal power series in N indeterminates. Then the
action of H on O is given by differential operators.
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Lemma 2.2, If {h;}, {x;} are dual bases in H and X, then

Ax)=Y xS(h)®x;=Y x; ® S(h;) x (2.32)

for any xe X.
Proof. For f, ge H, we have
(X xS ©x,. @ ) = CxS(h. £ Cxre)

=<x8(g), /D =<x, fg) =<4(x), f® gD,

which proves the first identity. The second one is proved in the same
way. |

2.3. Fourier Transform

For an arbitrary Hopf algebra H, we introduce a map & : HQ H—
H® H, called the Fourier transform, by the formula

y(f@(g):(f@l)(S®id)A(g):fg(—1)®g(2)« (2.33)

It follows from (2.7) that & is a vector space isomorphism with an inverse
given by

71(f®g):(f®1)A(g):fg(l)®g(2)- (2.34)
Indeed, using the coassociativity of 4 and (2.7), we compute
f_l(fg(q) ® g(z)) =fg(71)(g(2))(1) ® (g(z))(z) =fg(71)g(z) ® g3y =f®g
The significance of # is in the identity

f®eg=7 " F(f®g)= (fg( 1)®1) (g(Z))a (2.35)

which, together with properties (2.12)—(2.14) of the filtration of H, implies
the next result.

LEMMA 2.3. (i) Every element of H® H can be uniquely represented in
the form Y ; (h; ® 1) A(1,), where {h;} is a fixed k-basis of H and I, € H. In
other words, HQ H=(H®k) A(H).

(1)  We have
(FPTHQk) A(H)=F"(HRQ H) A(H)=(k® F"H) A(H), (2.36)

where F"(HQ H)=Y,, ;—, FH® F/H.
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In particular, for any H-module W, we have
(FFHRk) @y W=F"(HOH)®y W=(kQF'H)®, W. (2.37)

Proof. For he H® H we have
h= Z (h; ®1) 4(l,) = _1<Zhi®li> iff > h, @IL,=7 (h).

This proves (1).

To prove (2.36), it is enough to show that F"(H® H) < (F"H®K)
A(H). This follows from the above equation and the fact that
F(F'(HRH))cF'(HRH)cF'H® H. |

The Fourier transform % has the following properties (which are easy to
check using (2.4)—(2.6)):

F(f®g)Ah)=7F(f®g) (1®h), (2.38)

F (g =hel)7(f®g), (2.39)
F(fRhg)=(1®hu) 7 (f®g) (h_,®1), (2.40)

Fra P13 T3 = T3 T3 (241)

Here in (241), we use the standard notation Z,=7 ®id acting on

HR®H®H.

3. PSEUDOTENSOR CATEGORIES AND PSEUDOALGEBRAS

In this section, we review some definitions of Beilinson and Drinfeld
[BD]; we also use the exposition in [ BKV, Sect. 12].

The theory of conformal algebras [ K2] is in many ways analogous to
the theory of Lie algebras. The reason is that in fact conformal algebras can
be considered as Lie algebras in a certain “pseudotensor” category, instead
of the category of vector spaces. A pseudotensor category [BD] is a
category equipped with “polylinear maps” and a way to compose them
(such categories were first introduced by Lambek [L] under the name
multicategories). This is enough to define the notions of Lie algebra,
representations, cohomology, etc.
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As an example, consider first the category ¥ &% of vector spaces
(over k). For a finite nonempty set / and a collection of vector spaces
{L,};c;» M, we can define the space of polylinear maps from {L;} ., to M
as

Lin({L;};c;» M) =Hom <® L;, M>

iel

The symmetric group S; acts among these spaces by permuting the factors
n ez L.

For any surjection of finite sets 7: J — I and a collection {N};_,, we
have the obvious compositions of polylinear maps

Lin({Li}ieb M)®® Lin({Nj}jeJ,. , L)~ Lin({Nj}jeJ’ M), (3.1)

iel

b {w,-},-e,wo(@ %)zaﬁ({wi}ie», (32)

iel

where J,=n"1(i) for ie L
The compositions have the following properties:

Associativity. If K —> J, {P;},cx is a family of objects and ;e

Lin({Pk}keI(j’Nj)> then ¢({lybi({%j}j€‘li)}ie1):(¢({wi}iel))({)(j}je])e
Lin({Pk}keK,M).

Unit. For any object M there is an element id,, € Lin({ M}, M) such
that for any ¢ € Lin({L,} ;c;, M) one has id,(¢) =¢({id } ;) = ¢

Equivariance. The compositions (3.1) are equivariant with respect to
the natural action of the symmetric group.

DerFINITION 3.1 [BD]. A pseudotensor category is a class of objects .#
together with vector spaces Lin({L;};.;, M), equipped with actions of the
symmetric groups S; among them and composition maps (3.1), satisfying
the above three properties.

Remark 3.1. For a pseudotensor category .# and objects L, M € .4, let
Hom(L, M)=Lin({L}, M). This gives a structure of an ordinary
(additive) category on .# and all Lin are functors (.#°)' x .4 — ¥ 6%,
where .#° is the dual category of ..

Remark 3.2. The notion of pseudotensor category is a straightforward
generalization of the notion of operad. By definition, an operad is a
pseudotensor category with only one object.
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L, L.

M

FIG. 1. A polylinear map from {L;}7_, to M.

DeFINITION 3.2. A Lie algebra in a pseudotensor category .# is an
object L equipped with feLin({L, L}, L) satisfying the following proper-
ties.

Skew-commutativity. = —o,, ff, where g, =(12)€ S,.
Jacobi zdentlty ﬁ(ﬁ(a )7):ﬁ(a ﬁ(’ ))_O-IZﬁ(a ﬁ(v ))9 where

now ag,, =(12) is viewed as an element of S;.

It is instructive to think of a polylinear map ¢ € Lin({L,}7_,, M) as an
operation with n inputs and 1 output, as depicted in Fig. 1. The skew-com-
mutativity and Jacobi identity for a Lie algebra (L, /) are represented
pictorially in Figs. 2 and 3.

DerFINITION 3.3. A representation of a Lie algebra (L, ) is an object M
together with p e Lin({L, M}, M) satisfying

p(ﬂ(a )7):p(’p(’ ))_O-IZ,D(JP(a ))

Similarly, one can define cohomology of a Lie algebra (L, ) with coef-
ficients in a module (M, p) (cf. [BKV]).

L L L

<
B

L L

FIG. 2. Skew-commutativity.
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i

FIG. 3. Jacobi identity.

DEerFINITION 3.4. An n-cochain of a Lie algebra (L, ), with coefficients
in a module (M, p) over it, is a polylinear operation

yeLin({L,..,L}, M)
——
which is skew-symmetric, i.e., satisfying for all i=1, .., n—1 the identity
shown in Fig. 4. The differential dy of a cochain y is defined by Fig. 5. The
same computation as in the ordinary Lie algebra case shows that d?=0.

The cohomology of the resulting complex is called the cohomology of L
with coefficients in M and is denoted by H*(L, M).

Here are two simple examples.

ExamPLE 3.1. A Lie algebra in the category of vector spaces 7 &% is
just an ordinary Lie algebra. The same is true for representations and
cohomology.

ExampPLE 3.2. Let H be a cocommutative bialgebra. Then the category
M'(H) of left H-modules is a symmetric tensor category. Hence, .#'(H)

1 i i+l
L L K L L
/\
| Y

M M

1 i i+1 n

L L L L

| T Y

FIG. 4. Skew-symmetry of a cochain.
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— Z (_1)i+l

1<i<n+1

+ Z (_1)i+j

1<i<j<n+1

FIG. 5. Differential of a cochain.
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is a pseudotensor category with the obvious pseudotensor structure

Lin({L,} ;<> M):HomH<® L,»,M>. (3.3)

iel

The composition of polylinear maps is given by (3.2). An algebra (e.g., Lie
or associative) in the category .#'(H) will be called an H-differential
algebra: this is an ordinary algebra which is also a left A-module and such
that the product (or the bracket) is a homomorphism of H-modules; see
(2.8).

One can also define the notions of associative algebra or commutative
algebra in a pseudotensor category, their representations and analogues of
the Hochschild, cyclic, or Harrison cohomology.

DErFINITION 3.5. An associative algebra in a pseudotensor category M is
an object 4 and a product x e Lin({A4, A}, A) satisfying

ASSOCiaZiUily. /"(:u(a : )9 ):,U(, ,L((, : ))a

see Fig. 6. The algebra (A4, u) is called commutative if, in addition, u
satisfies

Commutativity. pu=o,, 1, where o, =(12)€e S,.

Remark 3.3. In order to define the notion of an associative algebra in
a pseudotensor category, one does not use the actions of the symmetric
groups among the spaces of polylinear maps. One can relax the definition
of a pseudotensor category by forgetting these actions. Then what we call
a “pseudotensor category” should be termed a “symmetric pseudotensor
category,” while there is a more general notion of a “braided” one (cf.

[So]).

FIG. 6. Associativity.
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Al |a Al |a all Ja

<

A A A

FIG. 7. Commutator.

ProrosiTiON 3.1, Let (A, ) be an associative algebra in a pseudotensor
category M. Define feLin({A4, A}, A) as the commutator f:=p—0o,u,
see Fig.7. Then (A, B) is a Lie algebra in M.

Proof is straightforward.

Now we turn to our main example of a pseudotensor category. Let H be
a cocommutative bialgebra with a comultiplication 4. We introduce a
pseudotensor category .4 *(H) with the same objects as .#'(H) (ie., left
H-modules) but with another pseudotensor structure [ BD]:

Lin({L;},; M)=H0mH®1< L, ,H®®, M>. (3.4)

iel

Here .7 is the tensor product functor .#'(H)! — .#'(H®"). For a sur-
jection 7: J — I, the composition of polylinear maps is defined as follows:

004 = 27 v, ). (35)

iel

Here 4™ is the functor .#'(H®!) - #'(H®’), M+ H®’ ®,, o: M, where

H®" acts on H®’ via the iterated comultiplication determined by 7.
Explicitly, let n;e N; (jeJ), and write

lpz(@ n‘/>:z g ®ult, g e H®, lielL,, (3.6)
jed; r
where, as before, J,=n~'(i) for iel Let
o <® I >:Z " ®ym", “eH®, m“eM. (3.7)
iel Ky

Then, by definition,

W0 (@ nj>=§ (® &) a @, m 38)

jeJ iel
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where 4™@: H®! » H®’ is the iterated comultiplication determined by =
For example, if 7n: {1,2,3} — {1, 2} is given by n(1)=n(2)=1, n(3 )=
then 4™ =A®id; if n(1)=1, n(2)=n(3) =2, then 4™ =id ® 4.

The symmetric group S, acts among the spaces Lin({L;},.,, M) by
simultaneously permuting the factors in [X],_; L, and H®”. This is the only
place where we need the cocommutativity of H; for example, the permuta-
tion g,,=(12)€ S, acts on (H® H) ® M by

0(f®E®ym)=(2Qf)ym,

and this is well defined only when H is cocommutative.
One can generalize the above construction for (quasi)triangular
bialgebras as follows.

Remark 3.4. Let H be a triangular bialgebra with a universal R-matrix
R. Recall that R is an invertible element of H & H satisfying the following
equations:

o(R)=R~, (3.9)
o(A(h)) R=RA(h)  VheH, (3.10)
(id®4) R=Ry5R,5, (3.11)
(A®id) R=Ry3R,s, (3.12)

where ¢ is the permutation o( f ® g) = g ® f, and we use the standard nota-
tion R,=R®ide H® H® H, etc. Then we define a pseudotensor
category .#*(H) as above but with a modified action of the symmetric
groups. It is enough to describe the action of the transposition
01,=(12)e S, on (H® H) ®y4 M; it is given by

0 (R ®yrm)=(2®f) RQym.

This is well defined because of (3.10), and o3, =1id because of (3.9). Since
any permutation is a product of transpositions, this can be extended to an
action of the symmetric group among the spaces of polylinear maps; due
o (3.11), (3.12), this action is compatible with compositions.

If H is quasitriangular, i.e., if we drop relation (3.9), we will get an action
of the braid group instead of the symmetric one and a “braided” pseudo-
tensor category (cf. Remark 3.3).

The following notion will be the main object of our study.

DerFINITION 3.6. A Lie H-pseudoalgebra (or just a Lie pseudoalgebra) is
a Lie algebra (L, f) in the pseudotensor category .# *(H) defined above.
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Examples of Lie pseudoalgebras will be given in Sections 4 and 8 below.
One can also define associative H-pseudoalgebras as associative algebras
(A4, 1) in the pseudotensor category .# *(H). It is convenient to define the
general notion of an algebra in .#*(H) as follows.

DerFINITION 3.7.  An H-pseudoalgebra (or just a pseudoalgebra) is a left
H-module A together with an operation ue Homyg (A ® A, (H® H)
®p A), called the pseudoproduct.

We will denote the pseudoproduct u(a®b)e(HRH)®yA of two
elements a, be A by a = b. It has the following defining property:

H-bilinearity. For a,be A, f, g€ H, one has

fax gb=((f®g)®y1)(axb) (3.13)

Explicitly, if
axb=) (f; ®g)®ne;, (3.14)

then fa « gb=3%, (ff; ® gg;) ®pe; .

To describe explicitly the associativity condition for a pseudoproduct u,
we need to compute the compositions u(u(-, -),-) and u(-, u(-, -)) in
M*(H). Let a = b be given by (3.14), and let

exe=y (fy ®gy)®mey. (3.15)
iJj

Then (a * b) * c=u(u(a®b) ® c) is the following element of H®*®,, A (cf.
(3.8)):

(a*b)*CZZ(fifij(l)®gifzj(2)®gij)®1-1€g- (3.16)
i, j

Similarly, if we write

bxc=) (h; ®1)®xd;, (3.17)

z

a*dzZZ(hz] ®1y)®Hd;], (3.18)
i j
then

ax(bxc)=Y (hy @h;ilyny @l lyz) ®pud;. (3.19)

LJj
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Now a pseudoproduct a = b is associative iff it satisfies
Associativity,
ax(bxc)=(axb)xc (3.20)

in H®3®,; A, where the compositions (a * b) * ¢ and a * (b * ¢) are given
by the above formulas.
The pseudoproduct a = b is commutative iff it satisfies

Commutativity,
bxa=(o®gid) (a=*b), (3.21)

where 6: H® H— H® H is the permutation o( f ® g) = g ® f. Explicitly,
bra=Y (g ®f)®ue;. (3.22)

if a + b is given by (3.14). Note that the right-hand side of (3.21) is well
defined due to the cocommutativity of H.

In the case of a Lie pseudoalgebra (L, ), we will call the pseudoproduct
p a pseudobracket, and we will denote it by [a = b]. Let us spell out its
properties (a, b, ce L, f, ge H):

H-bilinearity,
[faxgb]l=((f® &) ®ul)[ax*b]. (3.23)
Skew-commutativity,
[bxa]l=—(c®gid) [a=b]. (3.24)
Jacobi identity,
[ax[bxc]]—((6®i1d)®yxid)[bx[axc]]=[[axb]=xc] (3.25)

in H®*®,, L, where the compositions [[a * b] *c] and [a * [b * ¢]] are
defined as above.

ProPOSITION 3.2.  Let (A, 1) be an associative H-pseudoalgebra. Define a
pseudobracket f as the commutator [a«b]=a b — (6 @g1d) (b * a). Then
(A, B) is a Lie H-pseudoalgebra (cf. Proposition 3.1).

The definitions of representations of Lie pseudoalgebras or associative
pseudoalgebras are obvious modifications of the above.
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DerFINITION 3.8. A representation of an associative H-pseudoalgebra A
is a left H-module M together with an operation peLin({4, M}, M),
written as axc=p(a®c)e(HR® H)®yz M, which satisfies (3.20) for
a,bed, ce M.

DEerFINITION 3.9. A representation of a Lie H-pseudoalgebra L is a left
H-module M together with an operation p e Lin({L, M}, M), written as
a*c=p(a® c), which satisfies

a*x(bxc)—((0®1d)®gzid) (bx(axc))=[axb] xc (3.26)

fora,belL, ce M.

4. SOME EXAMPLES OF LIE PSEUDOALGEBRAS

In this section we give some examples of Lie pseudoalgebras, and discuss
their relationship with previously known objects. Other important examples
—the pseudoalgebras of vector fields—are treated in detail in Section 8.

4.1. Conformal Algebras

The (Lie) conformal algebras introduced by Kac [ K2] are exactly the
(Lie) k[ 0]-pseudoalgebras, where k[ 0] is the Hopf algebra of polynomials
in one variable 0. The explicit relation between the A-bracket of [ DK ] and
the pseudobracket of Section 3 is:

[a;b] :Z pi(A)c; = [axb] :Z (pi(_a)®1)®k[6] Ci.

This correspondence has been explained in detail in the introduction.
Similarly, for H=Kk[0,, ..., 05] we get conformal algebras in N indeter-
minates, see [ BKV, Sect. 10]. We may say that for N=0, H is k; then a
k-conformal algebra is the same as a Lie algebra, cf. Example 3.1.
On the other hand, when H=Kk[ '] is the group algebra of a group I,
one obtains the /-conformal algebras studied in [ GK]. This is a special
case of a more general construction described in Section 5 below.

4.2. Current Pseudoalgebras

Let H' be a Hopf subalgebra of H, and let 4 be an H'-pseudoalgebra.
Then we define the current H-pseudoalgebra Curf, 4A=Cur 4 as H®y A
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by extending the pseudoproduct a b of A using the H-bilinearity.
Explicitly, for a, be A, we define

(f®ga)*(gR@yb)=((f® g ®xl)(axb)
= Z (J; ® 22) ®u (1@ e,),
ifaxb=3,(f; ® g;)®p e;. Then Curk, 4 is an H-pseudoalgebra which is
Lie or associative when A4 1is so.

An important special case is when H'=k: given a Lie algebra g, let
Cur g = H® g with the following pseudobracket

[(f®a)*(g®D)]=(/® &) ®u(1®[a,b]).
Then Cur g is a Lie H-pseudoalgebra.

4.3. H-Pseudoalgebras of Rank 1

Let L = He be a Lie pseudoalgebra which is a free H-module of rank 1.
Then, by H-bilinearity, the pseudobracket on L is determined by [e * ¢],
or equivalently, by an a€ H® H such that [exe]=a@ye.

ProrosITION 4.1. L = He with the pseudobracket [exe]=aQ®ge is a
Lie H-pseudoalgebra iff o« € H® H satisfies the following equations:

o= —a(a), (4.1)
(@ 1)(4®id)(a) = (1 ®@a)(id ® 4)(x) — (6 @id)((1 ®2)(id @ 4)(«)). (4.2)

Similarly, A= Ha with a pseudoproduct axa=oQya is an associative
H-pseudoalgebra iff a satisfies

(2@ 1) (4®id)(x) = (1 @ )(id & 4) ().

Proof. Follows immediately from definitions. Indeed, if [e x e] =a @y e,
then:

[[exelxe]=(a@1)(4®id)(x) ®xe,
[ex[exe]]l=(1®a) ([d@4)(a)®@ye. |

LeEMMA 4.1. Let H= U(Dd) be the universal enveloping algebra of a Lie
algebra d. Then any solution o€ H® H of Egs. (4.1), (4.2) is of the form
a=r+s®1—1®s, where red A D, seDd.
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In this case (4.2) is equivalent to the following system of equations:

[r, 4(s)] =0, (4.3)
([712, 713] + r1283) + cyclic = 0. (4.4)

(As usual, ri,=r®1, s;=1®1®s, etc., and “cyclic” here and further
means applying the two nontrivial cyclic permutations on H® H® H.)

Proof. Using an argument similar to that of [ Ki], we will show that if
o satisfies (4.2) then a € H® (d + k). Then (4.1) will imply the first claim,
that e (b + k) ® (d + k).

Let {0, ..,0y} be a basis of d, and let us consider the corresponding
Poincaré-Birkhoff-Witt basis of H=U(d) given by elements 9V :=
oV 0y fiy!---iy!, where I=(i,..,iy)€Z" . In this basis the comulti-
plication takes the simple form (2.31). We can write a =3, o, ® 00, a; € H.
Equation (4.2) then becomes

Z ad(ay) ® O = Z (24 x ® a0 — 0,0V @ty x) ®0OVIX), (4.5)

1 I1,J,K

Let p be the maximal value of |I|=i;+ --- +iy for I such that o, #0.
We want to show that p<1. Among all 7 such that |/| = p there will be
some (nonzero) a, of maximal degree d. Then without loss of generality we
can change the basis 0, ..., 05 and assume that the coefficient «, o o) is
nonzero and of degree d. If p> 1, then no nonzero term in the left-hand
side of (4.5) has a third tensor factor of degree 2p or 2p — 1 since 2p — 1 > p.
Hence, terms from the right-hand side of degree 2p (respectively 2p — 1) in
the third tensor factor must cancel against each other.

Terms having degree 2p in the third tensor factor cancel, since they give
the sum

Y o ag®o, @[V, 0], (4.6)

1| =|K|=p

which in the third tensor factor has degree 2p — 1 and lower. Note also that
their coefficients have total degree at most 2d.

Terms having third tensor factors of degree 2p — 1, besides (4.6), arise
when we choose |I+ K|=2p—1. Those with |I|=p—1, |K|=p can be
expressed in terms of commutators as above, and hence only contribute to
lower degree. So, we only need to account for terms with |I|=p,
|K|=p—1.

Let us focus on such terms having a third tensor factor proportional to
0% ~', whose coefficient must be zero. They occur in (4.5) only when
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I=(p,0,.,0), K=(p—1,0,..,0). When J=0, things cancel as above. The
only other nonzero terms are

Z (“K+aj a; aj — oy aj ® “K+sj) ® 0D,
J
where {¢;} is the standard basis of Z*.

We have seen that all other contributions have coefficients of degree at
most 2d, so the sum 3, (ocKHj@oc,@j—oc,aj@ocKﬂj) must lie inside
F*(H® H). All %y, are of degree at most d and a,0; are of degree
exactly d+ 1, hence 3; ax,, ®,0; must lie in F*(H® H) too. But this
implies that ok, € F9~'H for all j, so in particular «; e F~'H, which is
a contradiction.

This proves that ae(d+k)® (d+k). Now if a=r+s; —s,, where
red A D, sed, then we have

(A®@id)(a) =713+ o3+ 51+ 5, — 53,
and (4.2) becomes
([r12, F13+ 81+ 8,] + 11285 ) +cyclic=0. 4.7)

Comparing the terms in D ®d®K, we see that (4.7) is equivalent to the
system (4.3, 4.4). |

Note that when a=red ADd, s=0, (44) is exactly the classical
Yang—Baxter equation

[r12, 7131 + [F12, 23] + [113, 1231 =0. (4.8)

Equation (4.4) is a special case of the dynamical classical Yang—Baxter
equation (see [Fe, ES]).

5. (H#K[I'])-PSEUDOALGEBRAS

Let again H be a cocommutative Hopf algebra. Let I” be a group acting
on H by automorphisms, and let A= H # k[I'] be the smash product of
H with the group algebra of I. As an associative algebra this is the semi-
direct product of H with k[ '], while as a coalgebra it is the tensor
product of coalgebras.

We will denote the action of I" on H by g-f for gel, fe H; then
g-f=gfe " Then a left A-module L is the same as an H-module together
with an action of I on it which is compatible with that of H, i.e., such that

(g-f)1=g(f(g7'l)) for geTl, feH, IeL.
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In this section we will study the relationship between the pseudo-
tensor categories ./ *(H) and .#*(H). In particular, we will show that an
H-pseudoalgebra is the same as an H-pseudoalgebra on which the group I’
acts by preserving the pseudoproduct.

Let us start by defining maps J,: H®'—» H®'®,, H for each finite non-
empty set /. It is enough to define J; on elements of the form &);.; f; g;
where f; € H, g; € I, in which case we let

iel

X® fi> Rp g, if all g; are equal to some g,
(@ fia)- (
iel

0, if some of g, are different.

It is easy to see that J, is a homomorphism of both left H®’-modules and
of right A-modules.

This allows us to define a pseudotensor functor o: .#*(H) — ./#/*(H) as
follows. For an object L (a left H-module), we let 6(L)=L be the left
H-module obtained by restricting the action of A to Hc H. For a
polylinear map ¢ € Lin({L,};.;, M) in A *(H), ie., for a homomorphism
of left A®"-modules

o: X L, - A @z M,

iel
we let 6(¢) be the composition

5(¢): X 1,5 B @y M2,

iel

(H®, H)®z M ~ H®' ®, M.

This is a homomorphism of left H®-modules, ie., a polylinear map in
A *(H). Moreover, since the maps J, are compatible with the actions of
the symmetric groups and with the comultiplication of A, it follows that J
is compatible with the actions of the symmetric groups and with composi-
tions of polylinear maps, i.e., it is a pseudotensor functor.

As usual, the action of I" on H can be extended to an action of I” on H®’
by using the comultiplication 4P (g)= ®,., g. Hence, I' also acts on
H®'®,; M by the formula

g-<<®ﬁ>®gm>=<®g-ﬁ>®Hgm, gel, fieH meM.

iel iel
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Then it is easy to see that y = J(¢) has the property

¢<® gli>=g~¢<®li>, gel, I eL;; (5.1)

iel iel

in other words, it commutes with the action of I

We let .#%(H) be the subcategory of .#*(H) with objects left
H-modules, and with polylinear maps those polylinear maps y of .#*(H)
that commute with the action of I" (see (5.1)). This is a pseudotensor
category, and ¢ is a pseudotensor functor from .#*(H) to .4 *(H).

THEOREM 5.1. If I is a finite group, the functor &: .4*(H)— .#*%(H)
constructed above is an equivalence of pseudotensor categories.

Proof. We will construct a pseudotensor functor 2 from .#Z%(H) to
A *(H). On objects L we let (L) = L. In order to define X on polylinear
maps, we need to find out how ¢ can be recovered from Jd(¢) and the
action of I

Denote by : the embedding H = H, and let 7, be the composition

~ I®I®Hid

n; H® @, H—5 A®'®, H — H®®z H ~ H®'.

Explicitly, 7, is given by the formula

u((® 1)@ue)=® fis. fieH ger

iel iel

This is a homomorphism of both left H®-modules and of right
H-modules. Moreover, for f; € H, g; € I, we have

— \ iel

X figi> if all g, are equal,
woi(® fiz,)
et 0, otherwise.
The crucial observation, which will allow us to invert ¢J,, is that for any
h; e H, g; e I', we have:

Y (@) mon(® e h)=® b (52)
(g;))el’yr \iel iel iel

Here I acts diagonally on I'7 from the right; the left-hand side of (5.2) is
invariant under (g;)— (g; ).
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Given a polylinear map € Lin({L;}
it to a map

in A%(H), we can extend

teIa

7 ®p id

VX L5 HY QM 3 (HO' @ H)@g M =225

iel

2L AT ® M.

(Note, however, that i is not A®"linear.) Now we define 2y : [X] ier Li —
H®'®4 M by the formula

w(en)- 3, (@a)en)(@ss) o

It is casy to check that 2y is H®™linear, so it is a polylinear map in
,//*(H) Moreover, 02 = . For a polylinear map ¢ € Lin({L,};.;, M) in
M *(H), it is immediate from (5.2) and the H® -linearity of ¢ that Zd¢ = ¢.
Therefore, 2: ME(H)— M *(H) is a pseudotensor functor inverse to J. |

Remark 5.1. The above theorem holds also for infinite groups I” if we
restrict ourselves to polylinear maps Y of .#*%(H) satisfying the following
finiteness condition:

W <® g l,.> #0 for only a finite number of (g,)e I'\I'*  (5.4)

iel

for any fixed /; € L. (Note that, by (5.1), this condition does not depend on
the choice of representatives (g;).) Indeed, the only place in the proof where
we used the finiteness of I” was to insure that the right-hand side of (5.3)
is a finite sum.

If  =J(¢) comes from a polylinear map ¢ of .#*(H), then it satisfies
(5 4), because ¢ is H®-linear and for any element he H®’ one has

0;((®;es &) h)#0 for only a finite number of (g;) e I'\I".

Therefore, 0: . 4*(H)— .M T an(H) 1s an equivalence of pseudotensor
categories, where .Z7% ; (H) is the subcategory of .#.(H) consisting of
polylinear maps y satisfying (5.4).

COROLLARY 5.1. A Lie H=(H % k[ I'])-pseudoalgebra L is the same as

a Lie H-pseudoalgebra L on which the group I' acts in a way compatible with
the action of H, by preserving the H-pseudobracket:

[ga+gbl=g -[axb] for gel,abel, (5.5)

and satisfying the following finiteness condition:

given a,be L, [ gaxb] #0 for only a finite number of geI'. (5.6)
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The H-pseudobracket of L is given by the formula

[a%b]= ) (g7'®1)®z1)[gaxb]l, abelL. (5.7)

gel’

A similar statement holds for representations, as well as for associative
pseudoalgebras.

This result, combined with Kostant’s Theorem 2.1, will allow us in many
cases to reduce the study of H-pseudoalgebras to the case when H is a
universal enveloping algebra (see Section 13.7).

ExampLE 5.1. Let I" be a subgroup of k* and let

H=Kk[0]2k[[]= @ ko"T,

meZ, ,oel

with multiplication T,Tg5=T,s, T,=1, T,0T, ' =ad and comultiplica-
tion 4(0)=0®1+1®0, A(T,)=T,®T,. Then the notion of a Lie
H-pseudoalgebra is equivalent to that of a I'-conformal algebra (cf. [ K4]).

ExamPLE 5.2. Let now H=Kk[0] x F(I'), where F(I') is the function
algebra of a finite abelian group I". In other words, H = Ei—)meL’aer ko™n,
with multiplication 7,7z =0, sn,, 0n,=mn,0 and comultiplication 4(0) =
0®1+1®0, A(n,)=2,cr o1 @mn,. Then one gets the notion of a
I-twisted conformal algebra (cf. [ K47).

6. A DIGRESSION TO LINEARLY COMPACT LIE ALGEBRAS

We will view the base field k as a topological field with discrete topology.
A topological vector space ¥ over Kk is called linearly compact if it is the
space of all linear functionals on a vector space ¥~ with discrete topology,
with the topology on ¢ defined by taking all subspaces {U* < ¥ | U= 7",
dim U< o0} as a fundamental system of neighborhoods of 0 in . Here,
as usual, U+ denotes the subspace of £ consisting of all linear functionals
vanishing on U.

In general, given a topological vector space ¥, we define a topology on
#* by taking for the fundamental system of neighborhoods of 0 the sub-
spaces U+ where U is a linearly compact subspace of #".

Several equivalent definitions of linear-compactness are provided by the
next proposition.

ProPOSITION 6.1.  For a topological vector space ¥ over the topological
field k the following statements are equivalent:
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(1) & is the dual of a discrete vector space.
(2) The topological dual L* of ¥ is a discrete topological space.

(3) & is the topological product of finite-dimensional discrete vector
spaces.

(4) & is the projective limit of finite-dimensional discrete vector
spaces.

(5) & has a collection of finite-codimensional open subspaces whose
intersection is {0}, with respect to which it is complete.

Proof. Can be found in [G1]. |}

Remark 6.1. For both discrete and linearly compact vector spaces, the
canonical map from & to £ ** is an isomorphism.

A linearly compact (associative or Lie) algebra is a topological
(associative or Lie) algebra for which the underlying topological space is
linearly compact.

The basic example of a linearly compact associative algebra is the
algebra Oy =Kk[[1, .., 5]] of formal power series over k in N > 1 indeter-
minates ¢, .., {y, with the usual formal topology for which (fq, ..., ty)’,
the powers of the ideal (¢, ..., ty), form a fundamental system of neigh-
borhoods of 0.

Remark 6.2. The topological vector spaces (Jy are isomorphic and
characterized among linearly compact vector spaces by each of the follow-
ing properties:

(1) 0% is countable-dimensional.
(2) Oy has a filtration by open subspaces.
Remark 6.3. (i) One defines a completed tensor product of two linearly

compact vector spaces ¥, # by ¥~ QW =7 *® W *)* where we put the
discrete topology on ¥ *® # *. Then ¥~ ® #  is linearly compact.

(i) With this definition, 0y, y ~ (,, ® Oy as topological algebras.

(ii1) Given a commutative associative linearly compact algebra ¢ and
a linearly compact Lie algebra &, their completed tensor product ¢ ® &
is again a linearly compact Lie algebra.

The basic example of a linearly compact Lie algebra is the Lie algebra
W of continuous derivations of the topological algebra (). The filtration

F,On=(ty,..ty)*",  j=—1,0,1,..
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of Oy induces the canonical filtration ¥F; Wy of Wy, where
F,Wy={DeWy|D(F,0y)cF, 0y Vi}, j=-101,..

It is clear that W, consists of all linear differential operators of the form

N
0
D= Pi(l)g» where P, (1) € Oy,

i=1 i

and that F; Wy (j= — 1) consists of those D for which all P, (7) lie in F;0y.

Let E=3>Y | 1,(9/0t,) be the Euler operator. The spectrum of ad E con-
sists of all integers j > —1, and, denoting by W, ; the jth eigenspace of
adE we obtain the canonical 7-gradation:

Wy= 1_[ W j» [(Waiis W 1< Wiiig s

j=—1

The following fact is well known.

LemMA 6.1. Wy o ~gly(k) and one has the following isomorphism of
gly(k)-modules:

Wy, ~kV® (/7 'kM)*,

Furthermore, one has a decomposition into a direct sum of irreducible sub-
modules: Wy, ;= W, ;+ Wh. ;, where Wiy, ; ~(S’k™M)* (=0 if j= —1) and

N.;~ the highest component of kN® (S/*'kM)*. The subspace p=
Wa. 1+ Wao+ Wiy is a subalgebra of Wy isomorphic to sly, (k).

Let Q=P ]N= o Qu; ; denote the algebra of differential forms over Oy.
The defining representation of W, on @, extends uniquely to a representa-
tion on @, commuting with the differential d.

Recall that a volume form is a differential N-form v= f(z,, .., ty) dt;
A --+ A dty such that f(0)#0, a symplectic form is a closed 2-form
s=>V._ys;(t, . ty)dt; A dt; such that det(s;(0)) #0, and a contact
form is a 1-form ¢ such that ¢ A (de)®~ Y2 is a volume form. The following
facts are well known.

LemmaA 6.2. (i) Any volume form can be transformed by an automor-
phism of Oy to the standard volume form vo=dt; A --- A diy.

(i1) A symplectic form exists iff N is even, N=2n, and by an
automorphism of Oy it can be transformed to the standard symplectic form
so=27_1dt; A dt, ;.
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(1) A contact form exists iff N is odd, N=2n+1, and by an
automorphism of Oy it can be brought to the standard contact form
co=diy+27_ 1;dt, ;.

Consider the following (closed) subalgebras of the Lie algebra Wy:
Sy(v)={De Wy | Dv=0} (N=2),
Hy(s)={De Wy | Ds=0} (N even >=2),
Ky(c)={De Wy | Dc= fcfor some f€ Oy} (N odd =3).

Let also Sy=Sy(vy), Hy=Hyx(sy), Ky=Kuy(cy). Lemma 6.2 implies
isomorphisms: Sy(v) ~ Sy, Hy(s) ~ Hy, Ky(c) ~Ky, S, ~ H,.

The canonical filtration of Wy induces canonical filtrations ¥;Sy(v) :=
F; Wy 0 Sy(v), etc. Note that dim Wy /F _; Wy=N. A Lie subalgebra &
of Wy is called transitive if dim /(¥ nF _, W)= N. It is known that the
Lie algebras W, Sy, Hy and K, are transitive. In addition, the canonical
filtrations F,& of these Lie algebras have the following transitivity

property:
F, .1 & ={acF, % |[a, Z]<F, %} (6.1)

J

Noting that Evy,= Nv, and Es,=2s,, we conclude that ad £ is an
(outer) derivation of S, and H,, hence the canonical gradation of W
induces canonical Z-gradations Sy=11;> _; Sy.; and Hy=11;5> 1 Hy, ;.

Let E' =2t5(0/0ty) +3> N  1,(0/0t;). Then E'cy=2c,, hence E'e€Ky
and the eigenspace decomposition of ad E’ defines the canonical Z-grada-
tion Ky=11;> _» Ky, ;. The following facts are well known.

LeMMA 6.3. (i) Suo =sly(k), Hyo~spyk), Kyo=cespy_;(k)
(=spy_i (k) @K).

(il)  The Sy, o-module Sy, ; is isomorphic to the highest component of
the sly(k)-module k¥ ® (S7/T1kM)*.

(i) The Hy. o-module Hy, ; is isomorphic to the (irreducible)
sp p(k)-module S7+2kY,

(iv) Ky o=5py_1(K)®KE" and the spy_(k)-module Ky, ; decom-
poses into the following direct sum of irreducible modules:

[j21+1 ) ) ) )
Ky.,= @ K, where K}, ~S/*>72gN"1
i=0

The subspace p=Ky. _,+ Ky 1+ Ky, o+ K(]\l,;)1 + KS\Z,;)Z is a subalgebra of
Ky isomorphic to sp ., (k).
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The following celebrated theorem goes back to E. Cartan (see [ G2] for
a relatively simple proof).

THEOREM 6.1. Any infinite-dimensional simple linearly compact Lie
algebra is isomorphic to one of the topological Lie algebras Wy, Sy, Hy, or
KN-

Let g be a Lie algebra, and let b be its subalgebra of codimension N.
Then F=Homyq, (U(g), k), with the product (f1/5)(u) = f1(uq)) f2(ue),
is (canonically) isomorphic to the algebra of formal power series on (g/h)*
[B2], which is (non-canonically) isomorphic to the linearly compact
algebra (y. The Lie algebra D of continuous derivations of F is then
isomorphic to W,. F has a canonical g-action induced by the left-multi-
plication g-action on U(g), which gives us a homomorphism y of g to Wy.
(This is non-canonical since the identification of F with ()y is not canoni-
cal.)

We will use in the sequel the following theorem of Guillemin and
Sternberg [ GS] (see [ B2] for a simple proof).

PrOPOSITION 6.2. Let g be a Lie algebra, and let Yy be its subalgebra of
codimension N. Provided that Yy contains no nonzero ideals of g, the
above-defined y is a Lie algebra isomorphism of g with a subalgebra of Wy
which maps by into FoW.

Conversely, if the inclusion § = Wy maps by into ¥y Wy, then by doesn’t
contain nonzero ideals of g. Every Lie algebra homomorphism of g to Wy,
which coincides with y modulo ¥y Wy, is conjugated to y via a unique
automorphism of Oy.

We have the following important property of the filtrations on H and
X = H*, defined in Section 2.2.

LemmA 64. Let H=U(g) ¥ k[I'] be a cocommutative Hopf algebra,
and X=H*. If he F'U(g)c H but h¢ F'~'U(qg), then hF,X=F,_,X. In
particular, for any he g\{0} and for every open subspace Uc X, there is
some n such that h"U = X. Similar statements hold for the right action of h
as well.

Proof. By the construction of the filtrations it is evident that we can
assume H= U(g). Then X ~ 0y (N=dim g), and ¢ = W, acts on it by
linear differential operators. The rest of the proof is clear.

The following result from [ G1, G2] will be essential for our purposes.
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PropoSITION 6.3. (i) A linearly compact Lie algebra & satisfies the
descending chain condition on closed ideals if and only if it has a fundamental
subalgebra, i.e., an open subalgebra containing no ideals of £ .

(i) When either of the assumptions of (i) holds, the noncommutative
minimal closed ideals of & are of the form O, ® s where s is a simple
linearly compact Lie algebra and re Z .

We will also need the following examples of non-simple linearly compact
Lie algebras:

CSy(v)={DeWy | Dv=av, aek},
CHy(s)={De Wy | Ds=as, ack}.

As before, we have isomorphisms CSy(v)~CSy=CSy(v,) and
CHy(s) ~ CHy = CH y(sy). Note also that CSy=kEx S,y and CHy=
kEx SH,. Another important example of a non-simple linearly compact
Lie algebra is the Poisson algebra P, which is Oy (N =2n) endowed with
the Poisson bracket:

o %= o %

1 ati athri al‘n+i ati.

g} =
It is a nontrivial central extension of H,
0-k—Py—5 Hy—0,
where ¢(f)=227_, (9f/01,)(0/0t, ;) — (0f]0t,, . ,)(0]0;).

We can describe also K, in a more explicit way, similar to the above
description of P,. For f, g e Oy, define

0
gl =4S gt =L (Eyng —28) — (Esn f—2)

Oty 41 a[2n+1

where { /, &} 2n 1s the Poisson bracket taken with respect to the variables
t1s . 2, and E,, is the Euler operator 32" | ¢;(2/0t;). If we define

i=1 l

w(f) —i; <a[i tyry Oty 61,-> +

then we have Y(f)g={/f, g}' +2(9f/0ty,,1)g It is easy to see that
(W) w(g)]1=v({f g}') and Y(f)co=2(0f/0ty,,1) co. Thus Ky is
isomorphic to ¢ with the bracket {, }".

For a linearly compact Lie algebra ¥ denote by Der £ the Lie algebra
of its continuous derivations and by Z the universal central extension of
&. Then we have:

E2n_(E2nf Zf)

n+i al‘2n+1 at2n+1
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ProrposITION 6.4. (i) Der Wy=W,, Der Sy=CSy, Der Hy=CH,,
Der Ky =K.

(i) Der(0, ® £)=W,®1+ 0, ® Der & for any simple linearly
compact Lie algebra & .

(ili) The Lie algebras €O, ® Wy, 0. ® Sy (for N>2) and 0, ® Ky
have no nontrivial central extensions. The universal central extension of
O, ® Hyis 0, ® Py.

(iv) If g is a simple finite-dimensional Lie algebra, then (0, ® g) " =
(0, ®¢g)+(2,.,/d0,) with the bracket

[f®a, g®b]"=fe®[a,b]+(a|b)fdg  moddd,,

where (a | b) is the Killing form on g.

Proof. For a proof of (iv) see [Ka].

In order to prove (ii), notice that if d is a derivation of ¢, ® %, then its
action on 1® % is given by d(l ®x)=>;a,®d, (x) for all xe ¥, where
the @, form a topological basis of (), and the d; are continuous derivations
of #. Subtracting ¥, a,® d, from d, we get a derivation d acting trivially
on 1 ® %. We are going to show that if % is simple then d is of the form
D®1 where DeDer O,=W,.

Let us fix Pe(),. Then d(P® x) can be written as Y, a; ® f, (x), where

f; are continuous k-endomorphisms of #. From dA[PR®x, 1® y])=
[d(P®x), 1®y] we see that [ f;(x), y]=/f:([x, y]) for every x, ye Z.
This means that f; commutes with ady for all ye.#. By Schur’s lemma
from [Gl, Proposition 447 we conclude that the f; are multiples of the
identity map, hence d(P® x)=ap, ® x for some ap € ¢, and all xe Z. It is
now immediate to check that the mapping D: P+ a,p is indeed a derivation
of @,, proving (ii).

In order to prove the rest of the statements, denote by a the Oth compo-
nent of the canonical Z-gradation of ¥ =W, Sy, Hy or K,. This is a
reductive subalgebra of %, hence Der ¥ = V@ ¥, where [a, V] < V. But
[V,Z%]<¥, hence [a,}V]=0, ie,any element DelV defines an
endomorphism of . viewed as an a-module. Since E€ Wy and E' € K, we
conclude that D also preserves the canonical gradation of these Lie
algebras and we may assume that D acts trivially on the (—1)st compo-
nent. Using the transitivity of W, and K, we conclude that D=0. By
Lemma 6.3, all components of the canonical Z-gradation of S, and H, are
inequivalent a-modules, hence D preserves this gradation in this case as
well. Subtracting from D a multiple of E, we may assume that D acts tri-
vially on the (—1)st component and, using transitivity, we conclude that D
is a multiple of E. Thus (i) is proved.
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Since a acts completely reducibly on the space Z2 of 2-cocycles on
0, ® & with values in k, and since a acts trivially on cohomology, we may
choose a subspace U of Z? complementary to the space of trivial
2-cocycles, on which a acts trivially. Hence for any 2-cocycle a € U we have:
o(la,b)=0 if aeM,, be M, and M, are irreducible non-contragredient
a-submodules of L:=0, ® . Let L;=0,® %, for short, where %, is the
jth component of the canonical gradation.

It follows from Lemma 6.3(ii) that all pairs of a-submodules in
L=, ® Sy are non-contragredient, except for the adjoint a-submodules
in Ly=0, ® Sy.o. Thus, we have

a(a,b)=0 if aeSy,, beSy . i#0 or j#O.
Taking now ae Sy, _;, beS,.; and c€ Sy, ,, the cocycle condition
a([a,b], c)+a([b,c], a)+a([c,al, b)=0

gives o[ a, b], ¢)=0. Since Sy.o=[Sy. _1, Sy:1], we conclude that a=0.
Hence all central extensions of S are trivial.

Likewise, o is zero on any pair of subspaces Waiir W ;> unless i+ j=0,
and on the pair Wy, _, Wi., (see Lemma 6.1). Choosing ae Wy, _,
be W.,, ce Wy.,, we obtain, as above, from the cocycle condition, that
a is zero on the pair Wy.o, [ W0, Wa:o]. It follows from (iv) applied to
the subalgebra (), ® sl ; (k) of Wy (see Lemma 6.1) that « is zero on this
subalgebra if N> 1. Thus any cocycle on W (N > 1) is trivial. In the case
of W, the cocycle « is trivial. The case of K is similar.

In the remaining case of H, we show, as above, that the cocycle « is
trivial on any pair Hy.,, Hy.; if i#j. Using the cocycle condition
for aeHy, beHy.y, and ceHy _;, and the fact that Hy.,, =
[Hy:+1, Hy. —1], we conclude that « is trivial on any pair Hy.;, Hy.; as
well, unless i= —1. It is easy to see that this implies that Hy=P,.

7. H-PSEUDOALGEBRAS AND H-DIFFERENTIAL ALGEBRAS

In this section, H will be a cocommutative Hopf algebra with a
comultiplication 4 and a counit ¢, and as before, X = H*.

7.1. The Annihilation Algebra

Let Y be an H-bimodule which is a commutative associative H-dif-
ferential algebra both for the left and for the right action of H (see (2.8),
(2.19); for example, Y=X:=H*
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For a left H-module L, let .o/, L =Y ®, L. We define a left action of H
on o/yL in the obvious way:

hMx®ga)=hx®ga, heH, xeY,ael. (7.1)

If, in addition, L is an H-pseudoalgebra with a pseudoproduct a b, we
can define a product on .7, L by the formula

(X®pa)(y®yb) :Z (xf)(vg:) Que;,

; (72)
if a*bzz (f: ®g,)Rpe;.

By (2.19) and the H-bilinearity (3.23) of the pseudoproduct, it is clear that
(7.2) is well defined.

ProrosiTion 7.1. If L is a Lie H-pseudoalgebra, then <fyL is a Lie
H-differential algebra, i.e., a Lie algebra which is also a left H-module so
that

hlo, Bl1=[hayx hyfl,  for heH, a, feotyl. (7.3)

Similarly, if L is an associative H-pseudoalgebra, then </yL is an associative
H-differential algebra. A similar statement holds for modules as well: if M is
an L-module, then </y M is an ofyL-module with a compatible H-action so
that

h(am) = (h¢yya)(hoym) for heH,aesdyl, meodyM. (74)

Proof. Equation (7.3) follows from (2.8). The skew-commutativity of
the bracket (7.2) follows immediately from that of [a % b]. The proof of the
Jacobi identity is straightforward by using (3.25). Let us check for example
that the associativity of L is equivalent to that of .o/, L; the case of the
Jacobi identity is similar.

We will use the notation from (3.14)-(3.19), and we will write
a,=xQ®pga for ael, xeY. Then we want to compute the products
a,(b,c.) and (a,b,) c,. By definition, if we have (3.17) and (3.18), then

bye. =Y. (yh)(zl) @ d;

i
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and

ax(bycz) = Z (Xhij)((yhi)(Zli)) lij) ®ud;

i J

=Z (Xhij)(yhilij(l))(Zli lij(Z)) Qpd;.
iJj
Similarly, if we have (3.14) and (3.15), then

(axby) = Z (xf; fzj(l))(ygifzj(z))(z(gij) ue;.

i j

Now recalling (3.16) and (3.19), we see that the associativity of L is equiv-
alent to that of o/, L. |

DermNiTION 7.1, The H-differential algebra o/ (L) =/ L :=X®yL is
called the annihilation algebra of the pseudoalgebra L. We will write
a,=xQ®gaforael, xeX.

Remark 7.1. When L is an associative H-pseudoalgebra, one does not
need the cocommutativity of H or the commutativity of Y in order to
define .o/, L (cf. Remark 3.3).

LemmA 7.1. Let H=U(D) £ k[ '], and let M be a left H-module. If an
element ae M is U(d)-torsion, ie., if ha=0 for some he U(d)\{0}, then
X®yxa=0. In particular, for H=U(Dd), we have o/ (M)~ o/ (M/Tor M),
where Tor M is the torsion submodule of M.

Proof. We have 0=x®y ha=xh®ya for every x e X. Since the right
action of 4 on X is surjective (see Lemma 6.4), it follows that x®,a=0
for any x e X.

7.2. The Functor <ty

Analyzing the proof of Proposition 7.1, one can notice that the definition
of o/y is a special case of a more general construction which we describe
below.

First, recall that a commutative associative H-differential algebra Y is
the same as a commutative associative algebra in the pseudotensor
category .#'(H) from Example 3.2. We denote by .#°(H) the category of
H-bimodules, provided with a pseudotensor structure given by (3.3), but
with Hom there replaced by Hom, _ 5 which means homomorphisms of
H-bimodules. The composition of polylinear maps in .#*(H) is given again
by (3.2). Then H-differential algebras Y considered above are exactly the
commutative associative algebras in .#°(H).
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Instead of one H-bimodule Y one can use several: for any collections of
objects Y; e .#°(H) and L, e #*(H) (ielI) we can consider the left
H-modules o/y L;=Y; ®y L; as objects of M'(H). Assume we are given
polylinear maps fe Lin({Y;};cp, Z) in #*(H) and ¢ e Lin({L,},c;, M) in
M*(H). Then we define a polylinear map f®y ¢eLin({Y; ®y L}/
Z®y M) in #'(H) as the following composition:

® (Y,®uL) < Y>®H®z<l L) Y < Y,->®H®1(H®'®HM)

iel iel iel iel

5 (® 1)eum L2 2o, M

iel

ProrosITION 7.2.  The above definition is compatible with compositions of
polylinear maps in M°(H), #*(H), and 4" (H):

f({gi}iel) ®H¢({lpi}iel) = (f®H¢)({gz ®Hlp }161)

The proof of this proposition is straightforward and is left to the reader.

COROLLARY 7.1. Let (Y,v) be a commutative associative algebra in
M (H). For a finite nonempty set I, let v\*: Y®I Y be the iterated multi-
plication v(v®id)---(v®Id® --- ®id). Recall that for an object L in
M*(H), we define o/y(L) :=Y @y L. For a polylinear map ¢ € Lin({L;} .,
M) in M*(H), let Ay(¢) :=vD @y ¢. Then <y is a pseudotensor functor
from M*(H) to M"'(H).

As a special case of this corollary, we obtain Proposition 7.1.

Let us give another application of Proposition 7.2. An instance of an
H-bimodule is H itself (however, H is not an H-differential algebra!). The
coproduct A4: H—> H® H, the evaluation map ev: X® H—k, and the
isomorphism k® H ~ H are all homomorphisms of H-bimodules, so
the composition

NXQH2A XQHQH 2% kQH 5 H (7.5)

is a polylinear map in .#°(H). Let again L be a (Lie) pseudoalgebra and
(M, p) be an L-module, where peLin({L, M}, M) in .#*(H). Then
N®ypeLlin{X®y L, HRz M}, H®y M) is a polylinear map in .#'(H).
In other words, we get a homomorphism of H-modules # ®g p: /(L) ®
M — M. Proposition 7.2 now implies:
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COROLLARY 7.2. The above map 1 Qg p provides M with the structure of
an o/ (L)-module, and this structure is compatible with that of an H-module

(¢f. (7.4)).

For ae L, xe X, the action of a,, =x®p a on an element m e M will be
denoted by a, - m. This defines x-products a,m:=a, -me M. When M =L
is the Lie pseudoalgebra with the adjoint action, these will be called
x-brackets and denoted as [a,b]. Then all the axioms of (Lie or
associative) pseudoalgebras, representations, etc., can be reformulated in
terms of the properties of the x-brackets or products—this will be done in
Section 9. Although this may seem a mere tautology, it is more explicit and
convenient in some cases.

Finally, let us give two more constructions.

ExampPLE 7.1. The base field k, with the action i-1=¢(h) (he H), is
a commutative associative H-differential algebra. Then for any Lie
H-pseudoalgebra L, o4 L =k &, L is a Lic H-differential algebra. Explicitly,
4L ~L/H, L, where H, ={heH|eh)=0} is the augmentation ideal.
The Lie bracket in L/H, L is given by (cf. (7.2))

[amod H,L,bmod H_ L]=) e(f;)e(g;)e; mod H L,  (7.6)
if
[a*b]zz (/i ®g)®ue;. (7.7)

In the case when d =kd is 1-dimensional, we recover the usual construc-
tion L+ L/OL that assigns a Lie algebra to any Lie conformal algebra
[K2].

Remark 7.2. Let Y be a commutative associative H-differential algebra
with a right action of H, and let L be a Lie H-pseudoalgebra. We provide
Y ® L with the following structure of a left H-module:

h(x®a)=xh_1, ®hpya, heH, xeY, aelL. (7.8)

Then define a Lie pseudobracket on Y® L by the formula

[(x®a)*(y®b)] =Z (fi(1) ® gi(l))@H ((Xﬁ(z))()’gi(z)) ®e;), (7.9)

7

if [a=b] is given by (7.7). It is easy to check that (7.9) is well defined and
provides Y® L with the structure of a Lie H-pseudoalgebra. Moreover,
AyL~(Y®L)/H_ (Y®L) as a Lie algebra (cf. Example 7.1).
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In the case D=ko, Y=Kk[t,t7'], o= —0,, the Lie k[ 0]-pseudoalgebra
( =conformal algebra) Y® L is known as an affinization of the conformal
algebra L [K2].

7.3. Relation to Differential Lie Algebras

Fix two positive integers N, r and let Oy =Kk[[¢;, ... tx]], L =0y QK"
A structure of a Lie algebra on % is called local (and ¥ is called a local
Lie algebra [Ki]) if the Lie bracket is given by matrix bi-differential
operators. More explicitly, let {e’} be a basis of k”. Then for any x, y € Oy,
the bracket in % is given by

[x®e', y@e/T=}) (P}, -x)(Qf; -»)®¢", (7.10)

k, 1

where PY¥,, QY, are differential operators with coefficients in . The
number r is called the rank of &.

A related notion is that of a differential Lie algebra [ R1-R4] (see also
[C]). This is a Lie algebra structure on ¥ = Y® k’, where Y is any com-
mutative associative H=Kk[0,, ..., 05 ]-differential algebra, given by (7.10)
for x, yeY, PY,Q0% e Y®H. One can allow a universal enveloping
algebra H=U(d) (dim d=N) in place of k[0, ..., On], cf. [NW].

Recall that for H=U(d), X=H* is a commutative associative
H-differential algebra that can be identified with @, for N=dim b.
Moreover, the action of H (and of X® H) on X is given by differential
operators in this identification. Therefore a differential Lie algebra for
Y= X is the same as a local Lie algebra.

Then the results of Section 7.1 immediately imply:

ProrosiTiON 7.3. Let L=H®K" be a Lie pseudoalgebra which is a free
H-module of rank r. Let Y be an H-bimodule which is a commutative
associative H-differential algebra both for the left and for the right action of
H (see (2.8), (2.19)). Then ofy L ~Y®K" is a differential Lie algebra. In
particular, o/ (L) = ofyL is a local Lie algebra.

Note that the differential Lie algebras .o/, L that we get are with “con-
stant coefficients™ in (7.10) all P%,, Q%€ H.

7.4. Topology on the Annihilation Algebra

Now let us discuss the problem of defining a topology on /(M) =
X®py M where M is any finite H-module. Recall that X has a decreasing
filtration X=F _; Xo>FyX> ... defined in Section 2. We can use this
filtration to construct an induced filtration on .«/(M) as follows. Choose a
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finite-dimensional (over k) subspace M, of M which generates M over H,
and set

F,dd(M)={x®ygm|xeF, X, meM,}. (7.11)

Note that since H is cocommutative, its filtration satisfies (2.15), hence
N F; X=0. This implies

(| F,.4(M)=0. (7.12)

The filtration (7.11) will in general depend on the choice of M, but the
topology induced by it will not, as any two such filtrations are equivalent
by the next lemma.

LemmA 7.2. Let My and My be two finite-dimensional subspaces of M
generating it over H, and let {F, o/(M)}, {F;./(M)} be the corresponding
filtrations on /(M ). Then there exist integers a, b such that ¥, , /(M) c
F, (M) F,, , (M) for all values of i.

Proof. Let us choose bases of M, and My, and let us fix expressions of
elements from the first basis as H-linear combinations of elements from the
second basis. Denote by a the highest degree of the coefficients of all these
expressions. Using (2.22), we see that F, o/(M)cF;_,o/(M) for all i
Repeating the same reasoning after switching the roles of M, and My, we
get Fio/(M)cF,_,.o/(M) for some b and all i. ||

ProrosiTiON 7.4. Let H be a cocommutative Hopf algebra which
satisfies (2.16).

(1) If M is a finite H-module, then /(M) is a linearly compact
topological vector space when provided with the filtration (7.11). The action
of H on o/ (M) is continuous if we endow H with the discrete topology.

(1) If L is a finite Lie H-pseudoalgebra, then its annihilation algebra
o/ (L) is a linearly compact Lie H-differential algebra, i.e., it is a linearly
compact topological vector space and both the Lie bracket and the action of
H are continuous.

A similar statement holds for representations and for associative pseudo-
algebras as well.

Proof. (i) The linear-compactness follows from Proposition 6.1, since
(7.11) is a filtration by finite-codimensional subspaces with trivial intersection
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and .o/(M) is complete with respect to this filtration. The continuity of the
H-action follows from (2.22):
F'H-F,o/(M)cF

J—i

A (M) for all i, j. (7.13)

(i1) It only remains to check that the Lie bracket of .«/(L) is con-
tinuous. Let L, be a finite-dimensional (over k) subspace of L which
generates it over H. For a, be L,, we can write

[a*b]zz (f; ®g)Ppue;

for some f;, g; € H and e; € L,. Then the Lie bracket in .«/(L), for x, ye X,
is given by

[X®pa, yQgb] =Z (Xf)(yg:) ®ge;.

We can find a number p such that all coefficients f;, g; € H occurring in
pseudobrackets of any elements a, be L, belong to F”H. Then equations
(2.21), (2.22) imply

[F, (L), F;/(L)]<F,,; /(L) for all i, j, (7.14)

where s =2p — 1. This shows that the Lie bracket is continuous. |i

LemMA 7.3. Let H=U(D)# k[ I']. Then for any nonzero hed and for
every open subspace U of </ (M) there is some n such that h"U=</(M). In
particular, each such h acts surjectively on <o/ (M).

Proof. Follows immediately from Lemma 6.4. |

7.5. Growth of the Annihilation Algebra

Let M be a finite H-module. Then any choice of a finite-dimensional sub-
space M, generating M over H provides .# =.o/(M) with a filtration
My:=F, XQ@y M,.

DerFiNITION 7.2. For a filtered vector space .4 =.MH_y > My> --- we
define its growth gw.# to be d if the function n+> dim .#/.%, can be
bounded from above and below by polynomials of degree d.

By Lemma 7.2, a different choice of M, would give a uniformly equiv-
alent filtration of the same growth as {.#,}. Hence, we can speak of the
growth of .o/(M) independently of the choice of M.
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ProPOSITION 7.5. Let H= U(Dd) be the universal enveloping algebra of a
finite-dimensional Lie algebra d, and M be a finitely generated H-module.
Then the growth of /(M) is equal to the dimension of D.

Proof. First of all, notice that we can assume M is torsion-free, since by
Lemma 7.1, &/ (M) ~ o/(M/Tor M) where Tor M is the torsion submodule
of M. The proof of the proposition is then based on Lemma 2.1 and the
following two lemmas.

LemmA 7.4. The map A(f): A(M)— 4 (F) induced by the inclusion
f: M < F constructed in Lemma 2.1 is uniformly continuous, i.e., for every
i we have

F, A (F)cd(f)F; A (M))cF, , o F),

where a and b are independent of i.
The same is true for </(g): oA (F)— /(M) where g is the embedding
g: hF = M from Lemma 2.1.

Proof. Let us choose finite-dimensional vector subspaces F, of F
generating F over H, and M, of M generating M over H and containing
hF,. Let us also choose a second finite-dimensional vector subspace Fy of
F containing M, and generating F over H. We will denote the filtrations
induced by these subspaces by {Z}, {4}, and {F}, respectively.

Up to identifying hF with F, we have constructed injective maps
F-% ML F such that the composition fg is a multiplication by 4. These
maps induce maps %(F)ﬂ; (M )M—(fg </(F) which are surjective, as
one can see by tensoring by X and using that .«/(7)=0 if T is a torsion
H-module (see Lemma 7.1).

The above maps are also continuous with respect to the common topol-
ogy defined by any of the above constructed filtrations. In fact, by con-
struction, one has

AGNF) =My and  A(f)AM) =T .

The second inclusion proves that o/(f)(.#;) = %, for some b inde-
pendent of i, because the filtrations {%} and {#} are uniformly equiv-
alent by Lemma 7.2.

Applying /() to the first inclusion, we get .7 ( ) o/ (g)(F;) < L (f ) M,).
On the other hand, /(f)./(g)=.(fg)=h®pyidr, and Lemma 6.4
implies that /(f).«/(g)(%)=%_, where a is such that he F*H but
h¢ Fe~1H. Therefore % _, = .o/(f)(.M,) for all i.

A similar argument works for .</(g). |
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LemMA 7.5. If @: M — N is a surjective uniformly continuous map of
filtered modules, then gw M = gw N .

Proof. By assumption ¢(.4;) = A;, , for all i and some b independent of
i. The induced map /.4, — N/ N;,, is a surjective map of finite-dimen-
sional vector spaces. Hence gw .# = gw A", ||

Using the above lemmas, now we can complete the proof of Proposition
7.5. We have constructed an embedding f: M < F of M into a free
H-module F, and we have shown that the induced map /(f): /(M) —
o/ (F) is surjective and uniformly continuous. This implies gw .&Z(M) >
gw ./(F). Similarly, the inclusion hF < M gives us gw .o/ (F) =gw o7/ (hF)
> gw .o/(M). Therefore, gw o/(M) =gw .o/(F). It remains to note that, for
any (nonzero) free H-module F of finite rank, one has gw .o/(F)=dim d.
This follows from the fact that gw X' =N =dim d because X ~ 0. |

Remark 7.3. The growth of a linearly compact Lie algebra % satisfying
the descending chain condition can be defined as follows. Take a
fundamental subalgebra 4 — ¥, and build a filtration of & by

=4, L ={xeZ!|[x, L1z}, i=0.

Taking A’ = Z{, we have ¥ = %/, ,, hence replacing 4 by 4’ does not

change the growth. Therefore, by the Chevalley principle [ G1], the growth

of this filtration does not depend on the choice of 4. We will denote this
common growth by gw %.

Notice that all simple linearly compact Lie algebras satisfy the descend-

ing chain condition, and therefore have a well defined growth which

equals N for Wy, Sy, Hy, and K,, and 0 for finite-dimensional Lie
algebras.

8. PRIMITIVE PSEUDOALGEBRAS OF VECTOR FIELDS

In this section, D will be a (finite-dimensional) Lie algebra and H = U(D)
will be its universal enveloping algebra. As usual, we will identify d with its
image in H. Then X := H* is the algebra of formal power series on d*,
which is isomorphic as a topological algebra to ¢ for N=dim d. In this
section we are going to define H-pseudoalgebra analogues of the primitive
linearly compact Lie algebras Wy, Sy, Hy, Ky, which will be called
primitive pseudoalgebras of vector fields.
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8.1. W(d)

Let Y be a commutative associative algebra on which d acts by deriva-
tions from the right (i.e., Y is an H-differential algebra). One can define a
left action of Y®D on Y using the right action of d on Y-

(x®a)z=—x(za), x,zeY, aeb. (8.1)

This will define a representation of Y®Db in Y if the Lie bracket of d is
extended to Y® d by the formula

[x®a y®bl=xy®[a,b] —x(ya)®b+(xb) y®a.  (8.2)

In particular, for Y= X = H*, this gives the Lie algebra of all vector fields
on X, which is isomorphic to W, for N =dim Dd.

Comparing (8.2) with (7.2), we are led to define the pseudoalgebra
W(d)=H®D with pseudobracket

[(/®a)*(g®D)]=(f®®u(1®[a,b])
—(f®ga)®y (1QD)+ (/b ® g)®u (1®a). (83)

It is easy to check that W(Dd) is indeed a Lie pseudoalgebra, and that the
Lie algebra .o/, W(d) defined in Section 7 is isomorphic to Y®Dd with
bracket defined by (8.2). In a similar fashion, the module Y over Y®0D,
defined by (8.1), leads to a structure of a W(d)-module on H:

(f®a)xg=—(/®ga)®py I (8.4)

8.2. Differential Forms

We can think of X=H?* as the space of functions on D, and of
the elements of X®D as vector fields. Then the space of n-forms
(n=0,..,dimDd) is

Q" :=Hom, </\" b, X> ~X® /" bd*

It is convenient to extend the elements w € Q% to functions from A” (X ® D)
to X, polylinear over X,

o(x,®a; A - AX,Qa,)=x,---x,0(a; A -+ Aa,),

so that

Q% =Hom </\” (X®0D), X>.
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We view X as a left (X ® db)-module using the right action of d; see (8.1).
There is a differential d: Q% — Q%+ satisfying d* = 0; this is just the usual
differential for the cohomology of d with coefficients in X where X is viewed
as a right d-module:

(do)ay A - Aday i)
=Y (=D o(la;,aq;] nay A -+ Ndg Ao NG A Ady )
i<j
+Y (=1)Ywlay A oo+ Ady A o+ Aay,iq)-da;.

The following analogue of the Poincaré Lemma is very useful.

LemMa 8.1.  The complex (25, d) is acyclic, ie., its nth cohomology is
trivial for n >0 and 1-dimensional for n=0.

Proof. Tt is well known that H"(d, U(d)*) ~ H,,(d, U(d))* is trivial for
n>0 and 1-dimensional for n=0; see, e.g., [Fu]. ||

For a vector field Ae X®Db, we have the contraction operator
14: Q% — Q"1 given by

(tgo)ay A - ANa,_1)=w(A ANa; A -+ ANa,_,).

We define the Lie derivative L,: Q% — Q% by Cartan’s formula L, =
di, +1,d. Explicitly, for x®@ae X®D, we have

(Lyiga®)ay A -+ Aay,)=—=x(oay A - Aay)-a)

+>Y (=1 (x-a)wlana, A -+ Nd; A -+ Aay)

+Y (= Dixo([a,a;] Aay A -+ A G

i

Ao Aa,).  (85)

The Lie derivative provides each Q7 with the structure of a module over
the Lie algebra of vector fields X ®d.

For n=0, Q%= X and this is the usual action (8.1) of X®d on X. When
n=N=dimDd, we have QY= Xv, where vy e AV d*, v,#0 is a volume
form. An easy calculation shows that

L, s.(yvo)=—((xy)a+trada))v,, x, yeX, aed. (8.6)
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8.3. Pseudoforms

The module Q7% over the Lie algebra X ® d leads to a module 2"(d) over
the Lie pseudoalgebra W(b) which we now define. We let

Q") =H® N\"d* Q)= Elii) Q"(d) (N=dimb).
n=0

The elements of 2(d) are called pseudoforms.

Q"(d) is a free H-module, so that .o/(Q"(D))=X®y 2" (D) ~ X ® A" d*
=Q7% . The action of W(b)=H®Db on 2"(d) is obtained by comparing
(7.2) with (8.5). To write an explicit formula, we identify Q”(d) with the
space of linear maps from A”Dd to H, and (H® H) ®y Q2"(d) with the
space of linear maps from A”Dd to H®H. Then for f®ae W(D),
weQ"(Dd), and a; €d, we have

(f®a)sw)a; A -+ Aa,)=—fRw(a; A -+ Aa,)a

+>Y (=1 fa;, @wlana, A -+ ANd; A -+ Aay)
+Y (=D f@w(la,a]lAnay A -+ Ad; A -+ Aay,). (8.7)

When n=0, Q°(d) = H, and we recover (8.4). In the other extreme case,
when n= N :=dim d, Q"(d) = Hv, is again a free H-module of rank one,
where v, € AV D*, vy #0 is any volume form on d. We have (cf. (8.6))

(f®a)xvg=—(flat+trada)®@ 1+ f®a) @ vo. (8.8)
Define polylinear maps *, € Lin({ W(d), Q"(d)}, 2"~'(d)) b
(f®a)x,w)a; A -+ Aa,_))=fQ@wana, A - na, ). (89)
Also define a differential d: Q"(d) - Q"*+1(d) by

(dw)(ay A -+ Adyiy)
=Y (=" w(la;,q] Aay A oo NAy A oo NG A Ay y)
i<j
+Y (=) wlay A ~- Ad; A - ANa,q)a; i n>1,

(dw)(a) = —wa if n=0,

so that d is H-linear and d? =0. For any pseudoform w and x € X, we have
a differential form x ® ; w and the relation d(x ®; w) = x ®, dw.
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Remark 8.1. The nth cohomology of the complex (2 °d* (D), d) is
equal to H*(d, U(d)). This space is trivial for n# N =dim d and 1-dimen-
sional for n=N. This follows from the Poincaré duality H”(d, U(D)) ~
HY="(d, U(D)*); see, e.g., [Ful.

We have the following analogue of Cartan’s formula for the action of
W(d) on Q(d)

axw=((d®id) Ry d)(axw)+ax* (dw)e(HRQH)RQy 2(D). (8.10)
This implies that the action of W(d) commutes with d:
ax (dw)=((1d®id) ® g d)(a * w). (8.11)
We note that the maps o« *, anticommute with each other,
ax (fe,w)+(c®id)®gyid) f*, (ax,w)=0 (8.12)

for a, fe W(b), we Q(D).

The wedge product on A® D* can be extended to a pseudoproduct * on
Q(d)=H® A°® d*, so that it becomes a current pseudoalgebra. Then it is
easy to check that for a e W(d), ve A™ d*, we A" d*, one has

ax(vrw)=(*xv)xw+ ((0®id) ®z1d) v * (o * W), (8.13)
and similarly
ax, (vew)=(axv)xw+(—1)"((c®id)®pid) v * (a x, w). (8.14)

This can be interpreted as saying that a * and « *, are superderivations of
Q(d), see Example 10.2 below.

8.4. S(b, y)
The divergence of a vector field >, x; ®a; e X®D is defined by
div(}; x; ®a;)=>; x;a;€ X. Then one easily checks
div([ 4, B])=A -div(B) — B -div(A), A, BEX®D, (8.15)

so that the divergence zero vector fields form a Lie subalgebra S, of Wy.
Let y be a trace form on D, ie., a linear functional from d to k which
vanishes on [D, D]. Then we can define

div” <z X, @a,.> =Y xy(ap+ 7ar),

i

which still satisfies (8.15).
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Remark 8.2. Let y be as above, and let = y —tr ad, which is again a
trace form on d. We can consider i as an element of Q3= X® d*; then
dyy =0 and by Lemma 8.1 we have y = —dz for some ze€ X. This means
that Y(a) =za for all aed. Let y =¢%; then ya= yy(a) for aed. Consider
the volume form v = yv,, where v, € AV d*, v, #0. Equation (8.6) gives

L,v=—divi(4)v  for AeX®D. (8.16)

Therefore, the Lie algebra of vector fields 4 with div#(4)=0 coincides
with the Lie algebra Sy(v) of vector fields annihilating the volume form v.

Using the notation o, =xQyaec./(W(D)) ~X®D for a e W(D), xe X,
we find for a =h®a:

0L=XRyg(h®a)=xhQ@y (1 R®Ra)=xhRac XD,

hence, div* (e, ) = xh(a + y(a)). Define the divergence operatordiv¥: W(d) - H
by the formula

div”* <Z h; ®a,-> =Y h;(a;+ x(a,)). (8.17)

Then we have
div#*(a,) =x-div¥ a for ae W(d), xe X (8.18)
Since divZ is H-linear, we can define

id @ divX
_

divi: (HR H)®4 W(b) (H®H)®yH 3 H® H.
Similarly to (8.15), one has
divi([a = f])=(div¥a®1) a(f) — (1 ®div* ) a, o, fe W(D), (8.19)

where o: H® H— H® H is the transposition.
Equation (8.19) implies that

S(d, z) :={oae W(d) | divioa=0} (8.20)

is a subalgebra of the Lie pseudoalgebra W(d). By Eq. (8.18) and Remark
8.2, its annihilation algebra

A(S(, 1)) ={AeWy | divi A=0} ~ S. (8.21)
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The rank of S(d, y) as an H-module is N — 1; however, it is free only for
N=2.

ProrosiTiON 8.1.  S(D, y) is generated over H by elements
ew :=(a+y(a)@b—(b+yb)®a—1®[a,b]  for a,bed. (8.22)
These elements satisfy ey, = —ep, and the relations ( for y =0)
aep.+be.,+ce=er, b1 c T €1 c1at €L al, b (8.23)
For y =0, their pseudobrackets are given by

[ew * eca] =(a®d) @y e+ (bR ) Qp €ua
—(a®¢)®@uepa— (b Qd) @y ey
+(@®1)®ues a1~ (0O e, e
—(1®)®ueyramt+(1®d)®ue, an
—(1®1)®uera sy e al (8.24)

For arbitrary y, replace everywhere in (8.23), (8.24) all hed by h+ y(h).
Remark 8.3. Equation (8.24) implies that for y =0

[eab*eab] :(b®a_a®b)®Heab
+(I@b—Db®1)®pe,rap+ (@@ —-1Qa)@yep (46
(8.25)

(Again, for any y, replace a, b with a+ x(a), b+ y(b).) In particular, when
the elements a, b span a Lie algebra, He,, is a Lie pseudoalgebra.

In the proof of Proposition 8.1 we are going to use the following lemma.

LemmA 8.2. Let H=U(d), and let {0,,.., 0y} be a basis of d. If
elements h; € F°H are such that Y, h; 0, € F?H, then there exist f; e F*"'H
such that

Yh®0,=Y (f;®1)(0,®9;—0,®0,) mod F/"'HQD.
i i, j

Proof. The proof is by induction on the number of /; not contained in
F?~'H, the basis of induction being trivial. Consider ¥7_, k0, € F’H,
with all h; ¢ F~'H. We can write h,= f,0, + k, so that k, e F’H is a linear
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combination of Poincaré—Birkhoff-Witt basis elements of H not containing
0, in their expression, and f; e F*~1H. Then

(f,0,0,+k,;0,)

S ho,=h,
i=1

T

i

(h +,§ fi0 >a +Zk8+z fi[21,0,].

i=2 i=2

Since the third summand in the right-hand side belongs to F?H, it follows
that the first and second summands lie in F?H too. This implies:
hy+¥7_, f;0; e F*"'H. Hence

(f;0,®0,—f;0,®0,)+ Y k;®9, mod FI"'"H®D,

i=2

Y h®
i=1

o

and we can apply the inductive assumption. [

Proof of Proposition 8.1. First of all, it is easy to check that the
elements (8.22) indeed belong to S(, y). Equation (8.23) is easy, and the
computation of the pseudobrackets is straightforward using (8.3), refor-
mulated as

[(1®a)*(1®D)]=((a+x(a)®1)®y (1)
—(1® (b+x(0)®@r(1®a)—(1®1) Qg ey-
(8.26)

Now let us consider an element a=3"; h; ® 0; € S(d, y), h; € H. We will
prove that a can be expressed as H-linear combination of the above
elements (8.22) by induction on the maximal degree d of the 4. Since
ae S(D, y), then 3, h; (9, + x(0;)) =0, hence ¥, h; 0, e FIH.

By Lemma 8.2, we can find elements f;; € F 4=1H such that

o= Z f;®1)(0,®0,—09;®9;) mod F"'H®D.
Therefore the difference
a—=Y (f3®)((9;4 2(0,) ®3;,—(0;+ x(9,)) ®0; — 1 ®[0;,0,])
i, j

still lies in S(D, ) and its first tensor factor terms have degree strictly less
than d. By inductive assumption, we are done. ||
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Remark 8.4. (i) Let, as before, y € d* be such that y([d,d])=0. For
any A€k, let V, ,= Hv be a free H-module of rank 1 with the following
action of W(d) on it

axv=(AdivFa®@1—a)Rz. (8.27)

Using (8.19), it is easy to check that this indeed defines a representation of
W(D).

For =0 we get the action (8.4), while for A= —1, y =tr ad we get (8.8).
One can show that all representations of W(d) on a free H-module of rank
1 are given by

(1®a)*v=((Ja+,(a)®1 —1®a) @y, (8.28)

where aed, Aek and ¥’ is a trace form on d. This can be rewritten as in
(8.27), for y =y'/A whenever A #0.

(i) More generally, let M be any W(b)-module, equipped with a
compatible action of H=Curk Here H=Curk is the associative
pseudoalgebra with a pseudoproduct f* g=(f® g)®; 1, and com-
patibility of the actions of W(d) and H means that

wx (hem)—((0®id)@pid) hx (wsm)=(xxh)xm  (8.29)

for e W(d), he H, me M, where a x h=—(1®h)a®g 1 is the action
(8.4) of W(d) on H.
Then, for any A, y as above,

ax; , m=A(div¥ o) * m+oxm (8.30)
is an action of W(d) on M.

8.5. Pseudoalgebras of Rank 1

All Lie pseudoalgebras that are free of rank one over H were described
by Proposition 4.1 and Lemma 4.2. The next lemma implies that all of
them are subalgebras of W(D).

Lemma 83. Let ae H® H be a solution of Egs. (4.1), (42). Write
a=r+s®1—1®s with a skew-symmetric red@Dd and se€d, as in Lemma
4.1. Consider e= —r+1®se HQD as an element of W(D). Then [e xe] =
@y e in W(D).

Proof. Straightforward computation, using the definition (8.3) and
Egs. (4.3), (44). 1
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Let us study Egs. (4.3), (4.4) in more detail. We can write

V=Z(ai®bi_bi®“i) (8.31)

i

for some linearly independent set a;, b; € d. Denote by d, their linear span,
and let Dy =D, + ks.

Lemma 84. by is a Lie subalgebra of d, and d, is ad s-invariant.
Moreover, [a;,a;],[b;, b;],[a;,b;] and [a;, b;] +s belong to d, for i+ j.

Proof. Similar to that of Proposition 2.2.6 in [CP]. If d, =D, there is
nothing to prove. Let {c,} be elements that complement {«,, b} to a basis
of d. If s is not in D; we take it to be one of the ¢,’s.

Write out (4.3) as

Z ([aiss]®bi_[bias]®ai+ai®[bi’s]_bi®[ai9s]):0'

i

Now, if [a;, s] involves some ¢,’s, there is no way to cancel out the terms
¢; ®b;. This proves that [5,0,] =D,.
Similarly, (4.4) reads

Y ([a;,a,1®b,®b,—[b;, a1 ®a,®b,

i, J

+[bi,b;]®a;®a;—[a;, b;]®b;®a;+ cyclic)
+> (4;®b;®5—b;® a;® s + cyclic) =

If, for example, [a;, a;] involves ¢;’s, then the terms ¢, ® b; ® b; cannot be
cancelled. Therefore [a, ,a;1€0,. If [a;, b;] involves ¢;’s, then the terms
. ®b; ®a; can be cancelled only with terms coming from s®r. This
shows that [a;,b;]+0;5eDd,. 1

The universal enveloping algebra Hy,= U(d,) is a Hopf subalgebra of
H=U(D). Since ae Hy ® H,, we can consider the Lie pseudoalgebra He
with pseudobracket [e*e]=a®y e. Then our pseudoalgebra He is a
current pseudoalgebra over He.

Clearly, D, is even dimensional. There are two cases which are treated in
detail in the next two subsections: when dy=D»; and when d,=10; ®ks.
They give rise to Lie pseudoalgebras H(D, y, w), K(D, 8) whose annihilation
Lie algebras are of hamiltonian and contact type, respectively. The follow-
ing theorem summarizes some of the results of Sections 4.3 and 8.5-8.7.
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THEOREM 8.1. Any Lie pseudoalgebra which is free of rank one is either
abelian or isomorphic to a current pseudoalgebra over one of the Lie
pseudoalgebras H(D, y, w), K(d, 0) defined in Sections 8.6, 8.7, respectively.

8.6. H(D, y, )

This is defined as a Lie H-pseudoalgebra of rank 1 (see Section 8.5)
corresponding to a solution (r,s) of equations (4.3), (4.4) with a non-
degenerate red A D (ie., D;=D), in which case N=dim D is even. The
parameters y and o are defined as follows.

Since r is nondegenerate, the linear map d* — d induced by it is inver-
tible; its inverse gives rise to a 2-form we A2 d*. Explicitly, if r=3 r%0,
® 0, where {0,} is a basis of d, then w(d; A 9;)=w is the matrix inverse
to r¥. We also define a 1-form y :=1,0w€d*.

Conversely, given a nondegenerate skew-symmetric 2-form @ and a
1-form y, we can define uniquely »€d A D as the dual to @ and s € b so that
X =1,0.

LEmMMmA 8.5. When red A d is nondegenerate, Egs. (4.3), (4.4) are equiv-
alent to the following identities for the above-defined w, y,

do+y A w=0, (8.32)

dy =0, (8.33)

which simply mean that w is a 2-cocycle for d in the 1-dimensional d-module
defined by y. This establishes a one-to-one correspondence between solutions

(r,s) of (4.3), (4.4) with nondegenerate r and solutions (w, y) of (8.32),
(8.33) with nondegenerate w.

Proof. Let us write [0;,0,1=3 ¢}, and s=3 50, (summation over
repeated indices). Then (4.4) is equivalent to

<Z pipklem | rmfsl> + cyclic =0, (8.34)

where “cyclic” means summing over cyclic permutations of the indices
m, j, l. Multiply this equation by w;w;,®,, and sum over m, j, l. Using
that 3 rw,, =0, we get

<Z e D+ ) s’w,pwnq> +cyclic=0, (8.35)

where now the cyclic permutations are over n, p,q. This is exactly
Eq. (8.32). Conversely, multiplying (8.35) by r™r#rk? and summing over
n, p, q, we get (8.34).
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Similarly, since [s, d,] =Dd;, we can write [s, 9;,] =3 ¢ 0,. Then (4.3)
is equivalent to

Y ek 4y Me]=0 (8.36)
which after multiplying by @, w;, and summing over j, k becomes

Y ko, +Y o, =0, (8.37)

or L,ow=0. Conversely, (8.37) gives (8.36) after multiplying by r#”r?" and
summing over mi, n.

Now start with a solution (r, s) of (4.3), (4.4). Above we have deduced
(8.32) and L,w=0. On the other hand, since i,y =0, we have 1,(y A )
=0, and (8.32) implies 7, do=0. Together with L, =0 this gives
di,w =0, which is (8.33).

If we start with a solution (w, y) of (8.32), (8.33), the above arguments
can be inverted to show that L v =0, and we get (4.3), (44). |

In the basis {a;, b;} of d we have (8.31) and w(a; A b;) = —w(b; A a;) =
—1, all other values of w are zero. For e= —r+1®s and any x € X, the
element e, := x ®y e of the annihilation algebra .«/( W(d)) ~ X®Dd is equal
to =Y (xa,®b;,—xb, ®a;) + x®s, and it is easy to check that

wle, Aa)y=x(—a+ y(a)), aebd. (8.38)

Since dy=0, Lemma 8.1 implies that y=dy for some yeQ%=X, ie,
x(a)= —ya. Then & :=e’w satisfies @(e, A a)= —(xe”)a for any xe€ X,
aed. This is equivalent to 1, & =d(xe”). Moreover, (8.32) implies di = 0.
Therefore, L, & =0, and we have the following proposition.

ProrosiTION 8.2. Let H(D, y,w):=He be a Lie H-pseudoalgebra of
rank 1 corresponding to a solution (r,s) of Egs. (4.3), (4.4) with a non-
degenerate r e d @D. Define the 2-form & as above. Then & is a symplectic
form, and the subalgebra X ®z H(D, y, w) of X®z W(D) ~ X®D is the Lie
algebra H (@) of vector fields annihilating & (which is isomorphic to H ).

Proof. It remains to show that, conversely, any vector field that pre-
serves the form @ is equal to e, for some x € X. Indeed, let A€ X®D be
such that L ,®=0. Since do=0 and & =e’w, this is equivalent to
d(e’t40)=0 which implies e’1,0=dz for some ze X. In other words,
e’w(A A a)= —za for any aed. Using y(a)= —ya, we get w(A A a)=
x(—a+y(a)) for x =e~?z. This, together with (8.38), implies 4 = e, since
the 2-form w is nondegenerate. ||
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Remark 8.5. Let red®Dd be given by (8.31), and let x=3; [4;, b;],
¢=—x+1,w=1,_, Then it is easy to check that div*(—r+1®s) =0,
so we have: H(D, y, w) = S(D, ¢).

ExaMpLE 8.1. Let the Lie algebra d be 2-dimensional with basis {a, b}
and commutation relations [a, 5] =4b. Then up to multiplition by a
scalar, all nondegenerate solutions (7, s) of (4.3) are given by: r=a® b —
b®a, any s in case A=0, and by the same r, and sekb when 1#0. It is
immediate to see that in both cases s can be written as —¢(a) b+
¢(b)a+[a,b] for some trace form ¢ ed*. Then r—1®s=e, is a free
generator of S(Dd, @), since dim d =2 (see Proposition 8.1). This shows that
the above pairs (r, s) also satisfy (4.4). We have: H(d, y, w) = S(D, ¢), where
x=1,0= —¢ +trad. (Note that trad =1, for x=[a, b]=1b.)

ExamPLE 8.2. When D is abelian of dimension N =2nrn> 2, then (8.32)
and (8.33) become y A w=0, hence y=0 and w is any nondegenerate
skew-symmetric 2-form. In this case all solutions of (4.3), (4.4) are s=0
and r given by (8.31) in some basis {a;, b} of b.

ExaMpPLE 8.3. When the Lie algebra d is simple, there are no solutions
(o, x) of (8.32), (8.33) with a nondegenerate w. Indeed, since [D, D] =D, we
have y =0, and w is a 2-cocycle: dw=0. Any 2-cocycle we A? d* for a
simple Lie algebra d is degenerate, since w =da for some o« ed* and the
stabilizer b, of « is always nonzero.

8.7. K(», 0)

This is defined as a Lie H-pseudoalgebra of rank 1 (see Section 8.5)
corresponding to a solution (r, s) of Egs. (4.3), (4.4) with D=0, @ ks and
nondegenerate r€d; A Dy; in this case N=dim d is odd. The parameter 6
is defined below.

Let {0;} be a basis of d,, and r=3 r70, ®0,. As before, we define a
2-form w on d, by w(9; A 0,) = w,, where (w;) is the matrix inverse to (r”).

Let us write [0,,0,]1 =3 ¢ 0, +cys and [s5,0,]=3 ¢/ 0,. Then we have

LEMMA 8.6. With the above notation, Eqs. (4.3), (4.4) are equivalent to
the identities

dw=0 on N*Dd,, (8.39)
Cyp=wy, (8.40)
Lw=0. (8.41)

If we extend w to a 2-form on d by defining 1,0 =0, then w is closed: dw = 0.
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Proof. The proof is very similar to that of Lemma 8.5. There we
showed that L, =0 is equivalent to (4.3), and the same argument applies
here. Similarly, (4.4) is equivalent to (8.39, 8.40). Now if 1,0 =0, then
L, =0 implies 7, dw =0, which together with (8.39) leads to dw=0. |I

Let @ be extended to a 2-form on D by defining 7,0 =0, so that dw =0.
We define a 1-form 0 ed* by 0(s) := —1, 0], :=0. Then we have df=w;
indeed

(d0)(2; A aj) =—0([0;, aj]) =cij=wij=w(ai A aj)s
(dO)(s A 0;) = —0([s,0,]) =0=c(s A D)),

J

using (8.40) and the fact that [s, d;] <.

LemmA 8.7. There is a one-to-one correspondence between contact forms
0, i.e. 1-forms 0 e d* such that 0 A (d0)NM =2 £0 (N =dim d), and solutions
(r,s) of (4.3), (4.4) with D=0, ® ks and nondegenerate red; ®D;.

Proof. Given (r,s), above we have defined the 1-form 6 such that
0(s)=—1, 0], =0 and df =w. Since w e A? d¥ is nondegenerate, we have
0 A 0N ~V2£0. Conversely, starting with a contact 1-form 0 e d*, we can
define s and  satisfying (8.39)—(8.41). |

ExampPLE 8.4. When D is the Heisenberg Lic algebra with a basis
{a;,b;,c} and the only nonzero commutation relations [a;,b;]=c¢
(1<ig<n, N=2n+1), then

r=

(a;®b;—b;®a;), s=-—c

1

NGE

1

is a solution of (4.3), (4.4).

ExamPLE 8.5. When D is abelian and dimd=2n+1>1, then Egs.
(4.3), (4.4) have no solutions (r, s) with D=0, @ ks and a nondegenerate
red; A by, because dfd =0 and therefore there are no contact forms.

ExAMPLE 8.6. When the Lie algebra d is simple, a solution (r,s) of
(4.3), (44) with =D, @ ks and a nondegenerate red; A D; exists iff
D=sl,, and it is

r=enfi=e@f—fQ®e, s=—h.

Only d =sl, is possible since the dimension of the stabilizer of  equals 1.
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Now let us compute L, 0. Recall that, as in Section 8.6, for any x € X" we
identify e, :=x®gze with —> (xaq; ®b;,—xb, ®a;)+ x®s. Similarly to
(8.38), it is easy to see that w(e, A a)= —xa for aed, (in this case
x=1,0:=0). On the other hand, 7, 0 =0(e,) = —x, and hence (dz, 0)(a) =
—(dx)(a)=xa for any aebd. Therefore (L, 0)(a)=0 for aebd,, and
(L. 0)(s)=xs. In other words,

L, 0= —(xs)0,

and we have the following proposition.

ProrosITION 8.3. Let K(D, 0) := He be a Lie H-pseudoalgebra of rank 1
corresponding to a solution (r, s) of Egs. (4.3), (4.4) with D=0, @ ks and a
nondegenerate r € d; ® 0y, where the 1-form 0 ed* is defined by 0(s) = —1,
Oy, =0. Then 0 is a contact form, and the subalgebra X ®y K(D, 0) of
X®py WD)~ X®Db is the Lie algebra Ky(0) of vector fields that preserve 6
up to a multiplication by a function (which is isomorphic to K).

Proof. Tt remains to show that, conversely, any vector field from K,(8)
is equal to e, for some x € X. Indeed, let A € X® D be such that L 0= f§
for some feX. Let us write A=Y, (x;®a;+y;®b;)+x®s for some
X;, Vi, X€X. Then w(A4 A a;)=y;and w(A A b;)= —x;, while 0(4) = —x.
Therefore (L ,0)(a)=w(A4 A a)+ xa, which implies y; + xa;=0, —x;+ xb;
=0, and xs=—f |

Remark 8.6. To any H-type Lie pseudoalgebra, ie., to any triple
(d, w, ¥) where D is a finite-dimensional Lie algebra, we A? d* is a non-
degenerate 2-form and y € b* satisfying (8.32) and (8.33), we can associate
a K-type Lie pseudoalgebra as follows. Set on the vector space D' =d @ ke
the Lie bracket [ , ]’ defined as

[g.h]' =[g h]l+wg h)ec, [g cl =x(g)c,

for g, hed. Then c+sed’ stabilizes d, where s€d is the unique element
such that y =1,w; indeed,

[g.s+c] =[gs]+w(gs)c+ylg)c=[g s]ed.

Define e (d')* as the unique element restricting to 0 on d such that
O(c)=—1.

Note that not all K-type data are obtained in this way, since the Lie
algebra D’ just constructed always has a one dimensional ideal ke, and this
fails in Example 8.6.
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8.8. Annihilation Algebras of Pseudoalgebras of Vector Fields

To conclude this section, we determine the annihilation algebras of the
primitive pseudoalgebras of vector fields defined above, and of current
pseudoalgebras over them.

THEOREM 8.2. (i) If L is one of the Lie H= U(d)-pseudoalgebras W(D),
S(d, y), H(d, y,w) or K(b,0), then its annihilation algebra /(L) is
isomorphic to Wy, Sy, Py or Ky, respectively.

(1) If L=Cur L' is a current pseudoalgebra over the Lie H'-pseudo-
algebra L', then its annihilation algebra </ (L) is isomorphic to a current Lie
algebra O, ® /(L") over </(L'), where H' = U(d') and ©' is a codimension
r subalgebra of d.

Proof. (i) We have seen in Section 8.1 that .o/( W(d)) ~ W,. Let L be
one of the pseudoalgebras S(d, y), H(D, x, w), or K(D, 0) and i be its natural
embedding in W(d). We have shown in Sections 8.4, 8.6, and 8.7 that in
this case the image of /(L) in Wy under /(i) is Sy, Hy, or K,, respec-
tively.

Lemma 11.4 below implies that .«/(L) is a central extension of its image
in Wy. Moreover, since L is simple, it is equal to its derived subalgebra,
and therefore .o/(L) is equal to its derived subalgebra (see Section 13.1).
Hence, /(L) is an irreducible central extension of its image in W.

Now Proposition 6.4(iii) implies that .o/(L)~S,, Ky in the cases
L=_S(, y), K(b, ) respectively, and .o/(L) is a quotient of P, in the case
L=H(d, y, w). However, since L =H(D, y, w) is a free H-module of rank
one, /(L) is isomorphic to X as a topological H-module. Therefore,
A (L)~ Py.

(i1)) Note that X = H* maps surjectively to X' =(H')* with kernel
isomorphic to ¢,. Moreover X ~ Uy, X' ~ 0y (N'=N—r), and hence
X~0, ®X. We have: A(L'):=X'®u L and A(L):=X®,L=
X®u(H®p L) =~X®p L' ~(0, ® X))@y L' 20, ® (X' ®g L').

Remark 8.7. Let us assume that the base field k=C, and let L be as in
Theorem 8.2(i). Then the action of d on .&/(L) can be constructed via the
embedding of d in Wy as follows.

(i) Any N-dimensional Lie algebra d can be embedded in Wy:
every aed defines a left-invariant vector field on the connected simply-
connected Lie group D with Lie algebra d, and we take the corresponding
formal vector field in the formal neighborhood of the identity element. (See
also Proposition 6.2.)

(i1) If we have a homomorphism of Lie algebras y: d — C, it defines
a homomorphism y of D to C*. Consider a volume form v on D defined,
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up to a constant factor, by the property g-v,=y(g) vy, g € D, where v, is
the value of v at the identity element. Then we get an embedding of D in
CSy(v)=Der Sy(v) ~ Der Sy.

(iii) Given y and we A?d* such that dw+y A w=0, consider a
2-form s on D whose value at the identity element is w and such that
g-s=x(g)s, geD. Then s is a symplectic form on D, and we get an
embedding of D in CH y(s)=Der Hy(s) ~ Der Py,.

(iv) Given a contact form 6 € d*, consider the left-invariant 1-form ¢
on D with the value 6 at the identity element. Then ¢ is a contact form on
D, and we get an embedding of D in Ky(c)~ Kj.

9. HHCONFORMAL ALGEBRAS

The goal of this section is to reformulate the definition of a Lie (or
associative) H-pseudoalgebra in terms of the properties of the x-brackets
(or products) introduced in Section 7.2. The resulting notion, equivalent to
that of an H-pseudoalgebra, will be called an H-conformal algebra.

Let us start by deriving explicit formulas for the x-brackets. We will use
the notation of Section 7.2. Let (L, ) be a Lie H-pseudoalgebra with a
pseudobracket

[axb]=pa®D) =Z (/i ®g)®xe;. (9.1)
Then for xe X, he H we have n(x ® h) = {x, hyDhe, (see (7.5)), and
(n ®Hﬁ)((x®Ha)®<h®Hb))=§ n(xf; @ hg,) ®p e;
=; iy (hgi) )y (hgi) o) ®me;

Taking A =1, we get the following expression for the x-bracket in L

[a.b]=) (S(x). figi—1)) &imei» i [axb]=} (fi®g)®ne;.
" " (9.2)
Here we can recognize the Fourier transform &, defined by (2.33):
F(f®8)=/8-1)®gew).
The identity (2.35)

f®g:(fg(—1) ®1) A(g(2))9
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implies
[‘l*b]=z (]rigi(fl)®1)®Hgi(2)ei' (9.3)

Hence [a = b] can be written uniquely in the form Y, (4; ® 1) ® 4 ¢; , where
{h;} is a fixed k-basis of H (cf. Lemma 2.3).

We introduce another bracket [a, b] € H® L as the Fourier transform of
[axb]:

[a.b] =Z 7 (fi®¢g) (1®€"):Z Ji&i—1) ®&ixye;- (94)
In other words,

[a,b]:z h®c;, if [a*b]:Z (h;®1)®pc;. (9.5)
Then we have

[axb]=({S(x), > ®id) [a, 6] =), {S(x), hipe;. (9.6)

Using properties (2.38)—(2.41) of the Fourier transform, it is straight-
forward to derive the properties of the bracket (9.5). Then the definition of
a Lie pseudoalgebra can be equivalently reformulated as follows.

DerFINITION 9.1. A Lie H-conformal algebra is a left H-module L
equipped with a bracket [-,-]: L&® L —> H® L, satisfying the following
properties (a, b,ce L, he H)

H-sesqui-linearity,
[ha,b]=(h®1) [a,b], (9.7)
[a,hb]=(1®hw)) [a, b] (h_1)®1). (9.8)

Skew-commutativity. 1f [a, b] is given by (9.5), then
[b, a]:_z hi(71)®hi(2)ci. (9.9)

Jacobi identity,

[a, [b,c]]—(6®id)[b, [a, ¢]]=(F '®id)[[a, b], ] (9.10)
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in HRH®L, where 0: HRQ H— H® H is the permutation o(f®g)=
g®f, and

[a, [b,c]]=(c®id)(id® [a,-])[, ], (9.11)
[[a,b],c]1=(d®[ - c])[a b]. (9.12)

ExampLE 9.1. (i) For the current Lie pseudoalgebra Curg=H®g
with the pseudobracket (4.2), the bracket (9.5) is given by

[/®a, g®b] :fg(—l) ®(g(2) ®[a, b]).

(i) For the Lie pseudoalgebra W(d)=H®Dbd with pseudobracket
defined by (8.3), the bracket (9.5) is given by

[1®a,1®0]=1®(1®[a,0])+a®@(1®D0)+b@(1®a)—1®(a®D).

One can also reformulate Definition 9.1 in terms of the x-brackets (9.6).

DerFINITION 9.2. A Lie H-conformal algebra is a left H-module L
equipped with x-brackets [a,b] e L for a, b e L, x € X, satisfying the follow-
ing properties

Locality,
codim{xe X | [a,b]=0} <0 for any a, belL. (9.13)
Equivalently, for any basis {x,} of X,
La, b]#0 for only a finite number of i. (9.14)
H-sesqui-linearity,
[ha b]=[a.b], (9.15)
Lachb]=hg) Lay D] (9.16)

Skew-commutativity. Choose dual bases {/;}, {x;} in H and X. Then

[ab]= _Z (x, hi(—1)> hi(—2)[bxia]' (9.17)

Jacobi identity,

[ax[byc]] - [by[axc]] = [[ax(z)b]yx(l}c]' (918)
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Lemma 2.2 implies that (9.18) can be rewritten as
[ax[byc]] - [by[axc]] ZZ [[axib]y(xS(hi))C]' (919)

In particular, the right-hand side of (9.18) is well defined: the sum is finite
because of (9.14).

The definitions of an associative H-conformal algebra or of representa-
tions of H-conformal algebras are obvious modifications of the above. For
example, in terms of x-products, the associativity looks as (cf. (9.18))

ab,c)= b))y C (9.20)

(ax(z) Yx(1)

The same argument as the one used for % shows that the map
X® )y X ®yx(y has an inverse given by x ® y > x5y ® yx_yy. There-
fore, (9.20) is equivalent to the equation

a,, (b

*(2)

(a.h), ¢ (9.21)

yX(— 1) )

Note that when considering associative H-conformal algebras, H need not
be cocommutative, so X may be noncommutative.

We also note that there is a simple relationship between the x-bracket
(9.6) of a Lie H-conformal algebra (or, equivalently, pseudoalgebra) L and
the commutator in its annihilation Lie algebra .o/(L) defined in Section 7.
Let {h,;}, {x;} again be dual bases in H and X. Then in (9.5) one has
¢;=[as-1x,b]; therefore

[a,b]= ZS )®[a,b] and  [axb]=Y (S(h)®1)®p[a, b].
(9.22)

Recall that we denote the element x ® 4 a of /(L) := X®y L by a,. Then
the definition (7.2) and (9.22) imply

[ax» y] _Z [a b](xS(h Ny — [ax(z}b]x(l)ya (923)
using (2.32). This is also equivalent to
[axb]y = [ax(z)a bX(fl)y] = Z [axi s b(h,-S(x))y]' (924)

Comparing these formulas with Eq.(9.18), we obtain the following
important result.
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PrOPOSITION 9.1.  Any module M over a Lie pseudoalgebra L has a
natural structure of an of (L)-module, given by (x ® g a)-m=a,m, where

“xm=z <S(x)9]rigi(71)> 8i2)Vi» if a *mzz (f; ® g)®@gv; (9.25)

for aeL,xe X,me M. This action is compatible with the action of H (see
(7.4)) and satisfies the locality condition

codim{xe X | a,m=0} < o0, acl meM, (9.26)
or equivalently, for any basis {x;} of X,
a,,m#0 for only a finite number of i. (9.27)

(The above conditions on M mean that, when endowed with the discrete
topology, M is a topological o/(L)-module in the category JM'(H).)

Conversely, any o/ (L)-module M satisfying the above conditions has a
natural structure of an L-module, given by

asxm= Z )®1)®ya, -m, (9.28)

where {h;}, {x;} are dual bases in H and X, and we use the notation
a, =xQga.

This proposition provides the main tool for constructing modules over
Lie pseudoalgebras. Of course, there is an analogous result in the case of
associative algebras as well.

Finally, let us give two more expressions for the bracket in .«/(L) which
will be useful later. Recall that, by Proposition 9.1, we have an action of
/(L) on L given by a, -b=[a,b]. Recall also that the action of H on
/(L) is defined by h(a,)=a,,. Let o€ o/ (L), be L, ye X. Then

= [hioa byl (9.29)

by1=3 ((S(hy) o) -b)y,. (9:30)
Note that the infinite sums on the right-hand sides make sense since they
are convergent in the complete topology of o7(L). It is enough to prove
both statements for a of the form a,=x®ya since such elements span
/(L). Equation (9.30) then follows from (9.23) and (2.32). Analogously,
(9.29) derives from (9.24) by noticing that x _;) ® x5y =23, x; ® h; x.
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10. H-PSEUDOLINEAR ALGEBRA

The definition of a module over a pseudoalgebra motivates the following
definition of a pseudolinear map.

DerFiNITION 10.1. Let ¥V and W be two H-modules. An H-pseudolinear
map from V to Wis a k-linear map ¢: V- (H® H) ®g W such that

() =((1®@")®x 1) ¢(v), heH vel. (10.1)
We denote the space of all such ¢ by Chom(V, W). We define a left action
of H on Chom(V, W) by
(h$)(v) =((h®1) @y 1) §(v). (10.2)
When V=W, we set Cend V'=Chom(V, V).
ExampLE 10.1. Let A be an H-pseudoalgebra and V' be an 4A-module.

Then for any ae A the map m,: V- (H® H)® V defined by m,(v)=
a = v is an H-pseudolinear map. Moreover, we have hm,=m,, for he H.

Consider the map p:Chom(V, W)®V->(H® H)®yz W given by
p(p ®v)=¢(v). By definition it is H-bilinear, so it is a polylinear map in
AM*(H). We will also use the notation ¢ * v :=¢(v) and consider this as a
pseudoproduct (or rather action, see Proposition 10.1 below).

The corresponding x-products are called Fourier coefficients of ¢ and are
given by a formula analogous to (9.2):

¢xU:Z<S(x)afigi(—1)> 8i2)Wi>» if ¢(v)=) (f; ®g)puw;.
l ' (10.3)

They satisfy a locality relation and an H-sesqui-linearity relation similar to
(9.13) and (9.16)

codim{xe X | ¢, v=0} <0 forany veV, (10.4)
¢ (hv) =l (P, V) (10.5)

Conversely, any collection of maps ¢, e Hom(V, W), x € X, satisfying rela-
tions (10.4), (10.5) comes from an H-pseudolinear map ¢ € Chom(V, W).
Explicitly

=2 (Sh)®1) @y ¢, v, (10.6)

i

where {h;}, {x,} are dual bases in H and X (cf. (9.28)).
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Remark 10.1. It follows from (10.5) that for ¢ € Chom(V, W), the map
¢,: V> W is H-linear, where 1€ X is the unit element. This establishes an
isomorphism

Hom g (V, W)~k ®, Chom(V, W)~ Chom(V, W)/H . Chom(V, W),

where H, ={heH | ¢(h)=0} is the augmentation ideal.

LeEmMA 10.1. Let U, V, W be three H-modules, and assume that U is
finite. Then there is a unique polylinear map

w € Lin({Chom(V, W), Chom(U, V)}, Chom(U, W))
in M*(H), denoted as u(¢ @ ) = ¢ =\, such that

(Gxp)vu=¢x () xu) (10.7)

in H®3 ® W for ¢ e Chom(V, W), e Chom(U, V), ue U.

Proof. We define ¢ = in terms of its Fourier coefficients—the x-products
¢.¥. We have already seen, when we discussed associativity, that (10.7) is
equivalent to the equation (cf. (9.20))

Py 1) = (D V), e

This can be inverted to find (cf. (9.21))
(¢xlp)y u= ¢x(z)(lpyX(_l)u) = Z ¢Xi (l//y(hiS(x)) I/l)

The H-sesqui-linearity properties of (¢, /), u with respect to x and y are
easy to check by a direct calculation. By properties (2.21), (2.28), (2.29) of
the filtration {F, X}, and locality of , it follows that for each fixed x € X,
ue U there is an n such that (¢, ), u=0 for y e F, X. Therefore, for each
x € X we have defined ¢,y e Chom(U, W).

In order that ¢ * i be well defined, we need to check that ¢ satisfies
locality, i.e., that ¢,y =0 when x e F, X with n>>0. By the locality of ¢
and , for each ue U there is an n such that (¢,¥),u=0 for xe F, X and
all y € X. Since U is finite, we can choose an n that works for all u belong-
ing to a set of generators of U over H. Now the H-sesqui-linearity of
(¢¥), u with respect to y (for fixed x) implies that (¢, ), u=0 for all y
and u. Hence ¢,y =0 for xe F,X. |
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Specifying to the case U=V =W, we obtain a pseudoproduct u on
Cend ¥, and an action p of Cend V on V.

ProrposiTiON 10.1. (i) For any finite H-module V, the above pseudo-
product provides Cend V' with the structure of an associative H-pseudo-
algebra; V' has a natural structure of a Cend V-module given by

¢ v=¢(v).

(1) For an associative H-pseudoalgebra A, giving a structure of an
A-module on V is equivalent to giving a homomorphism of associative
H-pseudoalgebras from A to Cend V.

Proof. Part (i) is an immediate consequence of Lemma 10.1. Indeed,
the only thing that remains to be checked is the associativity of Cend V,
and it follows from (10.7):

(i) = x) xv=(Pxh)* () x v) =¢ % (W * ( * v))
= ¢ (Y xy)xv)=(§x (Y *x)) *v.

To prove part (ii), we associate with each a € A the H-pseudolinear map
m, € Cend V given by m,(v) =a % v. Then

(mgxmp) xv=mgx (mp*v)=ax*(bxv)=(axb)xv=my,p*v,

which shows that m, xm,=m,,,. |

We denote by gcl the Lie H-pseudoalgebra obtained from the
associative one Cend V' by the construction of Proposition 3.2. Then V is
a gcV-module, and one has a statement analogous to part (ii) above.

ProposiTioN 10.2. Let V' be a finite H-module. Then, for a Lie
H-pseudoalgebra L, giving a structure of an L-module on V is equivalent to
giving a homomorphism of Lie H-pseudoalgebras from L to gc V.

Remark 10.2. Let L be a Lie H-pseudoalgebra, and U, V' be finite
L-modules. Then the formula (ae L, ue U, ¢ € Chom(U, V))

(axP)u)=ax*(¢*u)—((c®id) ®pid) ¢ * (a * u) (10.8)

provides Chom(U, V) with the structure of an L-module.
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DerFiNITION 10.2. Let A be an H-pseudoalgebra. A derivation of A is an
H-pseudolinear map ¢ € gc 4 which satisfies

px(axb)=(pxa)xb+((c®id)®yid) a = (¢ = b), a,beAd. (10.9)
We denote the space of all such ¢ by Der A.

The next result follows easily from definitions.

Lemma 10.2. (1) For any H-pseudoalgebra A, Der A is a subalgebra of
gc A.

(1) When A is associative (respectively Lie), we have a homo-
morphism of pseudoalgebras i: A — Der A given by i(a)(b)=a+b— (0 ®g
id) b = a (respectively i(a)(b) =[a x b]), whose kernel is the center of A.

(iii) For any xe€ X and ¢ € Der A, ¢, is a derivation of the annihilation
algebra of A. In other words, we have: o/ (Der A) = Der </(A).

(iv) Let A be an associative H-pseudoalgebra and L be the correspond-
ing Lie pseudoalgebra with pseudobracket given by commutator. Then
Der A = Der L.

ExaMpPLE 10.2. Recall that in Section 8.3 we defined the W(d)-module
of pseudoforms Q(d)=H® A® d*. Since A°® d* is an associative algebra
with respect to the wedge product, we can consider 2(d) as an associative
pseudoalgebra: the current pseudoalgebra over A® d*. Then, as in the case
of usual differential forms, for any ae W(d), o % and a *, are superderiva-
tions of Q(d); see (8.13), (8.14).

In the case when V' is a free H-module of finite rank, one can give an
explicit description of Cend V, and hence of gc V, as follows.

ProrosiTioN 10.3. Let V=H® V,, where H acts trivially on V, and
dim V< oo. Then Cend V is isomorphic to HQ® H® End V,,, with H acting
by left multiplication on the first factor, and with the pseudoproduct

(f®a®A)*(g®b®B)=(/®gan) @ (1®bay ®AB).  (10.11)
The action of Cend V on V=H® V, is given by

(f®a®A)* (h®v)=(f®ha)®y (1R Av). (10.12)
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The pseudobracket in gc V' is given by

[(f®a®A)*(g®DRB)] =(f®ga(1)) ®g (1 ®ba(2) ® AB)
— (b1, ® 2)®n (1®abn, @ BA). (10.13)

Proof. Since (HR®H)Q®yV~HQH®V,, we can identify Cend V
with H® H® EndV, so that its action on V is given by (10.12). To prove
(10.11), we use (10.7) and the explicit definition of associativity from
Section 3. Due to H-bilinearity, we can assume that f =g=/h=1. Then

(1®a®A4)*(1@b®B)* (1®1)=(10a®A4) * (1®b) ®y (1 ® Bv))
=(1®ay) ®ba) @y (1® ABv).

On the other hand, we have

(1®aq) @ (1®bap ®@AB)) * (1®v)=(1®ag, ®ban) @ (1 ® ABv).

Now (10.11) follows from the uniqueness provided by Lemma 10.1. ||

Remark 103. Let V=H® V,, where H acts trivially on ¥, and dim V,
< o0. Then Cur End V,, can be identified with H® | ® End V,, = Cend V.
Similarly, Cur gl V, is a subalgebra of gc V.

When V= H ®k”", we will denote Cend V' by Cend,,, and gc V by gc,. Of
course, the essential case is when V= H is of rank one. Let us describe the
associative algebra .o/ Cend;, where ./, is as in Section 7. As an
H-module it is isomorphic to Y®, Cend, ~ Y® H with H acting on the
first factor. We have a,=x®py (1 ®a)=x®a for xe Y, ae H. Comparing
(7.2) with (10.11), we see that the product in Y® H is given by

(x®a)(y®b)=x(ya)) ®ba,). (10.14)

Hence ./ Cend, is isomorphic to the smash product Y # H (see Section 2).
The annihilation algebra .o7(Cend,) = .o/y Cend, ~ X # H is isomorphic as
an associative algebra to the Drinfeld double of H (see [D]). For
H=U(d), o/(Cend,) can be identified with the associative algebra of all
differential operators on X, while .o7(gc,) with the corresponding Lie
algebra.

ExampLE 10.3. Let H= U(d) be the universal enveloping algebra of a
Lie algebra d. We identify d with its image in H, so that gc, = H® H con-
tains H®D. We claim that f®a+— — f®a (f e H, aed) is an embedding
of Lie pseudoalgebras W(d) = gc,, compatible with their actions on H.
This is immediate by comparing (10.13) with (8.3) and (10.12) with (8.4).
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Consider H as Curk, ie., as an associative H-pseudoalgebra with a
pseudoproduct [ * g=(f®g) Xy 1. Then W(d)=Der H < gc;.

ExampLE 104. Let H=Kk[I'] be the group algebra of a group I". Then
for V=H and f, g,a,be I, (10.11) takes the form

(f®a)* (g®b)=(/®ga) @u (1 ®ba).

We end this section with two lemmas that will be useful in representation
theory.

LemmaA 10.3. For ¢ € Chom(V, W), let
ker, ¢ ={veV|¢,v=0VxeF, X},

so that, for example, ker _; ¢ =ker ¢. If V is a finite H-module and F"H is
finite dimensional, then ker,, ¢/Ker ¢ is finite dimensional.

Proof. Since ker ¢ is an H-submodule of V, after replacing V' by
V/ker ¢, we can assume that ker ¢ =0.

By definition, ker, ¢ = ¢ ~'((F"H ® k) ®; W). Since, by Lemma 2.37, (F"H
Rk)®y W=(k®F'H)®4 W, we have ¢(ker, ¢)c(kQF"H)®4 W.

On the other hand, since V' is finite over H and ¢ satisfies (10.1), there exists
a finite-dimensional subspace W' of W such that ¢(ker, ¢) = (k® H)
®g W'. It follows that ¢(ker, ¢) = (K@ F"H)®4 W', which is finite
dimensional. Since ¢ is injective, ker,, ¢ is finite dimensional. ||

Lemma 104. Let ¢ € Chom(V, W) and he H. If h is not a divisor of
zero, then:

(1) h¢ =0 implies ¢ =0;
(1) hveker ¢ implies v € ker ¢.

Proof. Part (1) follows from Eq. (10.2): if #(v)=3; (f; ® 1) ®y w; with
linearly independent w;, then (h¢)(v) =, (hf; ® 1) ®x w; can be zero only
if all Af;= 0, which implies f;=0.

Similarly, part (ii) follows from (10.1), since we can write ¢(v) uniquely
in the form 3}, (1® g) @z w;. 1

CorOLLARY 10.1. Let L be a pseudoalgebra (Lie or associative) and M
be an L-module. Then any torsion element from L acts trivially on M, and
any torsion element from M is acted on trivially by L. In particular, the
torsion of a Lie pseudoalgebra is central.
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11. RECONSTRUCTION OF AN H-PSEUDOALGEBRA FROM
AN H-DIFFERENTIAL ALGEBRA

11.1. The Reconstruction Functor €

Let, as before, H be a cocommutative Hopf algebra and X' = H*. Given
a topological left H-module . (where H is endowed with the discrete
topology), let

%(#)=Hom®<™ (X, £) (11.1)

be the space of continuous H-homomorphisms. We define a structure of a
left H-module on (%) by

(ho)(x) = o xh). (11.2)

Then % is a covariant functor from the category of topological H-modules
to the category of H-modules.

Lemma 11.1. (i) The functor € is left exact: € (i) is injective if i is
injective.

(ii)  The functor € preserves direct sums: € (L, ® L) =C(LH) D C(L).

(1) Assume that the Hopf algebra H contains nonzero primitive

elements. If & is finite dimensional over k with discrete topology, then
€(¥)=0.

(iv) If H=U(D), then €(%) has no torsion as an H-module.
Proof. Parts (i) and (ii) are obvious.

(i1) By Kostant’s Theorem 2.1, H=U(d) # k[ '] with D #0. If ¥ is
finite dimensional, any continuos homomorphism o: X — % must contain
some F,X in its kernel. Let he F*~'U(d) but h¢ F*~2U(Dd). Then, by
Lemma 6.4, hF, X = X so that for each x € X, x =/hy for some y € F, X. This
implies a(x) =a(hy)=h(a(y)) =0, since a( y) =0, proving part (iii).

Similarly, part (iv) follows from the fact that X4 = X for any nonzero
heUd). 1

If, in addition, ¥ is a topological Lie H-differential algebra, we define
x-brackets in € (.¢) by the formula (cf. (9.24)):

Lo B1(y) = L)), By —)) T =2 Lex), By(h SG)))] (11.3)
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This is well defined because the infinite sum in the right-hand side con-
verges in . Equation (11.3) is also equivalent to (cf. (9.23))

[o(x), BT = [ty B1x ) = 3 Lot ISR (114)

ProrosiTiON 11.1.  For any topological Lie H-differential algebra 2,
€ (L) satisfies properties (9.15)—(9.18).

Proof. This can be verified by straightforward but rather tedious com-
putations. To illustrate them, let us check (9.15). By definition, we have

Lo 10y Z [(ha)(x;), B(y(h; S(x ]—Z Lalx; ), B(y(h; S(x))) ],
while
Loy Z La(x;), B(y(h; S(xh)))].
Hence (9.15) is a consequence of the identity
Y xh®h=Y x; @h; S(h), (115)
which can be checked by pairing both sides with f ®z e H® X. Indeed,
; xih, [Ny, 2y =Lzh, |) =<z, fS(h)) =; {xiy [ <R S(h), z).

A more conceptual proof can be given by noticing that formula (11.3) is
the same as the formula for the commutator of H-pseudolinear maps. For
ae (L) consider the family ad a(x) e Hom(.%, .#) indexed by x € X. It is
easy to see that it satisfies (10.5). So, if it also satisfies (10.4), it would give
an H-pseudolinear map from % to itself. Although this is not true in
general, the argument still works because all infinite series that appear will
be convergent. (In other words, we embed % (%) in a certain completion
ofgc Z.) 1

In order to have the locality (9.13), one has to impose some restrictions
on &. In particular, the condition that ¥ be a linearly compact topologi-
cal Lie algebra will often suffice to guarantee locality of € (.%).

In what follows, we explain how to reconstruct an H-pseudoalgebra L
which is finitely generated over H from its annihilation Lie algebra .o/(L).
Recall that .7(L) is a linearly compact topological Lie algebra (Proposi-
tion 7.4). In many of the proofs we never exploit the algebra structure on
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/(L), so the corresponding statements hold for finite H-modules in
general.
We let L=%</(L) :=Hom%" (X, X®y L). There is an obvious map

O L->L, a—ax)=xQya. (11.6)

It is clear by definitions that @ is a homomorphism of H-pseudoalgebras
(or H-modules if L is only an H-module).

11.2. The Case of Free Modules

Let L be a Lie H-pseudoalgebra which is free as an H-module: L=
H® L, with the trivial action of H on L,. Then ¥ =.o/(L) =XQ®yz (H®
Ly)~X® L, as an H-module.

ProrosiTION 11.2. When L is a Lie H-pseudoalgebra that is a free
H-module, the map @ defined by (11.6) is an isomorphism of Lie
H-pseudoalgebras.

Proof. To construct the inverse of @, identify & with X® L, and

consider

v L ae Y Sh)® (e®id)alx)).

Here, as before, {/,}, {x,} are dual bases in H and X, and &(x)= {1, x)
for xeX. This is well defined, ie., the sum 1is finite, because
a(x;)eFo X® L, for all but a finite number of x; and &(FyX)=0. Using
identity (11.5), it is easy to see that ¥ is H-linear. Next, we have for a € L,

D(1®a) ZS 11, x>a=S1)®a=1®a,

showing that Y@ =id. In particular, ¥ is surjective.
Assume that ¥P(a)=0 for some ae L. This means that ({1, > ®id)
a(x) =0 for any x € X. But then for any /&€ H, we have

({S(h), > ®id) a(x) = ({1, -> @id)(A® 1) a(x))
=1L > ®id)(h(a(x))) = ({1, > ®id) a(hx) =0,

which implies « =0. Hence ¥ is injective. ||

Remark 11.1. If L is only a free H-module, then @ is an isomorphism
of H-modules. Analogous results hold for representations, or for associative
H-pseudoalgebras.
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11.3. Reconstruction of a Non-free Module

Throughout this subsection L will be a (possibly non-free) finitely
generated H-module, and H will be the universal enveloping algebra U(D)
of a finite-dimensional Lie algebra d=0.

The natural map @: L — L (see (11.6)) is in general neither injective nor
surjective. However, the induced map ¢ = .o/(®): #(L) — Z(L) has a left
inverse ¥/ : x ® 5 o+ a(x). This shows that .o/(®) is injective, and that  is
surjective.

We want to figure out to what extent injectivity and surjectivity of @ fail.
First of all let us remark that, by Lemma 7.1, every torsion element ¢ € L
has all zero Fourier coefficients, i.e., it belongs to the kernel of @. In fact,
we have

PROPOSITION 11.3.  For any finite H-module L, the kernel of ®: L — L
equals the torsion of L.

Proof. 1t remains to show that a non-torsion element a € L does not lie
in the kernel of &@. Consider the map i: L — F constructed in Lemma 2.1.
Then i(a) #0. The map /(i) induced by i maps the Fourier coefficient
X ® g a of a to the corresponding Fourier coefficient x ® 4 i(a) of a nonzero
element in the free H-module F. Now, it is clear from Proposition 11.2 that
X®pi(a)#0 for some x € X, hence x ®; a must be nonzero too. |

CoRrROLLARY 11.1. A4 finite H-module L is torsion iff X®y L =0.

COROLLARY 11.2. Let M, N be finite H-modules, f: M — N be an
H-linear map, and assume N to be torsionless. Then o/ (f)=0 if and only if

f=0.
Proof. </(f)=0 means that X®, f(M)=0, hence f(M) < N is torsion.
|

Remark 11.2. By Corollary 10.1, the torsion of a Lie H-pseudoalgebra
L is always central, hence the map @ is injective if L is centerless.

Remark 11.3. If @ is an isomorphism, then @~!' induces y, ie.,
Y =.o/(®~"). Corollary 11.2 tells us that if L is torsionless and  is induced
by some map ¥, then @ is an isomorphism and ¥ =@ !,

ProroSITION 11.4. For any map of finite H-modules f: M — N, the
following conditions are equivalent
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(1) N/f(M) is torsion.
(2) A(f): A(M)— A (N) is surjective.
(3) gwcoker o/(f)<dimDd.

Proof. To show the equivalence of (1) and (2), it is enough to tensor
the exact sequence M L N> N/f(M)—-0 with X, getting the exact
sequence ./ (M)— A (N)—> X®yN/f(M)—0, and to apply Corollary
11.1.

Assume that (3) holds but N/f(M) is not torsion. Then it contains a
nonzero element ¢ which generates a free H-module. Then X ®, a ~ X has
growth dim d, which is a contradiction. If (1) holds, by Corollary 11.1,
coker «/(f)=0. |

11.4. Reconstruction of a Lie Pseudoalgebra

Now let L be a Lie H-pseudoalgebra which is finite as an H-module.
Again, H = U(d) will be the universal enveloping algebra of a finite-dimen-
sional Lie algebra d. Let ¥ =.</(L) be the annihilation Lie algebra of L,
and L =%(%), as before.

By Propositlion 11.1, L satisfies all the properties of a Lie
H-pseudoalgebra except the locality (9.13). An indirect way to establish the
locality property for L is by embedding it in the bigger (local) Lie
pseudoalgebra gc L. In order to map L to gc L, we need to assign to each
element of L a pseudolinear map from L to itself.

This can be done as follows. Recall that % acts on L by
(x®pga)-b=[a,b] for a,be L, xe X (see Proposition 9.1). Now in terms
of x-products the action of L on L is given by a b =w(x)-b. The locality
condition a b =0 for xeF, X, n>>0 is satisfied because a is continuous
and L is a discrete topological #-module (see Proposition 9.1). All the
other axioms of a Lie pseudoalgebra representation follow easily from
definitions.

We now need to find conditions for the above-defined j: L — gc L to be
injective. Then L would embed into gcL, which will show locality.

Lemma 11.2. If L is torsionless, the kernel of the above-defined
j: L—gc L consists of all elements a such that o(X) is contained in the
center of &.

Proof. Since L is torsionless, @ is injective by Proposition 11.3. Hence,
fora,beL, xe X, one has [a,b]=0iff [a,b],=0 for all ye X. By (9.23),
(9.24), this is equivalent to [a,, b, ] =9. Hence, for le &, [-b=0 for all b
iff / lies in the center of ¥. Now ae L is in the kernel of j iff a(x)-b=0
for all x and b, which means that a(x) is central for all x. |
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LemMma 11.3. If L is torsionless and ¥ = /(L) has a finite-dimensional
center, then j: L — gc L is injective.

Proof. Let aeL be in the kernel of j; then by the previous lemma a(X)
is contained in the center of .#. The latter is finite dimensional by assump-
tion, so the kernel N of « is of finite codimension in X. This implies that
N is open in X, and it contains F; X for some i. Let e F'*'H but h¢ F'H,
then by Lemma 64, hF, X=F_,X=X. Since a is H-linear, N is an
H-submodule of X. Then X=hF; X=hN <= N, therefore N=X and a=0.

|

ProrosiTiON 11.5. Let L be a Lie H-pseudoalgebra which is finite and
torsionless as an H-module. If its annihilation Lie algebra ¥ = </ (L) has a
finite-dimensional center, then L=% (%) is a Lie H-pseudoalgebra contain-
ing L as an ideal.

Proof. The only thing that remains to be checked is the locality
property for L. It follows from that of gc L, since in this case j: L — gc L
is injective. ||

In the proof of Lemma 11.2 we have shown that, if L is finite and tor-
sionless, the kernel of the action of /(L) on L is exactly the center of
o/(L). This implies the following result which was used in the proof of
Theorem 8.2.

LemMA 114. Leti: L < L, be an injective map of Lie H-pseudoalgebras
and assume that L is finite and torsionless. Then the kernel of the induced
map o(i): A (L)— o/ (L,) is contained in the center of o/ (L).

Proof. The kernel of /(i) acts trivially on L, and hence on L. |

In Section 13.4 we will need the following lemma.

LemMMA 11.5. Let L be a subalgebra of gc V for some finite H-module V
(L may be infinite). Then the map ®@: L — L is injective.

Proof. Assume that a belongs to ker @; then all x®,a=0, xe X. This
implies that all Fourier coefficients a, € End V' of aegc V' are zero, hence
a=0. |

For any topological Lie H-differential algebra ¥, we have a natural
homomorphism : /% (%) — &, given by x@gar>a(x) for ae b (%),
x€ X. The map  does not need to be surjective, but we have a good
control on injectivity, which can sometime prove useful.

LEMMA 11.6. The kernel of Y: A€ (L)—> L lies in the center of
AC(L).



84 BAKALOV, D’ANDREA, AND KAC

Proof. Follows easily from (9.29) and (9.30). Suppose that « lies in the
kernel of . Since  is a homomorphism of Lie H-differential algebras, its
kernel is an H-stable ideal of .«/% (). Then by (9.29), («-b), e ker y for
all be (&), ye X, because in its right-hand side all elements /; « lie in
ker . This means that («-b)(y) =0 for all ye X, hence a-b =0 for every
be€(Z). Now, use this in (9.30) to obtain that « is central. ||

12. RECONSTRUCTION OF PSEUDOALGEBRAS OF
VECTOR FIELDS

In this section, we show that the reconstruction procedure of Section 11,
when applied to the primitive Lie algebras of vector fields (or current
algebras over them), gives the primitive pseudoalgebras of vector fields
defined in Section 8 (or current pseudoalgebras over them).

As before, d will be an N-dimensional Lie algebra, and H= U(D) its
universal enveloping algebra. ¥ will be a Lie algebra provided with an
action of d and a filtration by subspaces ¥ =%_, > % > ---. When £ is
a subalgebra of W, it will always be considered with the filtration induced
by the canonical filtration of W .

The Lie algebra Der . of derivations of ¢ has the induced filtration

(Der &),:={deDer & | d( %)= %, ; Vj}.

The action of D is called transitive if the composition of the homomorphism
D — Der % and the projection Der ¥ — Gr_,(Der ¥) :=Der ¥/(Der ¥),
is a linear isomorphism. This is equivalent to the following two conditions:
D & Der % intersects (Der .#), trivially and dim Gr_,(Der ¥) = N.

LeEmmA 12.1. Let L be a current Lie H-pseudoalgebra over a finite-
dimensional simple Lie algebra or over one of the primitive pseudoalgebras of
vector fields. Then the action of d on its annihilation Lie algebra ¥ = o/(L)
is transitive.

Proof. By Theorem 8.2, ¥ =0, ® &' is a current Lie algebra over &',
where &%’ is either a finite-dimensional simple Lie algebra g (for
r=N=dim D), or one of the Lie algebras of vector fields Wy, Sy, Py Or
Ky (N'=N—r). In particular, we know that dim Gr_,(Der &)= N. By
Lemma 7.3, a sufficiently high power of any nonzero element ¢ € d maps
any given open subspace of . surjectively onto .. This cannot hold if «
belongs to (Der .£),, therefore d — Der . is injective and the image of d
intersects (Der ), trivially. Comparing the dimensions, we get that
D — Gr_,(Der &) is an isomorphism. |
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The main results of this section can be summarized by Theorem 12.1
below. Its proof follows from Sections 12.1-12.7.

THEOREM 12.1. Let ¥ =0, ® &' be a current Lie algebra over &',
where &' is a simple linearly compact Lie algebra of growth N'=N—r.
Assume that D acts transitively on . Then there is a codimension r sub-
algebra ©' of d, acting transitively on &', such that the H-pseudoalgebra
€ (L) is isomorphic to a current pseudoalgebra over the H'-pseudoalgebra
€ (L"), where H = U(D'). Moreover, €(<L") is either a finite-dimensional
simple Lie algebra (and d' =0) or one of the primitive H'-pseudoalgebras of
vector fields W(d"), S(V', '), HY', 7', '), or K(d', 0").

12.1. Reconstruction from Wy

Recall that X=H?* can be identified with Oy=Kk[[?,, .., fxy]]. The
action of D on X gives an action on Oy in terms of linear differential
operators, i.e., an embedding d < W, = Der (), which we call the canoni-
cal embedding of d in W,. Note that this embedding is transitive, i.e.,
D < Wy is complementary to F, W,.

A structure of an H-differential algebra on W, is equivalent to a tran-
sitive action of d on W, by derivations. Since Der W, = W, this is the
same as a transitive embedding of d in W,. By Proposition 6.2, any two
such embeddings are equivalent, i.e., conjugate by an automorphism of
W,. With the canonical action of d, W, becomes isomorphic to the
annihilation algebra of the Lie pseudoalgebra W(d) defined in Section 8.1.
Since W(d) is a free H-module, Proposition 11.2 shows that the reconstruc-
tion of Wy is W(D), ie., € (W)= W(D).

12.2. Reconstruction from Subalgebras of Wy

Let Z be a linearly compact Lie subalgebra of W, with the induced
filtration and with a transitive action of d on it. After an automorphism of
W, we can assume that the action of d is the canonical one. Then (%)
is a subalgebra of W(d) =% (W), because the functor ¥ is left exact. Below
we will be concerned with the case when % is the subalgebra consisting of
vector fields annihilating some differential form.

Let we Q"(d) be a pseudoform, and I = H be a right ideal. We denote by
Wb, w, I) the set of all elements a € W(d)=H ®d such that

axwe(HRI)®y Q" (d). (12.1)

It is easy to check that W(bd, w, I) is a subalgebra of W(d).

LemMMA 12.2. Let we Q% be a differential form, and Wy(w) be the Lie
subalgebra of Wy consisting of vector fields annihilating w. If @ =y ®gzw
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for some yeX, weQ"(d), then € (Wy(w)) is isomorphic to the Lie
pseudoalgebra W(d, w, I) where I={he H | yh=0}.

Proof. As was already remarked, € (W y(w)) is a subalgebra of W(d).
Since Q"(d)=H® A" d* is a free H-module, we have (H® H)®; Q" (D)
~H®H® A" d*. For o€ W(Dd), write a s w=>,(f; ® g;) @y w; with f;,
g; € H and linearly independent w; € A” d*. Then for any xe X we have
(cf. (7.2))

Lx®Hocw = Z (Xf)(yg:) @uw;-

This is zero for any x iff yg,=0 for all i, which means g, el. |

12.3. Reconstruction from Current Algebras over Wy,

Let now % =0, ® Wy be a current algebra over W,., and d be an
N=N'+r dimensional Lie algebra acting transitively on .#. Then, by
Proposition 6.4, d = Der ¥ =W, ® 1 + , ® Wy, = Wy. The Lie algebra
& is described as the subalgebra of W, consisting of vector fields
annihilating the functions ¢y, ;,.., fy, hence it is an intersection of
algebras of the form Wy(f) (feQ%= X); see Section 12.2.

After an automorphism of W, we can assume that the action of d on
it is the canonical one. Then % becomes the intersection of Wy(f;)
(i=N'"+1, .., N) where f; € X is the image of 7,. Now Lemma 12.2 implies
that € (%)= W(d, 1,I) where 1€Q,(d)=H and I={heH|f;h=0 (i=
N +1,.,N)}.

Recall that for ae W(b)=H®D, its action on 1€ H is given by a = 1 =
—a®y 1= —a Therefore ae W(d,1,1) iff a belongs to (H®Dd)N
(H®I)=H®YD', where the intersection ' =d [ is a Lie subalgebra of b.
Then H' = U(d') is a Hopf subalgebra of H, and HR® D ~ H® (H' ®D')
is a current pseudoalgebra over H' ® d' = W(d'). We have thus proved the
following lemma.

LemMA 12.3. The reconstruction of a current Lie algebra over Wy,
provided with a transitive action of a Lie algebra b, is a current Lie
H-pseudoalgebra over W(D') where ©' is an N'-dimensional Lie subalgebra

of d.
This result is a special case of Lemma 12.5 below.

12.4. Solving Compatible Systems of Linear Differential Equations

Let A be any associative k-algebra, and let ¢, =k[[¢t,,...,t,]], W,=
Der 0,, as before. For fixed n>0, let f;(¢t)e A[[ty, ... t,]] (i=1, .., r+n)
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be formal power series with coefficients in A, where ¢ = (¢,, ..., t,). Note that
W, acts on A[[ ¢, ..., t,]] by derivations.

Given r+n linear differential operators Dy, .., D, , € W,, consider the
following system of differential equations for an unknown y(7)e

Al [ty . t,]]:
D, (y(t))=y(t) f; (1), i=1,..,r+n. (12.2)

We assume that the operators D, satisfy

[D,,D;1=Y, cg.(t) D, with cf§(t) e, (12.3)
k
in other words, the space of all operators of the form }; p;(z) D; with
p; (1) €0, is a Lie algebra.
Suppose we have found a solution to the system (12.2). Combining
Egs. (12.2) and (12.3), we get

[D;,D;1(y)=D;D;(y)—D;D;(y)=D;(yf;) — D;(yf;)
=3/ [;+yD; (f;) = ¥f; fi— yD;(f1),

and
[D;,D(y)=) ciDi(y)=Y ¢k yfi.
k k

Hence the right-hand sides of these two equations must be equal. The
system (12.2) is called compatible if

[f:(0), [;()]1+D; (f;(1) — =) cl (1) frl(t for all i, j. (124)
k

Thus, when y(¢) is not a divisor of zero in A[ [ ¢4, ..., Z,] ] the compatibility of
the system is a necessary condition for having a solution. The compatibility
(12.4) is equivalent to saying that >, p; (¢) D; — >, p; (t)(D;+ f;(t)) is a
homomorphism of Lie algebras.

We will be interested in solving a more general system of equations than
(12.2). Before formulating it, let us note that the above remarks have
obvious analogues for systems of the form

D,(z(t)) = —h, () (1),  i=1,.nr+n (12.5)

with z(2), h; (t) e A[ [ t;, ..., t,]]. The compatibility of (12.5) is equivalent to
(12.4) with f; replaced by £, .
Now consider the system
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for an unknown g(t)e A[[t, ..., t,]]. We will show it has a solution,
provided that both (12.2) and (12.5) are compatible and some initial condi-
tions at =0 are satisfied. (The compatibility of (12.2) and (12.5) implies
the compatibility of (12.6).)

PropoSITION 12.1. In the above notation, let the operators D,e W,
satisfy (12.3) and

i 12.7
0, r+l1<ig<r+n. ( )

2,, 1<i<m,
D; |t=0 =
Assume that the systems (12.2) and (12.5) are compatible (cf. (12.4)), and
that

£i(0)=h;(0), r+1<i<r+n (12.8)

Then the system (12.6) has a unique solution g(t)e A[[t,, ..., t,]] for any
given initial condition g(0)e€ A which commutes with f;(0) (r+1<i<r+n).

Proof. For r=0, both sides of (12.6) are trivial. For r>1, we will
proceed by induction on 7.

First of all, note that the compatibility conditions and solvability of the
systems (12.2), (12.5), or (12.6) do not change when we apply an
automorphism of ¢,. The same is true when we make an elementary trans-
formation: multiply one equation by a function (an element of ¢,) and add
it to another equation. For example, we can replace all D; (i#r) by
D;— p; (1) D,, and correspondingly f; (¢) by f; (¢) — p; (¢) f,(¢) and h; () by
h; (t)— p; (t) h,(2), as long as we do not violate (12.7), (12.8).

Any vector field D, e W, satisfying D,|,_o=0, can be brought to 0,
after an automorphism of ¢,, so we will assume that D, =0, . Replacing D;
(i#r) by D;,— D, (t,) D,, we can assume in addition that D,(¢,)=0 for
iI#7.

Now it makes sense to put 7, =0 in the equations with i #r in (12.6). Let
us denote D,=D; |, _o, f; ()= fi(t1, s t,_1,0), by (D) =h; (11, 1,1, 0),
t=(ty, .., t,_1). Consider the reduced system

D, (g(0))=g(f) f; (F) —h; () g(), i=1,.,r=1Lr+1,.,r+n (129)

for an unknown g(f)e A[[t, .., t,_,]]. Note that, since D, (¢,)=9J,, we
have [ D;, D;](t,) =0 for any i, j, hence [ D;, D,;] does not contain D,. In
particular, putting #,=0 we see that the operators D, satisfy (12.3). The
other assumptions of the proposition are also easy to check, so by induc-

tion the system (12.9) has a solution g(7).
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The equation

0,8(t)=g(1) (1) —h,.(1) g(t) (12.10)
has a unique solution g(#) satisfying the initial condition
gtys s 1,1, 0) = g(1). (12.11)

We claim that this g(7) is then a solution of the system (12.6). Indeed, it
satisfies (12.6) for ¢, =0. Next, we compute for i#r (using (12.9), (12.10),
and the compatibility of (12.2), (12.5)):

=g(D,(f)+ [ S 1 =0
- (Dr(ht) _hi hr) g|t,:0_[ligfr_ﬁrgfi
=D.(gfi—hig)l, o

This shows that 0, (D;(g)—gf;+h;g)l, —o=0. We can apply the same
argument with [D,, D;] instead of D;, and so on, to show that all
derivatives with respect to ¢, vanish at ¢, =0. ||

Remark 12.1. Any solution g(¢) of the system (12.6), such that g(0) is
invertible in A4, is invertible in A[[¢,, .., ,]]. Its inverse g(¢)~! satisfies
(12.6) with f; replaced by —#;.

12.5. Reconstruction from a Current Lie Algebra

Let %' be a simple linearly compact Lie algebra, and let ¥ =0, ® &'
be a current algebra over #’. The filtration by subspaces ¥ ' =%"_; >
Lo > --- and the canonical filtration of ¢, give rise to the product filtra-
tion of #. Assume that D acts on . transitively by derivations. By
Proposition 6.4, we have Der £ =W, ® 1 + ¢, ® Der Z".

Denote by j the embedding d < Der ¥, and by p the projection
Der % — W,. The preimage ' :=(pj) ' (FoW,) is a Lie subalgebra of d
of codimension r. We have d' > F, W, @ | + ¢, ® Der #". The latter con-
tains Fo W, ® 1 + F,0, ® Der £’ as an ideal, hence we get a Lie algebra
homomorphism j': " — Der #’. It leads to a transitive action of ' on %',
because the action of d on % is transitive.
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LeEMMA 12.4. Any two transitive embeddings j: D = Der ¥, that induce
the same subalgebra ©' and the same j': d" — Der ¥’, are equivalent up to an
automorphism of Der £.

Proof. Let us choose a basis {0;} of d and write j(d,)=D,+ f;(t)
(i=1,..,N=r+n=dimbd) where D, e W, and f,(1)e(, ® Der &', t=
(t1,..,t,). Note that D,=(pj)(0;) and pj:d—-> W, is a Lie algebra
homomorphism. We can choose the basis {0,} in such a way that
D;li_o=0, for 1<i<r, and D;|,_¢=0 for r+1<i<r+n Then
{0} ir+1...r4n is a basis of d. Moreover, note that j':d — Der &’ is
given by j'(0;) = f; (0).

Let 7 be another transitive embedding of d into Der .. Since, by
Proposition 6.2, the homomorphism pj is uniquely determined by the
choice of D', we can assume that (pj)(0;)=D,. Then j(0,)=D;+ h; (¢t) for
some A, (1) e, ® Der &'. By assumption, j’ = j', hence f;(0)=h, (0) for
r+1<i<r+n.

Now we want to find an automorphism g(7)e ¢, ® Aut ¥’ such that
g(0)=1id and g(¢)o(D;+ f; (t)) = (D;+ h; (1)) og(t). This equation is equiv-
alent to (12.6), and it is easy to see that all conditions of Proposition 12.1
are satisfied: for example, the system (12.2) is compatible because j is a
homomorphism. This completes the proof. ||

Now given the embedding ;':d'— Der ¥’ we can consider the
reconstruction L' :=% (") which is a Lie H'-pseudoalgebra, where H' =
U(d'"). Given L' we can take the current H-pseudoalgebra L :=Cur L' =
H®y L'. Since its annihilation Lie algebra .o/(L) is isomorphic to &, we
get an embedding j: D < Der .Z. It induces the same embedding ;' as our
initial j, so by the previous lemma j and j are equivalent. But then the
reconstruction ¢ (.¢) of £ provided with j is isomorphic to the reconstruc-
tion of & provided with j, which is L. This can be summarized as follows.

LeEMMA 12.5. The reconstruction €(<%) of a current Lie algebra
L =0, ® & over a simple linearly compact Lie algebra &', provided with
a transitive action of a Lie algebra d, is a current Lie H-pseudoalgebra over
the H'-pseudoalgebra € (L"), where H' = U(d") and V' is a Lie subalgebra of
D of codimension r.

12.6. Reconstruction from Sy

Now consider S, with a transitive action of d on it. Since Der Sy =
CSy < Wy, we have D < W,. After an automorphism of W,, we can
assume D < W, is the canonical embedding, while S, becomes
Wy(w) (=Sy(w)) where weQY is a volume form. We can write
w=y®yzv with yeX and ve AV d*. Then, by Lemma 122, the
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reconstruction of Wy(w) is W(d, v, I) where I={heH|yh=0} is as
before.

The action of W(Dd) on v is given by (8.8). In the notation of Section 8.4,
we have for ae W(D)

axv=—(divT** () @1+ a) @gv.

This shows that ae W(b, v, I) iff divF* () ® 1 +aec HQ I

Note that, since w#0, we have Ink=0. The intersection 7 (d+ k)
is a Lie algebra. The projection z: (d+k) — d is a Lie algebra homomor-
phism, which maps I (d+ k) isomorphically onto a subalgebra d' of d.
The inverse isomorphism d" — I~ (d + k) is given by a+> a + y(a) for some
linear functional y: " — k which vanishes on [d’, d’']. Conversely, any such
x gives rise to an isomorphism as above.

For fe H® (d + k), the equation e H® I is equivalent to the following
two conditions: (iId®7z)(f)e H®D and (Id® 7z +id® y7)(f)=p. Apply-
ing this for f=div"*(a)®1+a, we get (d@n)(f)=axecHRD and
(Id®n+1d® y7)(f) =+ (id ® y)(a) = . The latter equation is equivalent
to (Id ® y)(a) =divF*(a) ® 1, ie. to diviF2~%(a) =0. We have proved

LemMMmA 12.6.  The reconstruction of the Lie algebra Sy, provided with a
transitive action of a Lie algebra d, is a current Lie H-pseudoalgebra over
S, x') where ©' is a Lie subalgebra of d and y' is a linear functional ® — k
which vanishes on [d',d'].

In fact, one can show that in this case D' =D, i.e., dim I/ n (d + k) = N, but
the above statement is sufficient for our purposes.

12.7. Reconstruction from Ky and H y

Now let Z be one of the Lie algebras K, or P, together with a trans-
itive action of d on it. We know from Section 6 that as a topological vector
space ¢ is homeomorphic to X. Since, by Proposition 6.2, all transitive
actions of D on X are equivalent, ¥ is isomorphic to the “canonical”
H-module X, i.e., we may assume that the embedding d = W, = Der X is
the canonical one (Section 12.1). Then, by Proposition 11.2, the reconstruc-
tion of & is isomorphic to H as an H-module. In other words, ¢ (%) is a
free H-module of rank one.

LemMA 12.7. The reconstruction of the Lie algebras K, and Hy,
provided with a transitive action of a Lie algebra 0, is a free H-module of
rank one.

Proof. 1Tt is enough to show that the reconstruction functor ¢ gives the
same result on the topological H-modules X = P, and X/k = Hy. In order
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to do so, we must show that every H-linear continuous homomorphism of
X to X/k can be obtained from a unique H-linear continuous homo-
morphism of X to itself by composing with the canonical projection

Since X/k is linearly compact, by Remark 6.1 there is a bijection between
Hom$™ (X, X/k) and Hom ;((X/k)*, H). The space (X/k)* is nothing but
the augmentation ideal H , =ker ¢ = H. Therefore we are reduced to show
that every H-linear map ¢: H, — H is a restriction of a unique H-linear
map H— H.

An H-linear ¢: H, — H is determined by itsvalueondc H,.Ifa, beb,
then ab—ba=/[a, b], hence ap(b) b(/’)( =¢([a, b]). Let d be the maxi-
mal degree of ¢(a) for aed. Then ad(b)=b¢(a) modulo F?H. This means
that there exists some aeF?~!'H such that for every aed, ¢(a)=ax
modulo F?~!'H. Then the difference between ¢ and right multiplication by
o« is still H-linear, and its maximal degree on elements from D is strictly less
than d. The proof now follows by induction. |

All Lie pseudoalgebras that are free H-modules of rank one are classified
in Theorem 8.1: they are isomorphic to current pseudoalgebras over
K(',0') or H(Y, ', @").

13. STRUCTURE THEORY OF LIE PSEUDOALGEBRAS

13.1. Structural Correspondence between a Lie Pseudoalgebra and Its
Annihilation Algebra

Recall that a Lie H-pseudoalgebra L is called finite if it is finitely
generated as an H-module. If H is Noetherian (e.g., H= U(d) for a finite-
dimensional Lie algebra d) and L is finite, then L is a Noetherian
H-module, i.e., every increasing sequence of H-submodules of L stabilizes.

For any two subspaces A and B of L, let

[A, B] =span, {[a.b] |ae A, be B, xe X}. (13.1)

Define the derived series of L by LO=L, LW=[L L], L"*V=
[L™, L™]. A Lie pseudoalgebra L is called solvable if L™ =0 for some n.
Similarly, define the central series of L by L°=L, L'=[L,L], L""!'=
[L", L]. The Lie pseudoalgebra L is called nilpotent if L" =0 for some n.
As usual, L is called abelian if [L, L]1=0, ie., if [axb] =0 for all a, be L.

A Lie pseudoalgebra L is called simple if it contains no nontrivial ideals
and is not abelian. Note that [ L, L] is an ideal of L, so in particular,
[L,L]=L if L is simple. L is called semisimple if it contains no nonzero
abelian ideals.
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We define the radical of L, Rad L, to be its maximal solvable ideal.
When H is Noetherian and L is finite, Rad L exists because of the
Noetherianity of L and part (ii) of the next lemma.

Lemma 13.1. (i) If S is a solvable ideal in L and L/S is solvable, then
L is solvable.

(i) If Sy, S, are solvable ideals in L, then their sum S+ S, is a
solvable ideal.

(i1) L/Rad L is semisimple. L is semisimple iff Rad L=0.
Proof. (i) is standard.

(i) follows from (i) and the fact that (S, +S,)/S; ~S,/(S; N S,).

(1) If L/Rad L has an abelian ideal 7, then the preimage of 7 under
the natural projection L — L/Rad L must be solvable and strictly bigger
than Rad L, which is a contradiction. ||

It is easy to see, using (9.23), (9.24), that for any two subspaces 4, Bc L,
we have

[X®HAaX®HB]:X®H[A’ B] (13-2)

as subspaces of .&/(L)=X®y L. In particular, if 7/ is an ideal of L, then
X®p I is an ideal of o/(L). We will call an ideal of .&/(L) regular if it is
of the form X ® I for some ideal I of L.

Lemma 13.2. Let L be a Lie H-pseudoalgebra and I< L be an ideal.
Then

(1) X®gxI=0 only if I is central.
() X®pI=</(L)only if [L,L]cL

Proof. (i) has already been proved, when L is finite, in Corollary 11.1
and Remark 11.2. In the general case, it can be deduced from Proposition
9.1. Let ae [, then a, = x®p a =0 for any x € X. Hence the action of a, on
L is trivial, and by (9.22), [a+«b] =0 for any be L.

In order to prove (ii), notice that X®y L/I=0. Then build a Lie
H-pseudoalgebra structure on L =L@ L/I by letting L act on the abelian
ideal L/I via the adjoint action. Then by part (i), L/ is central in L, hence
L acts trivially on L/I. This means [L, L]< 1. |

Using this lemma and (13.2), it is easy to prove the next two results.
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ProposITION 13.1. A Lie pseudoalgebra L is solvable (respectively nilpo-
tent) if and only if its annihilation Lie algebra </ (L) is.

ProrosiTION 13.2.  Let L be a centerless Lie H-pseudoalgebra which is
equal to its derived subalgebra [ L, L]. Then L is simple if either of the
following conditions holds

(1) /(L) has no nontrivial H-invariant ideals.

(i) L is finite or free, and </ (L) has no non-central H-invariant ideals.

Proof. (i) is immediate from Lemma 13.2.

Assume that (ii) holds but L is not simple. Then .«/(L) has a nontrivial
central regular ideal. If a,, = x ®y a is central in .«/(L) for every x € X, then
by (9.24), [a,b],=0 for every be L, x, ye X. When L is either finite or
free, /,=0 for all ye X if and only if /=0 (cf. Corollary 11.1). Therefore
[a,b]=0 for all beL, xe X, and by (9.22) we get [axb]=0 for any
be L. Hence a=0. |

As an immediate consequence we obtain

CorOLLARY 13.1. Let L be a current Lie H-pseudoalgebra over a
finite-dimensional simple Lie algebra or over one of the primitive pseudo-
algebras of vector fields. Then L is simple.

Proof. Tt is easy to check that L satisfies the assumptions of Proposi-
tion 13.2 (see Theorem 8.2). |

The following proposition will play an important role in the classifica-
tion of finite simple Lie pseudoalgebras.

ProrosiTiON 13.3.  For any Lie H-pseudoalgebra L, any non-central
H-invariant ideal J of /(L) contains a nonzero regular ideal.

Proof. Let aeJ be non-central. Assume that X ®, o-/=0 for all /e L.
Note that by Proposition 9.1, we have h(a-/)= (hyyx) - (hoy!) for he H.
This implies (ho)- /= hg)(a- (h(_5!)), which gives X® (ha)-[=0 for any
he H, [e L. Then we can use (9.30) to show that a is central in .o/(L),
which is a contradiction.

Therefore, there is some /e L such that «-/=a has a nonzero Fourier
coefficient, ie, X®pga#0. Since a,=(o-1),=3;[h;o 1, ], and J is
H-stable, we see that all Fourier coefficients of a lie in J. Then, due to
(9.24), all elements in the ideal (a) of L generated by a have all of their
Fourier coefficients in J, ie., 0 £ X®y(a)=J. |
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3.2. Annihilation Algebras of Finite Simple Lie U(D)-Pseudoalgebras

We will now approach the problem of classification of all finite simple
Lie H-pseudoalgebras. In view of Kostant’s Theorem 2.1 and the results of
Section 5, we will first restrict ourselves to the case when H is the universal
enveloping algebra of a Lie algebra d. Moreover, we will assume that D is
finite dimensional; in this case H= U(Dd) is filtered by finite-dimensional
subspaces. The classification is done in two steps: the first one (done in this
subsection) is classifying all Lie algebras that can arise as .o/(L) for some
finite simple Lie H-pseudoalgebra L, the second step (done in the next sub-
section) involves a reconstruction of L from its annihilation Lie algebra
/(L) and the action of H on it.

THeoreM 13.1.  If L is a finite simple Lie H= U(D)-pseudoalgebra, then
its annihilation Lie algebra </ (L) is isomorphic (as a topological Lie
algebra) to an irreducible central extension of a current Lie algebra O, ® s
where s is a simple linearly compact Lie algebra of growth gw s=dim d—r
(see Remark 7.3 for the definition of gw s).

Proof. First of all, we observe that ¥ = .o/(L) is a linearly compact Lie
algebra with respect to the topology defined in Section 7.4, see Proposition
7.4(i1). Consider the extended annihilation algebra ¥° =" x ¥, obtained by
letting d act on ¥ =.o/(L) according to its H= U(d)-module structure.

LemMma 133, #°=bdx L is a linearly compact Lie algebra possessing a
fundamental subalgebra, i.e., an open subalgebra containing no ideals of £°.

Proof. Indeed, if L, is a finite-dimensional subspace of L generating it
over H, then because of (7.14), 4 =F, X®y L, is a subalgebra of ¥ for
i=s. None of %, contains ideals of dx &, since every such ideal is stable
under the action of H and H - F; X=X, which implies H- ¥4,=2%. |

The center Z of ¥ is an H-stable closed ideal. The quotient
FelZ=dx(¥/Z) is a linearly compact Lie algebra possessing a
fundamental subalgebra %,/(Z n.%,). Theorem 13.1 will be deduced from
Proposition 6.3 applied for £°:= ¥°/Z.

By Proposition 13.3, any nonzero H-stable ideal of . := #/Z contains
the image of a nonzero regular ideal of .. Since L is simple, this means
that the only nonzero H-stable ideal of .Z is the whole Z. Then every non-
zero ideal of £ contained in .Z must equal Z. Hence £ is a minimal
closed ideal of a linearly compact Lie algebra satisfying the assumptions of
Proposition 6.3(i), and is therefore of the form stated in part (ii) of this
proposition.

Therefore, .# is a central extension of a current Lie algebra over a simple
linearly compact Lie algebra. Moreover, ¥ equals its derived subalgebra
due to (13.2). Hence it is an irreducible central extension.
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Consider the canonical filtration F, (0, ® s):=3,F,_, 0. ® F,s, where
F; s is the canonical filtration of s defined in Section 6 (if dim s < co we put
F,s=0 for i>0). Then the growth of ¢, ® s (with respect to this filtra-
tion) equals gw O, + gw s =r+gw s. It is clear from Proposition 6.4 that
any irreducible central extension of ¢, ® s has the same growth. On the
other hand, with respect to the filtration defined by (7.11), the growth of
Z is equal to N=dim d (see Proposition 7.5). We have to show that the
two different filtrations give the same growth.

Recall that by Lemma 7.3, a sufficiently high power of any nonzero ele-
ment ¢ € D maps any given open subspace of % surjectively onto .#. Then
the same argument as in the proof of Lemma 12.1 shows that d = Der ¥
intersects Fo(Der £) trivially, where F,(Der .£) is induced by the canoni-
cal filtration on (), ® s. This implies N <r + gw s.

To show the inverse inequality, note that since Fy(¢, ® s) is open in
P=FL|Z~0, ®s, it contains some Z, :=L,/(ZnZ,). We have
[Z,d] < _, due to (7.13), and hence

P =lac P\ [a, P = P, (13.3)
due to (6.1). Now (7.13) and (7.14) imply [ Z;, #¢] <= %, ,_,, which

together with (13.3) leads to §m+n(s+1)CFn(@, ® s) for all n>0. This
implies N =r + gw s.

This completes the proof of Theorem 13.1. |

In fact, the above arguments can be used to prove a stronger statement
than Theorem 13.1.

COROLLARY 13.2. Let L be a finite Lie H-pseudoalgebra and M be a
minimal nonabelian ideal of L. Then the annihilation algebra of M is one of
the Lie algebras described in Theorem 13.1.

Proof. The only place in the proof of Theorem 13.1 where we used the
simplicity of L was where we deduced that any nonzero regular ideal of
/(L) must equal the whole .«/(L). This argument is modified as follows.
Let J= X®j I be a nonabelian regular ideal of .«/(L) contained in .oZ(M).
Then the minimality of M implies that /= M and J= .o/(M). The proof is
concluded again by applying Proposition 6.3. ||

13.3. Classification of Finite Simple Lie U(Dd)-Pseudoalgebras

We will call a pseudoalgebra of vector fields any subalgebra of the Lie
pseudoalgebra W(Dd). As in Section 8, a pseudoalgebra of vector fields is
called primitive if it is one of the following: W(d), S(d, y), H(Dd, y, w) or
K(d, 0) (then its annihilation algebra .o7(L) is isomorphic to one of the Lie
algebras Wy, Sy, Py, or Ky).

The following is the main theorem of this section.
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THEOREM 13.2. Let H= U(d) be the universal enveloping algebra of a
finite-dimensional Lie algebra d. Then any finite simple Lie H-pseudoalgebra
L is isomorphic to a current pseudoalgebra over a finite-dimensional simple
Lie algebra or over one of the primitive pseudoalgebras of vector fields.

Explicitly, L ~Cur%, L', where H' = U(Y'), ©' is a subalgebra of d, and
L’ is one of the following

(a) L' is a finite-dimensional simple Lie algebra and d' = 0;
(b) L'=W(D'), D is arbitrary;
(c) L' =S, y"), where d" is arbitrary and y' € (d')* is such that
7 ([d,0'])=0;
) L'=H®,y, o), where N'=dim D’ is even, y' is as in (c), and

(
' e N? (0')* is such that (0" )N'"?#0 and dow' + 7' A @' =0;
(e) L' =K(D',0), where N'=dim D' is odd and 0' € (d")* is such that
A (dO )N =122,

Proof. By Theorem 13.1, the annihilation algebra & of L is an
irreducible central extension of a current Lie algebra Z = (), ® §, where §
is a simple linearly compact Lie algebra of growth N'=N—r. We have
surjective maps

0,Qs>L -0 Q5, (13.3)

where s is the universal central extension of 5. By Theorem 6.1, § is either
finite dimensional (when N'=0) or one of the Lie algebras Wy., Sy, Hy
or K,.. By Proposition 6.4, we have s =5 in all cases, except 5= Hy. in
which case the center of s = P, is 1-dimensional.

Note that Ders=Ders, and therefore, by Proposition 6.4, we
have Der(0, ® ) = Der(0, ® §). This implies Der (0, ® s)=Der ¥ =
Der(0, ® §). Then the action of d on % induces actions on ¢, ® s and
0, ® 5. The argument from the proof of Lemma 12.1 shows that these
actions are transitive.

Now, let us apply the reconstruction functor € to the maps in (13.3). B
Theorem 12.1, 4(0, ® s) ~ Curf, 4 (s), and S:=%(s) is one of the Lie
pseudoalgebras described in (a)-(e) above. Moreover, by Lemma 12.7, we
have %(5)~%(s)=S, and hence %(0, ® §)~ Cur#, S. We therefore
obtain H-linear maps CurZ S— L — Curl, S whose composition is the
identity. Hence L:=%(2)is isomorphic to Cur#, S, which is a simple Lie
pseudoalgebra (Corollary 13.1).

The homomorphism &: L — L given by (11.6) is injective because L is
centerless (Remark 11.2). The action of L on L built in Section 11.4 shows
that the image of @ is an ideal of L. Since L is simple, it follows that @ is
an isomorphism. |



98 BAKALOV, D’ANDREA, AND KAC
Corollary 13.2 and the above proof imply the following result.

COROLLARY 13.3. Let L be a finite Lie pseudoalgebra and M be a mini-
mal nonabelian ideal of L. Then M is a simple Lie pseudoalgebra.

LemMA 134. If L is a centerless Lie pseudoalgebra, then any nonzero
finite ideal of L contains a nonzero minimal ideal.

Proof. By Zorn’s Lemma, it is enough to show that () 7, #0 for any
collection of finite ideals {1}, of L such that I, = I, for a <f, where A
is a totally ordered index set. Assume that () /,=0. Then there is a chain
of ideals {1,} .. (A" = A) of the same rank whose intersection is zero. Fix
some ay € A". Then for any fe A’, f<ay, the module I, /I, is torsion, so
by Corollary 10.1, L acts trivially on it. This implies [ L, I, ] = I for each
such f, hence I, is central. |

13.4. Derivations of Finite Simple Lie U(d)-Pseudoalgebras

We will determine all derivations of a finite simple Lie H = U(d)-
pseudoalgebra L (see Definition 10.2).

First let us consider the case when L=Curg:=H®g is a current
pseudoalgebra over a finite-dimensional Lie algebra g. The Lie pseudo-
algebra (D) acts on L by just acting on the first factor in H® g (cf. (8.4)):

(f®a)«(g®b)=—(/®ga)®u(1®b), f geH, aed beg. (134)

We also have an embedding Cur Der g = Der L. The image of Cur Der g in
Der L is normalized by that of W(d), and the two form a semidirect sum
W(d) x Cur Der g which as an H-module is isomorphic to H® (d @ Der g).

ProrposiTiON 13.4.  For any simple finite-dimensional Lie algebra g, we
have Der Cur g = W(d) x Cur g.

Proof. By Lemma 10.2(iii), the annihilation algebra .oZ(Der Cur g) =
Der o/(Cur g) = Der(X®g). By Proposition 6.4(ii), the latter is iso-
morphic to Wy®1+0y®g, since X~ (@y. Then %.o/(Der Curg)c
% (Der(X®g))= W(d)+ Cur g (see Theorem 12.1). Now by Lemma 11.5,
Der Cur g = %.o/(Der Cur g) = W(d)+ Curg. ||

A similar argument as in the proof of the proposition shows that
Der L=L when L is one of the primitive pseudoalgebras of vector fields
W(®), S(d, x), H(d, y, w) or K(d, §). In fact, the same holds when L is a
current pseudoalgebra over one of them.

ProrosITION 13.5. Let L be a simple pseudoalgebra of vector fields (i.e.,
L is a current pseudoalgebra over one of the primitive ones). Then Der L = L.
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Proof. Let L be a current pseudoalgebra over L', and L'< W(d") be
one of the primitive pseudoalgebras of vector fields, where d’ is a Lie sub-
algebra of d. Then, by Theorem 8.2, the annihilation algebra .¥ = .o/(L) is
a current Lie algebra over ' =o/(L'): =0, ® &', and ¥’ is iso-
morphic to Wy, Sy, Pyr, or Ky, where N'=dim d' =N —r, N=dim d.

As in the proof of Proposition 13.4, we have Der L « ¢.o/(Der L) =
% (Der %). By Proposition 6.4, we have Der =W, ® | + (, ® Der ¢,
and Der &' = Wy., CSy., CHy., or Ky is a Lie subalgebra of Wy.. In
particular, we see that Der ¥ < Wy, and hence % (Der %) is a subalgebra
of W(d).

So, we have: Der Lc W(d), L=Cur L' cCur W(d')~H®Dd' < W(b).
Take any two nonzero elements ae W(d), be H®D'. Then we claim that
[a+b]le H®D implies ae H®D'. This follows easily from the definition
(8.3), using that d’ is a subalgebra of d (see the proof of Proposition 13.6
below for a similar argument).

Therefore Der L = Cur W(d'). For aeCur W(d'), we can write
a=> h; @y a; for some a;, e W(d') and h; € H such that the classes ; H'
are linearly independent in H/H'. Then if a € Der L, it is easy to see that
all @; must belong to Der L'. Hence Der L =Cur Der L'. But Der L' =
€ (Der ' )=L',soDer L=CurL'=L. |

13.5. Finite Semisimple Lie U(d)-Pseudoalgebras

Recall that a Lie H-pseudoalgebra L is called semisimple if it contains no
nonzero abelian ideals. Let H = U(D), for a finite-dimensional Lie algebra .

If g is a simple finite-dimensional Lie algebra, then by Proposition 13.4,
we have Der Cur g = W(d) x Cur g. It is easy to see that for any subalgebra
A of the Lie pseudoalgebra W(d), the Lie pseudoalgebra A x Cur g is semi-
simple. Indeed, assume that /cAx Curg is an abelian ideal. Then
InCurg is an abelian ideal in Cur g, hence I Cur g=0. But this is
impossible unless /=0 because the pseudobracket of any element from
(W(D) + Cur g)\Cur g with elements from Cur g gives nonzero elements
from Cur g (see (13.4)). Note that this argument implies that any nonzero
ideal of A x Cur g contains Cur g.

Now we can classify all finite semisimple Lie U(d)-pseudoalgebras.

THEOREM 13.3. Any finite semisimple Lie U(D)-pseudoalgebra L is a
direct sum of finite simple Lie pseudoalgebras (described by Theorem 13.2)
and of pseudoalgebras of the form Awx Cur g, where A is a subalgebra of
W(d) and g is a simple finite-dimensional Lie algebra.

Proof. Consider the set {M;} of all minimal nonzero ideals of L. This
set is nonempty by Lemma 13.4, and finite because L is a Noetherian
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H-module. The adjoint action of L on M, gives a homomorphism of Lie
pseudoalgebras L — Der M, cf. Lemma 10.2(ii).

We claim that the direct sum of these homomorphisms is an injective
map. Indeed, let N = L be the set of all elements that act trivially on all M, .
This set is an ideal of L. If it is nonzero it must contain some minimal ideal
M ;. But then this M, is abelian, which contradicts the semisimplicity of L.

Therefore we have embeddings @ M, =« L= @ Der M,. By Corollary
13.3 all M, are simple Lie pseudoalgebras. If M, is not a current
pseudoalgebra over a finite-dimensional Lie algebra, then by Proposition
13.5, Der M;=M;. For M,=Curg, we have Der Cur g= W(d)x Cur
Der g. Any subalgebra of W(d)x Cur g containing Cur g is of the form
Ax Cur g, where 4 is a subalgebra of W(d). |

Recall that a pseudoalgebra of vector fields is any subalgebra of the Lie
pseudoalgebra W(d).

PrOPOSITION 13.6. For any two nonzero elements a, be W(d), we have
[a+b]#0. In particular, W(D) does not contain nonzero abelian elements,
ie., elements a such that [a*a]=0.

Proof. Let us write
azzh[®ai’ b:Zk/'@aj’
i J

where /;, k; € H and {0,} is a basis of . Denote by m (respectively n) the

iy

maximal degree of the /; (respectively k;). We have (cf. (8.3))

[axb] :2 (hi®kj)®ﬂ(1®[aiaaj])

i J

Z (h; ®k;0)®,(1®0)+) (h,0,®k;) ®y(1®0)).
i, J

Assume that [a = b]=0. Notice that only the third summand contains
coefficients from H® H of degree (m + 1, n), hence it must be zero modulo
F"H® F"H. Since the 0, are linearly independent, the same is true for each
term 3, h;0; ® k; . If we choose i such that /; is of degree exactly m, we get
a contradiction. ||

COROLLARY 13.4. A finite Lie U(d)-pseudoalgebra L contains no non-
zero abelian elements iff it is a direct sum of pseudoalgebras of vector fields.

Proof. Assume that L is not a direct sum of pseudoalgebras of vector
fields. If L is not semisimple, then Rad L contains nonzero abelian
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elements. If L is semisimple, Theorem 13.3 implies that L contains a sub-
algebra of the form A x Cur g with g#0, and therefore contains nonzero
abelian elements (for example, 1 ® a for any a € g).

The converse statement follows from Proposition 13.6. |

THEOREM 13.4. Any pseudoalgebra of vector fields is simple.

Proof. By Proposition 13.6, a pseudoalgebra L of vector fields does not
contain nonzero abelian elements, and hence is semisimple. Then, by
Theorem 13.3, L is a direct sum of finite simple Lie pseudoalgebras and of
pseudoalgebras of the form 4 x Cur g. In fact, there is only one summand,
as [a*b]#0 for any two nonzero elements «, b € W(d). Furthermore, L
cannot be of the form A x Cur g with g#0, because Cur g contains non-
zero abelian elements. ||

COROLLARY 13.5. Any finite semisimple Lie U(D)-pseudoalgebra L is a
direct sum of pseudoalgebras of the form Ax Cur g, where A is either 0 or
one of the simple pseudoalgebras of vector fields (described by Theorem
13.2), and g is either 0 or a simple finite-dimensional Lie algebra.

We can also describe all ideals of a finite semisimple Lie pseudoalgebra
L. By the above corollary, it is enough to consider the case L =A x Cur g
with 4 #0, g #0.

ProrosiTiON 13.7. Let L=AxCurg where A is a pseudoalgebra of
vector fields and g is a simple finite-dimensional Lie algebra. Then the only
nonzero proper ideal of L is Cur g.

Proof. We have already noticed (see the paragraph before Theorem
13.3) that any nonzero ideal I of L contains Cur g. Then //Cur g is an ideal
of L/Cur g ~ A, but 4 is simple by Theorem 13.4. |

13.6. Homomorphisms between Finite Simple Lie U(d)-Pseudoalgebras

In this subsection, H= U(D) is again the universal enveloping algebra of
a finite-dimensional Lie algebra D.

THEOREM 13.5. For any finite-dimensional Lie algebra g and any
pseudoalgebra of vector fields L, there are no nontrivial homomorphisms
between L and Cur g.

Proof.  Any homomorphism Cur g — L leads to abelian elements in L,
and therefore is zero (see Proposition 13.6).

Let f be a homomorphism from L to Curg. Then f induces a homo-
morphism of Lie algebras .&7(f): .o/(L)— o/(Cur g). By Theorem 134,
L is simple, so L= Cur%, L' where L’ is a primitive H'-pseudoalgebra of
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vector fields (H'=U(d') and d’ is a subalgebra of d). By Theorem 8.2,
the annihilation algebra ¥ = .o/(L) is isomorphic to a current Lie algebra
0, ® & over &' =.o/(L'). Moreover, the quotient of %' by its center is
infinite dimensional and simple. On the other hand, the annihilation
algebra o/(Cur g) ~ X® g is a current Lie algebra over g, which is a pro-
jective limit of finite-dimensional Lie algebras (X/F,X)® g. Hence the
adjoint action of ' =1® %’ on % maps trivially to each of them via
/(f). But since [ ¥, ] =2, this implies that each ¥ —» (X/F,X)®g is
trivial. Therefore .«/( f) =0, and by Corollary 11.2, we get f=0. ||

THEOREM 13.6. Let g and Yy be finite-dimensional simple Lie algebras.
Then any isomorphism f. Cur g =~ Curl) maps 1® g onto 1 ®W, and thus
is induced by some isomorphism of Lie algebras g > V. In particular,
Aut Cur g ~ Aut g.

Recall that .«/(Cur g) ~ X® g is a current Lie algebra. In the proof of the
theorem we are going to use the following lemma.

LeEMMA 13.5. Let g be a finite-dimensional simple Lie algebra, and R be
a commutative associative algebra. Then all ideals of R® g are of the form
1® g where I is an ideal of R.

Proof. As a g-module, R® g is isomorphic to a direct sum of several
copies of g. Any ideal J of R® g is in particular a g-module, hence it is
spanned over k by elements of the form r ® @ € J where r € R and « is a root
vector in g. If »#0 is such that r®aeJ for some nonzero a€g, then
r@®gcJ, since {aeg|r®aeJ} is an ideal of g and g is simple. Setting
I={reR|r®gcJ}, we see that / is an ideal of R and J=I®g. |

Proof of Theorem 13.6. Define a map p: .oZ(Cur b)) - I) by the formula
pP(x®p(1®a))=<{x,1)a, xeX aeh. (13.5)
Then for a=3; h; ®a; e Curh=H®, we have

p(x®p a) z<s b a; . (13.6)

It is easy to see that p is a surjective Lie algebra homomorphism.

Any isomorphism f: Curg = Curl induces an isomorphism of Lie
algebras ¢ =.o/(f): o/(Cur g) = o/(Curly). By Lemma 13.5, ker pp=1® g
for some proper ideal I of X. Recall that X is isomorphic as a topological
algebra to Oy=Kk[[#,, .., txy]] (N=dim D), and O, has a unique maximal
ideal M,=(ty, .., ty). Noting that M, corresponds to FoX:={xeX|
{x, 1) =0} via the isomorphism X ~ (), we deduce that Ic Fo X. If I#F X,
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then (FyX/I)® g is a nontrivial ideal of (X/I) ® g ~b, which is impossible
because 1) is simple. It follows that ker pp =F, X ® g.

Now fix aeg and write f(a)=>;h; ®a; for some h; € H and linearly
independent a; €l). Assume that, say, /&, ¢k=F°H. Then we can find
xeFyX such that {S(x), n;> #0. Then, by (13.6), the clement x®ae
Fo X ® g is mapped by pe to >, {S(x), ;> ®a,; #0, which is a contradic-
tion. This shows that f(a) e 1 ® ), completing the proof. ||

We turn now to the description of subalgebras of (D). Recall that the
Lie pseudoalgebra W(d) acts on H= U(d) by (8.4). Hence any homo-
morphism of Lie pseudoalgebras L — W(D) gives rise to a structure of an
L-module on H.

Let us first consider the case when L is a free H-module of rank one:
L = He with a pseudobracket [e*e]=aQye, aec HRQ H. Let M = Hm be
an L-module, with action exm=®yzm, fc HQ H. We already know
(Lemma 4.1) that « must be of the form a=r+s®1—1®s where
red A D, sed. Moreover r and s satisfy Egs. (4.3) and (4.4). Furthermore,
p defines a representation of L if and only if it satisfies the following
equation in H® H® H (cf. Proposition 4.1)

(1®A)(Id @A) () — (e @id)(1® F)(1d® 4)(B)) = (0 ® 1) (4 ®1d)(S).
(13.7)

ProrosiTioN 13.8. If L=He is a Lie pseudoalgebra with [exe]=
o®pye, a=r+s®@1—1Qs, then the only nonzero homomorphism
L — W(b) is given by e+—> —r+1®s.

Proof. The statement of the proposition is equivalent to saying that all
solutions f of (13.7) with fe H®D are either trivial or of the form
f=r—1®s. It is easy to check that the latter is indeed a solution (cf.
Lemma 8.3).

Let us choose a basis {0,} of d, and write f=3 h'®0, and r=3, ; r’0,
®0, for some h'e H, r’ek. We will assume throughout the proof that
B #0, and denote by d the maximal degree of the /4’. Substituting the above
expressions for « and f in (13.7), we get

Y HWRN®I[O,, ]]+Z (W@nh'o,—h'o,®h)R®0,
i, j

=> 1%y, hm®5 h(2)®5k+2 sh(1)®h(2) (1)®sh(2))®6k

i, j, k

If d> 1, expressing all 4* in the Poincaré-Birkhoff-Witt basis relative to
the basis {0,}, we see that H ® H-coefficients of degree 2d + 1 in the second
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summation in the left-hand side cannot cancel with terms from other sum-
mations, which only contribute lower degree terms. Therefore

Y (W®ho,—h'd, ®h/)®0,=0  mod F*(HRQ H)®Dd.

i j

This implies that ¥, /@ h'0,=3, h'0, @ h’ mod F>**(H® H) for every i,
which gives a contradiction, since we can choose /' to have degree exactly
d. So d<1, and we can write f=3, ; 70, ®0,+ 1 ® with 7€k, teb.

Substituting this into (13.7) and comparing degree four terms we get
BIB¥ = yUBp* for all i, j, k, . Since B #0 we conclude that g% =¥ for all i, j.
We are only left with showing that ¢ = —s. Substitute «=r+s, — s, and
f=r+t, into (13.7), and then use (4.4) to obtain

Fia(83+83) + (15, ri3—Tros] + 13l — T3l — 8173+ 8273

=13(t; — 1, + 5, —55) (13.8)

Notice that r,,(s3+ #3) is the only term lying in D® d® d and everything
else belongs to HO HRk+ HRk® H+k® H® H. Hence rq,(s53+13)
=0, which is only possible if r=0 or s+ ¢=0. In the latter case we are
done. In the former, the left-hand side of (13.8) becomes zero, and ¢+ 0
since f#0. Thus t; +s;—t,—s,=0and t+s=0. |

Proposition 13.8 shows that nonabelian Lie pseudoalgebras that are free
of rank one over H embed uniquely in W(d). We will show that the other
simple pseudoalgebras of vector fields are spanned as Lie pseudoalgebras
by subalgebras of rank one, and therefore also embed uniquely in W(Dd).
Recall that any pseudoalgebra of vector fields is in fact simple (Theorem
13.4).

THEOREM 13.7. (i) For any subalgebra L of W(D), there is a unique
nonzero homomorphism L — W(D).

(1) There is at most one nonzero homomorphism between any two
pseudoalgebras of vector fields.

Proof. Part (ii) is an immediate consequence of (i) and Theorem 13.4.

By the above remarks, it remains to prove (i) in the cases when L is a
current pseudoalgebra over either W(d') or S(d’, '), where D' is a sub-
algebra of .

In the former case (L=Cur W(d'):=HQ®y (H ®Y'), H =UD")),
note that L is spanned over H= U(d) by clements d=1&y (1&®a) for
aed. Then [dxd]=(a®1—1®a)®yd, and by Proposition 13.8 we
know that the only nonzero homomorphism of the Lie H-pseudoalgebra
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Hd to W(d) maps d to 1 ® a. Hence any embedding of L in W(d) maps
each a to the corresponding element 1 ® a of W(b).

Now let L be a current pseudoalgebra over S(d', y'). We will give the
proof in the case when L =S(D, y), the case of currents being completely
analogous. We are going to make use of the following lemma.

LEmMmA 13.6. If D is a finite-dimensional Lie algebra of dimension N > 1,
then there exist 2-dimensional subalgebras d; (i=1,..,N—1) such that
dimY._, d,=r+1 for every r=1, .., N—1.

Proof. 1f D has a semisimple element /2, we complement it to a basis of
ad h eigenvectors {h, hy, .., hy_,}. The subalgebras d,=kh-+kh; then
satisfy the statement of the lemma.

If b has no semisimple elements, then from Levi’s theorem we know that
D must be solvable. In this case it has a 1-dimensional ideal ki. Com-
plementing % to a basis {A, i, .., hy_,}, we conclude as before. ||

Now consider a 2-dimensional subalgebra of d with basis {a, b}. Then
the element e, € S(d, y) from Proposition 8.1 depends on the choice of
basis only up to multiplication by a nonzero element of k. Moreover, the
H-span of this element is a (free) rank one subalgebra of S(d, y), as can be
easily checked (cf. Remark 8.3).

Let S; be the rank one subalgebras of S(D, y) associated as above with
the 2-dimensional subalgebras d; of d constructed in Lemma 13.6. Then by
comparing second tensor factors, we see that S, ; n>/_, S;=0 for each
r=1, .., N—2. Therefore the sum of all §; is a free H-submodule F of
S(d, y) of rank N — 1. Since the rank of S(d, y) is also N—1, we see that
S(d, y)/F is a torsion H-module.

Denote by S the subalgebra of S(b, y) generated by F. Since S(D, y)/S is
a torsion H-module, we conclude, by Corollary 10.1, that S is an ideal of
S(d, y). Hence S(b, y) =S by simplicity of S(d, y). Now by Proposition
13.8, each subalgebra S; embeds uniquely in W(d). Hence S=S(D,y)
embeds uniquely in W(D).

This completes the proof of Theorem 13.7. |

Combining a number of previous results, we get an explicit description
of all subalgebras of W(d), and of all isomorphisms between the simple Lie
pseudoalgebras listed in Theorem 13.2.

COROLLARY 13.6. A complete list of all subalgebras L of W(d)=H®D is

(a) L=H®DY ~Curl, W(V'), where ©' is any subalgebra of d and
H' =U((");
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(b) L={X;1®a; e HRV | X;h(a;+ ¥ (a;))=0} ~Curzy, S, 1),
where D' is any subalgebra of d and y' € (0')* is such that y'([d',d'])=0;

(c) L={(h®1)(r—1®s)|heH}, where red ADd and sed satisfy
(4.3), (4.4). In this case, L is isomorphic to a current pseudoalgebra over
HY, ', o) or K(V', 0") (see Sections 8.6 and 8.7).

COROLLARY 13.7.  All nontrivial isomorphisms among the simple Lie
U(d)-pseudoalgebras listed in Theorem 13.2 are the following (H = U(D),
H' =U(V"))

(i) Curg ~Curg” when q' and " are isomorphic Lie algebras.

(il) Curf HY, y', ')~ Curll, HY', x', @") when o" = cw' for some
nonzero c k.

(i) Curf K(V', 0') ~ Curf, K(V', 0") when 0" = c0' for some nonzero
cek.

(iv) Curf, w(d') ~Curk, K(V', 0') when dim d' =1.

(v) Curl HY, y', w)~Curf, S(', y") when dimd' =2 and y"=
— +trad.

13.7. Finite Simple and Semisimple Lie (U(d) # k[ I'])-Pseudoalgebras

Let, as before, H= U(d) be the universal enveloping algebra of a finite-
dimensional Lie algebra d. Let I” be a (not necessarily finite) group acting
on D by automorphisms. The action of " on D can be extended to an action
on H which we denote by g-f for gel, fe H. Recall that the smash
product H=H #k[I'] is a Hopf algebra, with the product determined by
g-f=gfg"", and coproduct A(fg)=A(f) A(g) (g T, fe H).

A left H-module L is the same as an H-module together with an action
of I' on it which is compatible with that of H. An A-module L will be
called finite if it is finite as an H-module.

Let L be a Lie H-pseudoalgebra with a pseudobracket denoted as
[a%b]. By Corollary 5.1, L is also a Lie H-pseudoalgebra, which we
denote as L with a pseudobracket [a = b]. L is equipped with an action of
I, and [a*b] is I-equivariant; see (5.5). As an H-module, L= L. The
relationship between the two pseudobrackets is given by (5.7).

Then the following statements are easy to check.

Lemma 13.7. (1) [a*b]=01iff [ga«b] =0 forall gel.
(i) IcL=L is an ideal of the Lie H-pseudoalgebra L iff it is a
T-invariant ideal of the Lie H-pseudoalgebra L.
(1) If I is as in (11), then its derived pseudoalgebra [ I, I] is the same
with respect to both pseudobrackets [a % b] and [a + b].
(iv) Rad L=Rad L.
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Proof. (i) If [a%b]=0 then all its coefficients in front of (gH® k)
®g L are zero for different ge I'". Since [a«*b] e (H® H) ®y L, it follows
that all [ ga = b]=0.

Parts (ii) and (iii) are clear by (5.7).

Part (iv) follows from (i)—(iii) and the fact that Rad L is [-invariant.
(Rad L is I-invariant because [a * b] is I-equivariant, see (5.5).) |

PROPOSITION 13.9. The Lie H-pseudoalgebra L is solvable (respectively
semisimple) if and only if the Lie H-pseudoalgebra L is.

Proof. Follows from Lemmas 13.7(iv) and 13.1(iii). |

PROPOSITION 13.10. The Lie H-pseudoalgebra L is finite and simple if
and only if the Lie H-pseudoalgebra L is a finite direct sum of isomorphic
finite simple Lie H-pseudoalgebras and I acts on them transitively.

Proof. By Lemma 13.7, L is simple iff L is not abelian and has no non-
trivial [-invariant ideals. In particular, L is semisimple. Using Theorem
13.3 and the fact that k[ '] I is an ideal of L if I is an ideal, we see that
L is a direct sum of isomorphic finite simple Lie H-pseudoalgebras. |
13.8. Examples of Infinite Simple Subalgebras of gc,

In this subsection, H is an arbitrary cocommutative Hopf algebra. Let us
define a map w: H® H— H® H by the formula

o(f®a)=fac_1) a5 =(/®1) A(S(a)). (13.9)

It is easy to check that w?=id; this also follows from the identities
w=F"11d®S)=(id®S) F where F is the Fourier transform defined
by (2.33).

LemmA 13.8.  The above w is an anti-involution of Cend, = H® H, i.e., it
is an H-linear map satisfying w*=1id and

w(a) = w(b)=(6 @y w) (b *a), a, beCend,, (13.10)

where, as before, 0: H® H— H® H is the permutation of the factors.
Proof. Tt only remains to check (13.10), which is straightforward. |

When H = U(b), the annihilation algebra .o/(Cend,) is isomorphic to the
associative algebra of all differential operators on X, and w induces its
standard anti-involution  (formal adjoint).
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Let y: End(k") — End(k") be an anti-involution, i.., y*=1id and y(A4) y(B)
=9(BA). Then we can define an anti-involution w of Cend,=H® H®
End(k”) by the formula (cf. (13.9))

w(f®a®A)=fa(_1)®a(_2)®y(A). (1311)

Let gc,(w) be the set of all « € Cend,, such that w(a) = —a. This is a sub-
algebra of the Lie pseudoalgebra gc,,. Indeed, it is an H-submodule because
w is H-linear. If w(a) = —a, w(b) = —b, then

(d®yz w)[axb]=(1d®yx w) (a*b— (0 Qg 1d) (b * a))
=(0®y id) w(b) *x w(a) —w(a) * w(b) = —[a * b].

Two important examples of Lie pseudoalgebras gc,(w) are obtained
when k” is endowed with a symmetric or skew-symmetric nondegenerate
bilinear form, and p(A) is the adjoint of 4 with respect to this form. In
these cases, we denote gc,(w) by oc, and spc,, respectively.

ProrosiTiON 13.11.  Let H=U(d), d #0. Then oc,, and spc, are infinite
subalgebras of gc, that act irreducibly on H®K". We have: oc, N
Cur gl,, = Cur o,, and spc,, n Cur gl,, = Cur sp,,.

Proof. The second statement is obvious by the definitions. Since o,
(n>=3) and sp,, (n>2) act irreducibly on k”, we only have to check that
the action of oc, on H®K" is irreducible for n=1, 2. Using diagonal
matrices, we see that it suffices to check that oc; acts irreducibly on H.

Recall that this action is given by (see (10.12)

axh=(10h)a®g1 for aegc,=H®H, he H.

For aed, let a=1®a—w(l®a)=2@a+a®@1leoc,. Then axh=(1®
ha)@p 1+ (1®h) ®ya. If M < H is an oc,-submodule, and e M, h#0,
then the previous formula implies 1 € M. Therefore M =H. ||

Remark 13.1. It follows from Theorem 14.2 below that in the case
H=U(bd), d+#0, the Lie pseudoalgebras gc,, oc,, and spc, are semisimple.
In fact, one can show that in this case they are simple. In the case
H=Kk[I'] with a finite group I, the Lie pseudoalgebra gc, has a center
that is a free H-module of rank 1, the quotient by which is simple.

If I is a left or right ideal of the associative pseudoalgebra Cend, and L
is a subalgebra of the Lie pseudoalgebra gc,, then their intersection I n L
is again a subalgebra of gc,. All ideals of Cend,, are described in the next
proposition.
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ProposITION 13.12. (i) Any left ideal of the associative pseudoalgebra
Cend,, is a sum of ideals of the form H® R&® E where R < H is a right ideal
and E < End(k") is a left ideal.

(1)  Any right ideal of Cend,, is of the form w(I) for a unique left
ideal I

(1) Cend, has no two-sided ideals, i.e., it is a simple associative
pseudoalgebra.

Proof. Let IcCend, be a left ideal, a=1® a® 4 €Cend,,, and f=
> g ®b; ® B; €I with linearly independent g,. Then

axfi=) (1®gan) ®y(1®b;ap ®AB,)e(HRH)®y I

Taking a=1, we see that all 1®b, ® AB; €l. In particular, 1 ®
b; ® B, €I, and hence each element from 7 is an H-linear combination of
elements of the form f=1®bH&® B. For such f, we have ax*f=
(1®aq) Q@ (1®bapy ® AB). For aed, A=1d, we get that | @ ba @ Be I.
This proves the first part of the proposition.

Part (ii) is obvious, and part (iii) follows easily from (i) and (ii). |

14. REPRESENTATION THEORY OF LIE PSEUDOALGEBRAS

14.1. Conformal Version of the Lie Lemma

Let L be a Lie H-pseudoalgebra and V' be an L-module. In this subsec-
tion, H = U(d) will be the universal enveloping algebra of a finite-dimen-
sional Lie algebra d. In particular, H is a Noetherian ring with no divisors
of zero.

Let /< L be an ideal and ¢ € Hom(I, H) be such that

Vi ={veV]axv=(p(a)®1)®yv Vael} (14.1)

is nonzero. We will call the elements of V', eigenvectors for I with an eigen-
value @. Note that every vel, is an eigenvector for the action of
X®yxIc./(L) on V. By abuse of notation, we will also write a,.v=¢(a,) v
forael, xe X, veV,, where p(a,)={S(x), p(a)y, cf. (9.6).

Clearly, if ¢ =0, then V,, is an L-submodule of V.

Lemma 14.1. If ¢ #0, then HV, is a free H-module, isomorphic to
H®V, with H acting on the first tensor factor.
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Proof. Assume that
Y fiv;=0 (14.2)

for some f; e H, v; € V,,. Let (14.2) be a relation of this form with f; e F"H
so that > ; n; is minimal. We call 3, n; the degree of the relation (14.2).
Assume that v,;’s are linearly independent, so that the degree of (14.2) is
positive.

We can find a€l, xe X such that ¢(a,)+#0. Applying a, to (14.2) and
using (9.16), we obtain

Z S ¢(aﬂ(7l}x) v;=0.

Subtracting this from (14.2), we get a relation of lower degree than (14.2),
because A(f)el® [+, FFHRF"/H for fe F"H. |

The following result is an analogue of Lie’s Lemma.
ProrosITION 14.1.  If V is finite as an H-module, then
L+V,c(HRk)®yz(dV,+V,). (14.3)

In other words, for every fe.o/(L), there exist 05 €0 and Az e End V,, such
that

pv=(0s+Ag)v  forany veV,

@

(14.4)

In particular, HV , is an L-submodule of V.

Proof. Fix nonzero elements we V,,, fe.o/(L), and let w,=f"w. Let
W, be the linear span of wy, ..., w,;; we set W,=0for n<0. Forael, xe X,
we have a,,w=¢(a,) w, and by induction,

aanegp(ax) wyn+n(p([ax’ ﬁ])wyn—l—'— Wn—2‘ (145)
In particular, all HW, are I-modules.

Since ¥V is a Noetherian H-module, there exists N>0 such that
HWy_ #HWy=HWy . In particular,

Wyt E(N+ 1) hwy+HWy_, (14.6)

for some he H.



THEORY OF FINITE PSEUDOALGEBRAS 111
Writing (14.5) for n=N+ 1 and using (14.6), we get
awyi1 €P(a)(N+1)hwy+(N+1) o([ay, 1) wy+ HWy_ ;. (14.7)

On the other hand, applying a, to both sides of (14.6) and using the
H-sesqui-linearity gives

a W1 €@(an_ N+ 1) hoywy+HWy_ . (14.8)
Subtracting (14.8) from (14.7) gives

SwyeHWy_,  for f=gla,) h+o(lax, B1) —olay_ ) hey.  (149)

If f#0, then the module HW/HW ,_, is torsion, hence I acts on it as
zero by Corollary 10.1. This gives a,wy € HWy_, for all ael, x e X. Then
(14.5) implies ¢(a,) wy e HWy_,. Since HW,_, # HW, it follows that
@ =0, which contradicts the assumption f'# 0.

Therefore /= 0. This is possible only when e F'H =Db + k. Then for any
veV,, one has

0=fv=h(axv)+ [ax> ﬁ] U_h(2)(ah(_1)xv)= [ax! ﬁ_h] v.
This implies that (f—h)ve V,, proving (14.4). |

14.2. Conformal Version of the Lie Theorem

THEOREM 14.1. Let H=U(d) # k[ '] with dim d < 0. Let L be a solv-
able Lie H-pseudoalgebra and V be an L-module which is finite over U(D).
Then there exists an eigenvector for the action of L on V, i.e., ve V\{0} and
@ e Hom (L, H) such that a «v=(p(a)® 1)@y v for all ae L.

Proof. Using Corollary 5.1 and Proposition 13.9, we can assume that
H = U(Dd). The proof will be by induction on the length of the derived series
of L.

First consider the case when L is abelian. By a Zorn’s Lemma argument,
it is enough to find an eigenvector when L = Ha is abelian generated by
one element a. We may assume that ker ¢ =0; then by Lemma 10.3 all
ker, a are finite dimensional. Let n be such that ker, a # 0. Then the state-
ment follows from the usual Lie Theorem applied to the .«/(L)-module
ker, a.

Now let L be nonabelian, /=L, L] #0. By the inductive assumption,
I has a space of eigenvectors V', #0. If ¢ =0, then V is an L-submodule
of V' on which I acts as zero. The abelian H-pseudoalgebra L/I has an
eigenvector in ¥, which is also an eigenvector for L.
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Now assume that ¢ #0. By Proposition 14.1, we have for o, f € o7(L),
veV,,

oav = (0, + Ay) v,
Pv=(05+Ap) v,
Lo, Blo=o([o f]) v.

On the other hand, we can compute
afv=a(0g+ Ag) v=0g(ow) — (0px) v+ a(Agv)
=05(0,+A4,) v— (aaﬁ“+Aaﬂu) v+ (0, +A4,) Agv
=050,V —6%&0 +05A, 0+ 0, Apv —Aaﬂav +A4,Agv.

It follows that

[aas aﬂ] = aﬁaﬁ - aaﬁoc'
Assume that d, #0 for some ae L, xe X, and write 0,=0,_ for short.
For a=a,, f=a,, the above equation becomes

[axa y] aay a x

.V

(recall that ha,=a,, for he H). Note that 9, =0 if y e F, X for sufficiently
large n. Take the minimal such n, and let xe F,_; X be such that J, #0.
By Lemma 6.4, there exists yeF,X such that x=0,y. Then d,=0 and
0,=05_y 65 «=[0,,0,]1=0, which is a contradiction.

It follows that all 0, =0, hence L preserves V,. By Lemma 14.1,
dim V, < c0, and therefore L has an eigenvector by the usual Lie Theorem
for .o/ ( ). 1

COROLLARY 14.1. Let L be a solvable Lie H-pseudoalgebra and V be a
finite L-module (i.e., finite over U(d)). Then V has a filtration by L-sub-
modules 0=VycV,c ... cV,=V such that for any i the L-module
Vii1/V; is generated over H by eigenvectors of some given eigenvalue
¢, e Homg(L, H).

14.3. Conformal Version of the Cartan—Jacobson Theorem

THEOREM 14.2. Let H= U(D) be the universal enveloping algebra of a
finite-dimensional Lie algebra d. Let L be a Lie H-pseudoalgebra acting
faithfully and irreducibly on the finite H-module V. Then one of the following
two possibilities holds
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(1) L is semisimple, either finite or infinite.

(i) L is finite, Rad L is abelian and of rank one as an H-module. In
this case, there is a subspace V of V such that V~H® V is a free H-module
and L can be identified with (Ax Cur g) X (R®idy) cgc V, where A is a
subalgebra of W(D), g is zero or a semisimple subalgebra of sl V, and R is
a nonzero left ideal of H.

Proof. Assume that L is not semisimple; i.e., it has a nonzero abelian
ideal I. Then, by Theorem 14.1, I has an eigenvector in V. If V"=V, is the
corresponding eigenspace in FV, then, by Proposition 14.1, HV is an
L-submodule of V. The irreducibility of ¥ implies that V= HV. Now, by
Lemma 14.1, V~ H® V is a free H-module, since ¢ # 0 by the faithfulness
of V.

Proposition 14.1 and the faithfulness of V" also show that L embeds into
W(d)x Cur gl V= gc V. In particular, L is finite. Then Rad L exists, and we
can assume that 7 is an eigenspace for Rad L. For each element ¢ € Rad L
and ve V we have a * v=(¢(a) ® 1) ® v, which means that Rad L is iden-
tified with R®idy = Cur gl ¥ for R=¢(Rad L). Note that R is of rank
one, because R #0 and H has no zero divisors.

Let L, =L (W(d)x Cur sl V). Notice that L, is a subalgebra of L, :=
L/Rad L and L, +Rad L is a semidirect sum, because W(d)x Cur gl V=
(W(d)x Cur sl V)x (H®idy). Since Rad L=R®id, this also implies
that RL is contained in L,+Rad L. Then RL, embeds in L,, ie.,
R(L,/L,)=0. Hence L,/L, is torsion, and by Corollary 10.1, L, is an ideal
of L,. But L, is semisimple, and by Proposition 13.7 a finite semisimple Lie
pseudoalgebra does not have proper ideals of the same rank. Therefore,
Li=L, and L=L, xRad L is a semidirect sum of pseudoalgebras.

Finally, to show that L, is of the form AxCurg, notice that
L,nCursl 7V is an ideal of L,, since Cursl ¥/ is an ideal of W(Dd)x
Cur sl V. This ideal is generated over H by abelian elements, so by Propo-
sitions 13.6 and 13.7 if it is nonzero it is of the form Cur g for some semi-
simple subalgebra g of sl V. Hence Curgc L, = W(d)x Cur g. But any
subalgebra of W(bd) x Cur g containing Cur g is equal to 4 x Cur g for some
subalgebra 4 of W(d). This completes the proof. ||

14.4. Conformal Version of Engel’s Theorem

As an application of the results of Section 14.2, we can prove a confor-
mal analogue of Engel’s Theorem.

THEOREM 14.3. Let H=U(d) # k[ '] with dim d < o0, and let L be a
finite Lie H-pseudoalgebra (i.e., finite over U(D)). Assume that the action
of any element ac.o/(L) on L is nilpotent. Then L is a nilpotent Lie
pseudoalgebra.
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Proof. First of all, note that the property that any element a of .o/(L)
acts nilpotently on L remains valid when we replace L by any quotient of
L by an ideal. In particular, L/Rad L will have that property. However,
L/Rad L is semisimple, and from the classification of finite semisimple Lie
pseudoalgebras we see that this is impossible, unless L/Rad L =0.

Therefore L is solvable. The nilpotence of all a€.oZ(L) imply that all
eigenvalues for L are zero. Now Corollary 14.1 implies that L is a nilpotent
Lie pseudoalgebra. |J

14.5. Generalized Weight Space Decomposition for
Nilpotent Lie Pseudoalgebras

Let L be a (not necessarily finite) Lie H-pseudoalgebra, and ¥ be a finite
L-module, where H = U(Dd) for a finite-dimensional Lie algebra D.

Recall that for any ¢ € Homy(L, H), the eigenspace V, of V is defined
by

Vo={veV|axv=(pa)®1)®yv YaeL}. (14.10)
Let V? ;=0 and set inductively
Ve, =H{veV]axv—(p(a)®1)@zve (HOH)®y V? YaeL}. (14.11)

Then V§=HV, and V? | /V?=H(V/V?),. The V? form an increasing
sequence of H-submodules of V" which stabilizes (because of Noetherianity)
to some H-submodule of V' denoted V?. If V?_ |, #V?=1V?, then we set
the depth of V? to be n. We call V'? the generalized weight submodule of V'
relative to the weight ¢.

When L is nilpotent, it is solvable, and, by Corollary 14.1, any finite
L-module V has a filtration by L-submodules so that the successive
quotients are generalized weight modules.

The main result of this subsection is the following theorem.

THEOREM 14.4. Let L be a nilpotent Lie H-pseudoalgebra and V be a
finite L-module. Then V decomposes as a direct sum of generalized weight
modules.

Proof. In order to prove the statement, it is enough to show that all
L-module extensions between generalized weight modules relative to dis-
tinct weights are trivial.

The strategy is to consider first the case when L=<T) is the Lie
pseudoalgebra generated by one element 7 € gc V. Then in the general case,
we show that the generalized weight spaces V¥ relative to some element
Te L are L-invariant.
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LemMMA 14.2. Let V be a finite H-module, Tegc V, and L=<{T ) be a
nilpotent Lie pseudoalgebra. If V contains a T-generalized weight module V?
and VIV? = W= WY with s # @, then V~V?@® W as L-modules.

Proof. Since WY, | /WY =H(W/WY), for any i, it suffices to prove the
statement when W= W% =HW,,.

Let us first consider the case when W= Hp is a cyclic H-module. In
order to prove that the extension is trivial, we need to find a lifting ve V'
of v such that T*v=(y ®1)®y v and to show that Hv+ V? is a direct
sum of H-modules (here and below, we write just y instead of W(7)). We
will prove this by induction on the depth of V¥, the basis of induction
being trivial.

Let thus the statement be true for all 7-generalized weight modules of
depth < and consider a module V? of depth n + 1. Fix an arbitrary lifting
ve V of v; then

Txv=WYR1)®yzv mod (HR H)®y4 V?. (14.12)
Set
T,=T, T,,,=[T,*«TleH®"*V®,L for m>1.

Then we claim that for m>1, T, ,*ve H®" 2 ®, V? implies
T,*ve H®™*D®, V% We are going to show this first in the case when
¢ # 0, the proof for ¢ =0 only requiring minor changes.

So, let ¢ #0. Then V?/VE=V? _, /VZ=H(V?/VY),is a free H-module,
because it is generated by its g-eigenspace and we can apply Lemma 14.1.
We pick some H-basis {w’} for ¥? modulo V?.If {A’} is some k-basis of
H compatible with its filtration, we write

T,xv=y (a; @h') @y w’ mod H®™*V®, Ve, — (14.13)

LJ

where oc; e H®™,

Notice that for m>1, T,, belongs to H®"®[L, L] where [L, L] is
the derived algebra of L, hence all weights are zero on it. This means that

T, VPcH®" DR, V* for m>1. (14.14)
We have

Tpir#0=[T,x T1#v=T,* (T%0)— (0®id) ®yid) T* (T, *v).
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We compute the right-hand side, using (3.16), (3.19), and (14.12)—(14.14),
and obtain

T, a *U:Z (05; ®l//hil) ®h§2)_“; ph) @y w’

i Jj

mod H®" 2@, V¢,

Now the assumption 7, *ve H®"+*?)®, V¢ implies that coefficients
of all w/ must be zero. Let us choose the highest degree d for which there
is some h' of degree d such that oc; #0 for some j. Then we get
o« ® (Y — ) =0 for all j and all 4’ of degree d, hence a;=0, giving a con-
tradiction. This proves that all «;=0, and therefore T, «ve H®m+D
®uVy.

Now, because of nilpotence of L, T,,=0 for N>>0, and obviously
0xve H®W*V®, V?. Thus we can pull the statement back to m=2 to
obtain that [ T T] maps any lifting v of v inside H®*® V% .

Now we can choose the lifting v of ¢ so that T«xv—(y®1)®zxve
H®>®, V?. Indeed, performing the same computation as above, using
instead of (14.12)

Txv=YR1®@uv+) (¢ @h)@zyw’ mod H®*®y, V?

i Jj

for some oc € H, we get oc ®(@—yY)—(p—1) ®oc’—0 This shows that
a;=c; (go l//) for some ch01ce of c] € k. Now choose v to be the lifting of
? minimizing the top degree d of A’ such that some a; is nonzero. Then if
we replace v by v'=v+3 c;h'w’, all coefficients oc;. in degree d vanish,
against minimality of v. This contradiction shows that the lifting v can be
chosen in such a way that «; =0 for all i,j, and T*v=Y®1)Qzv
modulo H®?*®, V?.

This shows that Hv + V'? is indeed a submodule of V, and it satisfies the
hypotheses of our claim. Moreover, V¢ is of depth n and we can apply the
inductive assumption to show that Hv + V¢ decomposes as a direct sum of
L-submodules. This means that we can find a lifting & of v + V¢ for which
T+9=(y®1)®y0 holds exactly.

We have found a lifting ¢ of ¥ proving that V= Ho + V'?. We are left with
showing that this is a direct sum of H-modules. This is clear if  # 0 since
in this case H7 is free, hence projective. If instead y =0, assume the sum
not to be free. This means that some multiple 47 of ¢ lies in V. Since 7 is
killed by T, so is AD, showing ht =0 as no other vector in a generalized
weight module of nonzero weight ¢ is killed by 7. This concludes the proof
in case ¢ #0.
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If ¢ =0, then we choose a k-basis of V¥ modulo V¢, and use in (14.13)
coefficients of the form a; ® 1. The rest of the proof is the same.

Finally, consider the general case of a non-cyclic H-module W. We dis-
tinguish two cases. If Y #0, then W= HW, is free by Lemma 14.1, and it
decomposes as a direct sum of cyclic modules to which we can apply the
above argument independently. If = 0, then we choose generators o’ of W
over H, lift them to elements v’ of V in such a way that each of them is
mapped by T to zero, and then argue that if 3 4, 0°=0 then 3 &, v’ is an
element of V7 killed by 7, hence is zero. Therefore the extension of
H-modules splits, and so does that of L-modules, by the above computa-
tion. |

Now let L be any nilpotent Lie H-pseudoalgebra, ' be a finite
L-module, and Te L, T+#0.

LemmaA 14.3.  Every T-generalized weight submodule of V' is stabilized by
the action of L.

Proof. We set
L._,,=0, Liyy={aeL|[Txale(HRH)®yL} (14.15)
and

(14.16)

Then the L;, are H-submodules of L whose union is L (since L is nilpo-
tent), and the V., are vector subspaces of V' whose H-span is the
T-generalized weight space V¥ (because V¢ =HV; for all i).

It is easy to show by induction on n =i+ j that

LoV cHOH)®y Vg j- (14.17)

Indeed, the basis of induction (say n = —1) is trivial, and the inductive step
follows from (14.15), (14.16) and the identity [T xa]xv=T* (a*v)—
((e®id)®gzid) a = (T« v). Equation (14.17) implies that L V?c
(HRH)®y V?, as desired. |

We are now able to complete the proof of Theorem 144. Let V=@ V,
be finest among all decompositions into direct sum of L-submodules of V'
such that all of the H-torsion of V' is contained in one of the V/;. Note that
such a finest decomposition always exists, because any decomposition
defines a partition of rank V' into non-negative integers, and finer decom-
positions define finer partitions.
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We claim that each V; is a generalized weight module for L. Otherwise,
there must be some element 7€ L for which some of the V, is not a
T-generalized weight module. But if so, then V/; decomposes into a direct
sum of its 7-generalized weight submodules, and all torsion elements lie in
the T-eigenspace of eigenvalue 0. Since all 7T-generalized weight sub-
modules are L-invariant, we obtain a contradiction. Therefore V' is a direct

sum of its generalized weight submodules. ||

14.6. Representations of a Lie Pseudoalgebra and of Its Annihilation Algebra

Let H= U(Dd) be the universal enveloping algebra of a finite-dimensional
Lie algebra d, and L be a finite Lie H-pseudoalgebra.

Recall that the annihilation algebra ¥ = .o/(L) of L possesses a filtration
by subspaces ¥ =%, > %, > --- satisfying (7.14),

[ %, LSy, for all 7, j and some fixed s,

that make % a linearly compact Lie algebra (Proposition 7.4). Moreover,
% is an H-differential algebra, i.e., D acts on it by derivations. Let #¢:=
dx % be the extended annihilation algebra. Letting ¥¢=.%, for all n
makes #¢ a topological Lie algebra as well.

An Z¢-module (or #-module) V is called conformal if any v e V is killed
by some .%,; in other words, if V is a topological #“-module when
endowed with the discrete topology. Now Proposition 9.1 can be refor-
mulated as follows.

PrOPOSITION 14.2.  Any module V over the Lie pseudoalgebra L has a
natural structure of a conformal ¥ *-module, and vice versa. Moreover, V is
irreducible as an L-module iff it is irreducible as an ¥ *-module.

Together with the next two lemmas, this proposition is an important

tool in the study of representation theory of Lie pseudoalgebras.

Lemma 14.4. Let L be a finite Lie pseudoalgebra and V be a finite
L-module. For n> — 1, let

ker, V={ve V| %uv=0},

so that, for example, ker _,V=ker V and V=\),ker, V. Then all vector
spaces ker, V/ker V are finite dimensional.

Proof. The proof is an application of Lemma 10.3, using the following
fact: If 4 is a vector space and A4; o B; (i=1, ..., k) are subspaces of 4
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such that all A4,/B; are finite dimensional, then () 4,/ B; is finite dimen-
sional. It is enough to show this for k£ =2, in which case it follows from the
isomorphism

(Ay 0 Ay)/(By N By) N A nA,
(A, " By)/(BynB,) A, NnB,

Note that [ %, %, ] = %, for any n, and in particular .%, is a Lie algebra.

LeEmMMA 14.5. Let L be a finite Lie pseudoalgebra and V be a finite
L-module such that ker V=0. Then V is locally finite as an %,-module,
ie., any vector veV is contained in a finite-dimensional subspace invariant
under &,.

Proof. Any veV is contained in some ker, V, which is finite dimen-
sional by Lemma 14.4, and .%,-invariant because [ %, %, 1< %,. |

Let V be a finite irreducible L-module. Then ker V'=0. Take some n
such that ker, V"#0. This space is finite dimensional and .%,-invariant; let
U be an irreducible ¥,-submodule of ker, V. The ¥“-submodule of V'
generated by U is a factor of the induced module Ind‘f U. Thefore, V'is a
factor module of Ind " U.

In many cases D acts on $ by inner derivations so that we have an injec-
tive homomorphism d < %. In this case, ¢ is isomorphic to the direct
sum of D and %, and we have Ind% U~ H®Ind$

The above results, combined w1th ‘the results of [Rul Ru2] and [Ko],
will allow us to classify all finite irreducible representations of all finite
semisimple Lie pseudoalgebras (work in progress).

15. COHOMOLOGY OF LIE PSEUDOALGEBRAS

15.1. The Complexes C*(L, M) and C*(L, M)

Recall that in Section 3 we defined cohomology of a Lie algebra in any
pseudotensor category (Definition 3.4). Now we will spell out this defini-
tion for the case of Lie H-pseudoalgebras, ie., for the pseudotensor
category #*(H) (see (3.4)). As before, H is a cocommutative Hopf
algebra. Let L be a Lie H-pseudoalgebra and M be an L-module.

By definition, C"(L, M), n> 1, consists of all

yeLin({L, .., L}, M) :=Hom ;;e.(L®", H®"®,, M) (15.1)
———
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that are skew-symmetric (see Fig. 4). Explicitly, y has the following defining
properties (cf. (3.23), (3.24)):

H-polylinearity,
yha ® - @hya,)=((h ® - @h,)®g1) y(a; ® --- Ra,) (15.2)

for h;e H, a; € L.

Skew-symmetry,

Nay ® - ®a; 1 ®a;® -+ ®a,)
= *(O'i,i+1 Qpid)y(a; ® -+ ®a;®a; 1 ® - ®a,), (15.3)

where o, ;. H®" > H®" is the transposition of the ith and (i+ 1)st
factors.

For n=0, we put C°(L, M)=k®y M ~ M/H . M, where H, = {he H |
&(h)=0} is the augmentation ideal. The differential d: C°(L, M)=
k®y M — C' (L, M)=Hom(L, M) is given by

(d(1®@gm))a) =3, (i[d®@&)(h) m;e M

if axm=) h;@ym;e H**®@z M (15.4)

foraeL, me M.
For n > 1, the differential d: C*(L, M) — C"*'(L, M) is given by Fig. 5.
Explicitly,

(dy)a; ® -+ ®a, 1)

= Z (_I)H—l(o—lai@Hid)ai*y(al®"'®di®"'®an+l)

1<isn+1

+ > (_1)i+j(al—>i,2—>j®Hid)

I1<i<j<sn+1

x)([a;%a4,]1®a; ® - Q4;® - Q4;® -+ Qa, ), (15.5)

where o, _,; is the permutation 7, @1, ® - @h,_, ®h; .1 ® - ®h, 1
—h® - ®h,,,and o, _,; ,_,;is the permutation 7, @1, @1 ® --- ®
hi 1 @iy @+ Qi1 @1 ® - Qhyy1 P @ -+ Qhyyy.

In (15.5) we also use the following conventions. If axb=3; f; ®y
;e H®?2®y M for ae L, be M, then for any e H®" we set

ax(f®ub)=3 (1®f)id®@4""V)(f)®uc;e HE" @y M,

14
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where A" V=(id® --- @id®4)---(id®4) 4: H— H®" is the iterated
comultiplication (4® :=id). Similarly, if y(¢; ® --- Qa,) =3, 8; RuV; €
H®"®y M, then for ge H®* we set

Y(g®pa)®a,® - ®a,)

:z (g® 1®(n_1))(4’®id®(n_l))(gi) Qn UiEH®(n+l)®HM-

These conventions reflect the compositions of polylinear maps in .#*(H),
see (3.8). Note that (15.5) holds also for n=0 if we define 4~V :=¢.

The fact that d?=0 is most easily checked using Fig.5 and the same
argument as in the usual Lie algebra case. The cohomology of the resulting
complex C *(L, M) is called the cohomology of L with coefficients in M and
is denoted by H® (L, M).

One can also modify the above definition by replacing everywhere ® g
by ®. Let C"(L, M) consist of all skew-symmetric ye Hom ye.(L®",
H®®M), cf (15.2), (153). Then we can define a differential
d: C"(L,M)— C"*'(L, M) by (15.5) with ®, replaced everywhere by
®; then again d*>=0. (In fact, one can define a pseudotensor category
M *(H) by replacing ®, by ® everywhere in the definition of .#*(H).)
The corresponding cohomology H® (L, M) will be called the basic cohomol-
ogy of L with coefficients in M. In contrast, H®* (L, M) is sometimes called
the reduced cohomology (cf. [BKV]).

15.2. Extensions and Deformations

We will show that the cohomology theory of Lie pseudoalgebras defined
in Section 15.1 describes extensions and deformations, just as any cohomol-
ogy theory. This result is a straightforward generalization of Theorem 3.1
from [ BKV].

THEOREM 5.1. (i) The isomorphism classes of H-split extensions
0O-M—->E->N-O0

of finite modules over a Lie H-pseudoalgebra L are in one-to-one corre-
spondence with elements of H' (L, Chom(N, M)).

(1) Let C be an L-module, considered as a Lie H-pseudoalgebra with
respect to the zero pseudobracket. Then the equivalence classes of H-split
“abelian” extensions

0>C>L->L—-0

of the Lie H-pseudoalgebra L correspond bijectively to H*(L, C).
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(ii1) The equivalence classes of first-order deformations of a Lie
H-pseudoalgebra L (leaving the H-action intact) correspond bijectively to
H2(L, L).

Proof. (i) Let

0—-M-S5SEL NSO

be an extension of L-modules, which is split over H. Choose a splitting £ =
M@®N={m+n|meM, ne N} as H-modules. The fact that i and p are
homomorphisms of L-modules implies (ae L, me M, ne N)

axg M=d s, M, (15.6)
axgh—asyn=:ya)(n)e H®>Q; M. (15.7)
It is clear that y(a) e Chom(N, M) and y: L - Chom(N, M) is H-linear; in
other words, ye C!(L, Chom(N, M))=Hom (L, Chom(N, M)).
For a,be L, ne N, we have (cf. (3.26))
[axb]xgn=axg(b+zn)— (6 ®id) Ry id) (b 5z (a xgz n)),
[axb]syn=axy(bxyn)—((0®id) @y id) (b xy (a xy n)).

Subtracting these two equations and using (15.6), (15.7), we get

Y([axb])(n)=asxy,y(b)(n)—((c®@id) @ id) y(b)(a *yn)
— (0 ®id) @y 1d) b #y, p(a@)(n) + y(a)(b #yn)
=((a = y)(b))(n) — (6 ®id) @ id)((b * y)(a))(n)

(recall that the action of L on Chom(N, M) was defined in Remark 10.2).
The last equation means that dy =0.

If we choose another splitting of H-modules E= M ® N={m+"n|me
M, ne N}, then it will differ by an element ¢ of Homy(N, M): m+n=
(m+ ¢@(n)) +'n. Then the corresponding

Ha)(n)=axy @n) —(idpen ®n @) (axyn)+y'(a)(n).

Since Hom g(N, M) ~ k ® ;;Chom(N, M) = C°(L,Chom(N, M)) (see Remark
10.1), we get y(a)=a* ¢ +y'(a), ie, y=dp + .

Conversely, given an element of H' (L, Chom(N, M)), we can choose a
representative y e C!(L, Chom(N, M)) and define an action #; of L on
E=M®N by (15.6), (15.7), which will depend only on the cohomology
class of y. This proves (i).
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The proof of (ii) is similar. Write L=L® C={a+c|aeL,ceC} as
H-modules. Denoting the pseudobracket of L by [a%b], we have for
a,bel, c,cieC:

[a%c]=a=xc,
[C;'Cl]:()a
[asb]—[a*xb]=:9(a®b)e H®?*®, C.

It is clear that ye C?(L, C), and the Jacobi identity for L implies dy = 0.

(iii) A first-order deformation of L is the structure of a Lie
H-pseudoalgebra on L =L[€e]/(e*)=L @ Le, where H acts trivially on e,
such that the map L — L given by putting € =0 is a homomorphism of Lie
pseudoalgebras. This means that

0>Le>L—>L—0
is an abelian extension of Lie pseudoalgebras, so (iii) follows from (ii). ||

15.3. Relation to Gelfand—Fuchs Cohomology

Let again L be a Lie H-pseudoalgebra and ¥ =.o/(L) := X®y L be its
annihilation Lie algebra. Recall that (by Proposition 9.1) any L-module M
has a natural structure of an ¥-module, given by (x®ya) -m=a.m
(aeL,xeX,me M), where a,m is the x-product defined by (cf. (9.6))

axm:Z<S(x),g,->vi if a*m=Z(gi®l)®HvieH®2®HM.
Similarly, for ye C"(L, M) and x,, ... x, € X, we define
Vxponx, (A1 ® - Ra,) Z CS(x1), 8110 -+ XS(X0)s 8imy Vs
if

Hay® - ®a,) =) (8,1 ® - ®g,)@ve H"QM.
The H-polylinearity (15.2) of y implies that the map .«/y: ¥®” — M, given
by
('Qiy)((xl ®Ha1)® e ® (xn ®Han)) :zyxl,...,xn(al ® e ®an)9

is well defined. Moreover, .&/y is skew-symmetric (i.e., it is a map from
A" % to M) because of skew-symmetry (15.3) of y.



124 BAKALOV, D’ANDREA, AND KAC

Therefore, we can consider o7y as an n-cochain for the Lie algebra ¥
with coefficients in M. It is not difficult to check that the map
o/ C"(L,M)— C"(¥, M) commutes with the differentials (this also
follows from the results of Section 7.2). The following result is proved in
the same way as Proposition 9.1.

PROPOSITION 15.1. The above map ./: C*(L, M)~ C*(¥, M) is an
isomorphism from the complex C *(L, M) to the subcomplex C 4 (&, M) of
C* (&, M) consisting of local cochains, i.e., cochains <7y satisfying

()% Qpa))® -+ ® (x, ®ya,) =0, (15.8)

for any fixed x,, ..., x, and ay, ..., a,, and x, e F, X for k> 0.

Note that the locality condition (15.8) means that .7y is continuous
when M is endowed with the discrete topology and ¥ with the topology
defined in Section 7.4. Therefore we have

COROLLARY 15.1.  The basic cohomology H®(L, M) of a Lie pseudo-
algebra L is isomorphic to the Gelfand—Fuchs cohomology Hyp (L, M) of its
annihilation Lie algebra & .

Recall that H acts on ¥ = X ®p L via its left action on X: h(x ®ya)=
hx®ya (heH,xeX, aeL) Using the comultiplication A®~Y(h)=
2 ha® - ®hg,, we also get an action of H on Z£®" 1t follows from
(2.18), (2.25) that for he H, ae #®", ye C"(L, M), one has

(A y)(ho) = (A (y - h))(),
where y-he C"(L, M) is defined by
(y-ha,® - ®a,)=) g;4" V() ®v,
if
Wa, ® -+ ®a,)=) g;®v,e H*"® M.

Considering C”(L, M) instead of C”(L, M) amounts to replacing ® by
®p, 1., to factoring by the relations

(y-ha, ® - ®a,) —(1¥"@h) y(a, @ - ®a,),  heH.



THEORY OF FINITE PSEUDOALGEBRAS 125

In terms of o7y, this corresponds to factoring by

h((y) () — (L y)(ha) = (he (L) — (L) h)(a).

This implies the next result.

PROPOSITION 152. The isomorphism o/ : C*(L, M) ~ C4p (L, M)
induces an isomorphism from C°®(L,M) to the quotient complex of
C4r(Z, M) by the subcomplex {hoc—coh|ce Cyp(L, M), he H}.

When H = U(Dd), we can define an action of H on Cgp =C4p (&, M)
by h-c:=hoc+coS(h). This action commutes with the differential d,
and ./ induces an isomorphism from C°®(L, M) to the quotient
complex Cgp/H-Cyr. The Lie algebra d acts on Cgp, and clearly
Cor/H - Cur=Cgr/d- Cur. We have an exact sequence of complexes

0-0-Cor > Cor 2 Cop/d-Cgp —0,
which gives a long exact sequence for cohomology
- > H'(d- Cop) » H' (CGp) > H (Cop/d- Cor)
SH (- Chp) » HF (Clp) > - . (15.9)
Remark 15.1. [BKV]. If dimd=1, then d acts freely on Cyy for

i>0, and we have H (d- Cgp) ~H' (Cgp) for i>0. When M is a free
H-module, this is also true for i =0.

PROPOSITION 15.3.  Assume that D acts on ¥ by inner derivations and
that the action of d on M coincides with that of its image in . Then for any
i =0, we have isomorphisms

H (L, M) ~H5. (L, M)®H T (d- Cyp) (15.10)

If, in addition, dim d =1, then we have for i =0
HY(L, M)~ Hip (2, M) @ HiE (£, M), (15.11)
Proof. Since the adjoint action of ¥ on Hyp (&, M) is trivial, we

obtain that H' (- Cg&y) maps to zero in the exact sequence (15.9). There-
fore we have exact sequences

0> H(CGp) > H(CGp /D-Coup) > H T (D-Chp) — 0,
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which lead to isomorphisms (15.10). Formula (15.11) follows from Remark
15.1.

Note that in general we have
dim H' (L, M) <dim H5. (&, M) +dim H' "' (d - Cgp).

The above results provide a tool for computing the cohomology of Lie
pseudoalgebras, by making use of the known results on Gelfand-Fuchs
cohomology of Lie algebras of vector fields [ Fu].

15.4. Central Extensions of Finite Simple Lie Pseudoalgebras

In this section we determine by a direct computation all nontrivial
central extensions of a finite simple Lie pseudoalgebra L with trivial
coefficients (see Theorem 15.2 below).

Such a central extension of L is isomorphic as an H-module to
L=L®kl, where the action of H on 1 is given by h-1=g(h) 1. The
pseudobracket is then

[a%b]=[a*b]+y(a,b)®y]l, a,belL, (15.12)

where y(a, b)e H®Q H.

Notice that a tensor product (A'® --- @I Ry 1e H®"®4k can
always be re-expressed as (hlh?—l) ® - @h"*lh?_(n_l)) ®1)®y1, and
this coefficient is unique in H®"~D®1 (see Lemma 2.3).

Therefore, the above bracket is uniquely determined by the unique
fB(a, b) e H such that

Na, b) @y 1=(fla,b)®1)®y 1 (15.13)

we will call this map f: L® L —» H the cocycle representing the central
extension. Then H-bilinearity and skew-symmetry of the pseudobracket
give the following properties of this cocycle,

B(ha, b)=hp(a,b),  Pla, hb)=p(a,b) S(h),  pla,b)=—S(B(b, a)),
(5.14)
for all a, be L, he H.
Two central extensions ;=L @kl (i=1,2) are called equivalent if

there exists a Lie pseudoalgebra isomorphism @: L, — L, of the form
Dla®cl)y=a®(¢(a)+c) 1, where ¢: L, >k is an H-linear map. Then
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the cocycles representing the two equivalent central extensions differ by
74(a, b) such that

(14(a, D)@ 1)@y 1 =(idpon ®u ¢)([axb]). (15.15)
This is called a trivial cocycle.

If L= He is an H = U(d)-module which is free on the generator e, such
that

[exe]=a®y e, a=r+sQRI1—-1®s, rFeEdDAD, sED,

then a cocycle fi(a, b) is completely determined by its value = fi(e, ¢) € H.
Trivial cocycles are of the form

T=1(e, e)=¢(e)(2s — x), ¢(e) ek,
where

x=321700;,0,1 if r=}r%0, ®9;. (15.16)
i j

i j

LEmMMmA 15.1. Let L=He be a Lie pseudoalgebra as above. Then
H?(L, k) ~ B/k(2s — x), where B is the space of elements f§ € H satisfying the
following two conditions

B=—S(p), (15.17)
aA(f)=(fR1I+1QP) a+fR 3s—x)—(B3s—x)®F. (15.18)

Moreover, when r#0, then feDd, and (15.18) becomes equivalent to the
following system of equations

[s, f1=0, (15.19)
[rAf)]=B® Bs—x)—(3s—x)Qp. (15.20)

Proof. Let L=He+kl be a central extension of L with a pseudo-
bracket

[e*e]=a@pue+(fR1) @y,

where h-1=¢(h) 1 for he H.
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The skew-symmetry of [e % e] is equivalent to (15.17). The Jacobi iden-
tity is equivalent to Jacobi identity for [e = e] together with the following
cocycle condition for y=f® 1 (cf. Proposition 4.1):

(@®1) (4®id)(7)®u 1 =(1Qa«) (Id® 4)(y) @ 1
—(0®id)(1®)(id®@4)(y)) @y 1. (15.21)

With the usual notation ri, =r®1, s;=s® 1 ® 1, etc., we have
(@ 1)(A®1d)(y) @y 1l =(ad(f)® 1) @y 1

and

(1®a)(id® 4)(7) @ 1 = (ry3+5,—53) f1 Qg 1
=P1(ra+5,—53) gl
=f1(—rp—x2+51+25,)®gy1

=Bi(ap+ 35, —x5) Qg 1.

From here it is easy to see that (15.21) is equivalent to (15.18).
Let now r be nonzero. Rewrite (15.18) in the form

W(A(P) =R -1@P)=[FRI+1®F, 0]+ (3s—x)—(3s—x) .

If p ¢ D + k, then the degree of the left-hand side equals deg § + 2 while that
of the right-hand side is at most deg f+ 1, giving a contradiction. So
ped+Kk, and (15.17) shows that fed. |

ProprosSITION 154. Let d' =bd be finite-dimensional Lie algebras, H =
U(d), H = U(Y'), and let L= CurZ, w(d").

(i) If dim d =1, then H*(L, k) is 1-dimensional.
(i1) If d is abelian and dim d' > 1, then H*(L, k) =0.

Proof. (i) The Lie pseudoalgebra L= He is free of rank one, with
e=1Q®s, sed’\{0}, hence we can use Lemma 15.1. In this case
a=5s®1—1&®s, and Eq. (15.18) becomes

(@1-1®5)4(f)=2fRs—sQf)+fs@1 -1® fis
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for fe H. We choose a basis {0;} of d such that 0, =s, and express f§ in
a Poincaré-Birkhoff-Witt basis as g =3, 8,0, B, ek (see Example 2.1).
Then the above equation becomes

Y b1 s(0,00©09 — 0D ®,0)

1,J

22 2ﬁ1(6(1)®a1 -0, ®0(1)) +Zﬂl(ama1® -1 ®0(1)61)~
1 I

Comparing terms of the form 7 ®0; (j# 1) we find that f; is zero unless
I=(i,0,..,0) for some i. Hence f=3,; B, 5", B, k. Substituting and com-
paring coefficients, we obtain that 8= f,s+ ;s> This obviously satisfies
(15.17). The trivial cocycles are multiples of 2s, hence s is the unique
central extension up to scalar multiples. This is the well-known Virasoro
central extension.

(i1)) Choose a basis of D" and let § be a cocycle representing a central
extension of L~ H®D'. Then for each basis element a, f restricts to a
cocycle of H®a < L, which is a current Lie pseudoalgebra over W(ka).
By part (i) we can then add to f a trivial cocycle as to make
Bl ®a, 1®a)=c,a’ c, ek, for every such basis element @ €d'. Denoting
B=p(1®a, 1®b), the Jacobi identity for elements 1 ® a, 1 ® a, 1 ® b then
gives

(a@1—1®a) A(P)=c(®Rb—b®a’)+(fR1—1®f) A(a). (15.22)

Let a, b be distinct elements in the above basis, which we extend to a basis
{0;} of d with 0,=a, 0,=b. We substitute the Poincaré-Birkhoff-Witt
basis expression f=3, 5,09 in (15.22), to get

Ca(ai’ ®0,—0, ®6?)
= Z ﬂ,+1(618(’) ®0W _a(l)®ala(l))

1,J

=Y B(0,0V®1+0Y®0,—0, ®0 —1®0,0).
J

Comparing coefficients of the form 7 ® 9, for j# 1, we find that f; can be
nonzero only when 7=(2,1,0,..,0), in which case f;=2c¢,, and when
I=(i,0, .., 0) for some i. This means that = (1 ®a, 1 ®b) = f(a) + c,a*b
for some polynomial f.

We can repeat the same argument after switching the roles of a
and b, to get: B(1®b,1®a)=g(bh)+cy,b*a. Then the skew-symmetry
Pl®a, 1®b)=—-S(B1®b, 1®a)) implies: f(a)+c,a’h= —g(—b)+
cpab?. This is possible only when f =0, ¢,=0. Therefore g is identically
zero. ||
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PROPOSITION 15.5. Let D' =d be abelian finite-dimensional Lie algebras,
H=U(®),H =U®'), and let L=CurZ H(V,y, ). Then H?*(L,k) is
isomorphic to d if y =0, and is trivial otherwise.

Proof. L is free of rank one and r # 0, hence (15.18) becomes 3(f ® s —
s® p)=0, fed. This is satisfied only by multiples of s if s#0 and by all
elements of d otherwise. Since d is abelian, then x =0 and trivial cocycles
are multiples of s. ||

PropPoOSITION 15.6. Let D' be the Heisenberg Lie algebra of dimension
N=2n+12=3, and >=0 @0, be the direct sum of V' and an abelian Lie
algebra d,. Let H=Ud), H' =U(Y'), and L=Curf K(V',0). Then
H?(L, k) =0.

Proof. L is free of rank one, and

o=

(a; ®b;—b; ®a;)—c®1+1Q®c,

1

II'Mx

1

where {a;,b;,c} is a basis of D with the only nonzero commutation
relations [a;, b;] =c¢, 1 <i<n (see Example 8.4).

It is immediate to check that [r,d®14+1Q®d]=c®d—d®c for all
ded'. Moreover, the element x from (15.16) equals nc. Then, if f=f"+ S,
with ' ed’, f, €d,, Eq. (15.20) becomes

PRc—c®P =n+3)(fRc—c®P).

All solutions f of this equation are multiples of ¢. Trivial cocycles are
multiples of 2s —x = —(n+ 2) ¢, hence all cocycles are trivial. ||

PROPOSITION 15.7. Let d' = d be abelian finite-dimensional Lie algebras
such that dimd' >2, let H=U(d), H' = U('), and let L= Curf, S(?',0).
Then H?*(L, k) =0.

Proof. By Proposition 8.1, L is spanned over H by elements
ep=a@b—>bQ®a, a,bebd,
satisfying the relations e, = —e,, and
aey. + be ., + ce,, =0. (15.23)
The pseudobrackets are (see (8.24))
[ew *eal =(a®d) @y e+ (DR C) Py €uq
—(a®c)®yep— (b®d) @y eqe,
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and in particular

[eab * eac] = _(a®c) ®Heab+(b®a) ®Heac_(a®a) ®Hebm
[eab *eab] :(b®a_a®b)®lieab'

Trivial cocycles 7, are determined by the identity (see (15.15))

(T¢(eabs ecd)® 1)®H1
=(a®d)®uPpc+ (bR C)RpPua— (AR )Ry bpa— (bR ) Qpr Pes

where ¢, =¢(e) = — s, €k, Which gives
T¢(eaba ecd) = _ad¢bc - bc¢ad + ac¢bd + bd¢ac' ( 1524)

Let f be a cocycle for L representing a central extension. Write
Pab. ca=Pleq, €.4) for short. Equations (15.14), (15.23) give the identities

ﬁab, cd = _ﬂba,cd= _ﬂab,dc= _S(ﬁcd,ab)’ (1525)

aﬁbc,cd+bﬁca,cd+cﬂab,cd:()' (1526)

Using this, Jacobi identity for the elements e, e, €,. gives the following
equation for f

(b®a_a®b)(A(ﬁab,ac)_ﬂab,ac® 1-1 ®ﬁab,ac)
=ab®ﬁab,ac_ﬁab,ac ®ab +ﬂab,bc ®a2_a2®ﬂab,bc
+ﬁab,ab®ac_ac®ﬁab,ab' (1527)

This is a homogeneous equation and can be solved degree by degree. If
f is homogeneous of degree one, then the left-hand side is zero, and we
immediately see that £, .. = Bup. be = Bap, a» = 0. Then, by (15.26), B .a=0

If B is homogeneous of degree other than one, then f,, ., =0, since /3
restricts to a cocycle of the free rank one Lie pseudoalgebra He,,, which
has been shown in Proposition 15.5 to take values in d. Then Eqgs. (15.25),
(15.26) give ap 4, pc = bPap, oc- Hence if a and b are linearly independent, we
can find some p = pj. € H such that

ﬂab,ac:apZC’ ﬂab,bc:prc' (1528)
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We substitute this into (15.27) and after simplification obtain A(p)=
p®1+1&p. Therefore, p e d, hence the only nonzero solutions to (15.27)
occur in degree two.

Now using (15.26) and (15.28), we get

Bab, ca=aP3a—bPoa - (15.29)
The skew-symmetry ., .= —Pcq o gives the equations pj. = —p%, and
apq—bpay= Py — dps, - (15.30)

From this we obtain that p§, lies in the linear span of a, b, d. Comparing
the coefficients in front of ac in (15.30), we see that the coefficient of ¢ in
P3s 1s equal to the coefficient of ¢ in pj,. Call this coefficient ¢,,; then
¢pa= —¢4- Then comparison of other coefficients in (15.30) shows that

ch=a¢bc+b¢ca+c¢ab (1531)

for all a, b, ced'. Substitute this in (15.29) to obtain that =1, is trivial
(cf. (15.24)). 1

ProrosITION 15.8. Let H= U(D), and let g be a simple finite-dimensional
Lie algebra. If L=Cur g, then H*(L, k) ~ .

Proof. Let f be a cocycle for L. We will write f(a, b)=p(1®a, 1 ®b)
for a, b € g. Then Jacobi identity leads to the equation

Bla, [b,c)@1=1®p(b, [a,c])=A4(([a,b], c)).  (15.32)

This immediately implies f([a, ], ¢)ed+ k. Since [g, g] =g this shows
that f(a, b)ed+k for all @, beqg.

We can now solve the homogeneous equation (15.32) degree by degree.
Solutions of degree zero are cocycles of the Lie algebra g, hence they are
all trivial. Solutions of degree one satisfy fi(a, [b, c¢])=p([a, b], ¢), and
skew-symmetry implies f(a, b) = —S(f(b, a)) = (b, a). Therefore every
such f is an invariant symmetric bilinear form on g with values in b.
Any such bilinear form can be written as ff(a, b) =(a | b)d where (-|-)
is the Killing form on g and d is some element of d. Such cocycles f§ are
nontrivial, hence inequivalent central extensions are in one-to-one
correspondence with elements of d. ||

THEOREM 15.2. Let H=U(d) and L be a simple Lie H-pseudoalgebra.
Then L may have a nontrivial central extension (given by (15.12), (15.13))

only if
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(i) L=Cur g, in which case H*>(L, k) ~ 0 and cocycles f8 are given by
L.(1®a, 1Q®b)=(a|b)d for a,beg, where ded and (-|-) is the Killing
form.

(i) L=Curf, W(d') withks=d" =d, dim d' = 1, in which case H*(L, k)
is of dimension one, generated by the Virasoro cocycle f(1®s,1® s)=s>.

(i) L=CurZ H(V', y,@') with ® =D, in which case H*(L,k) is
isomorphic to the quotient of the space of all solutions f€d to Egs. (15.19),
(15.20) by the subspace k(2s —x), where red AV is dual to o', sed’ is
such that y' =1,00', and x is given by (15.16).

Proof. (i) and (ii) follow from Propositions 15.8 and 15.4(i), and (iii)
from a direct application of Lemma 15.1.

For any other simple pseudoalgebra L, the strategy is to construct a con-
tinuous family of pseudoalgebras L,, indexed by ek endowed with the
Zariski topology, that are all isomorphic to L when ¢ # 0, and whose fiber
at t=0 is one of the pseudoalgebras already considered in Propositions
15.4(ii), 15.6, and 15.7. Then, since H*(L,,k)=0 for r=0, it will follow
that H?(L,, k) =0 whenever ¢ lies in a neighborhood of 0, hence for all
tek.

In the case of a current pseudoalgebra over a W or S type Lie
pseudoalgebra, choose a basis {0,} of d that contains a basis of ', and
construct the family d}, = b, of Lie algebras indexed by 7€k generated by
elements {07} with Lie bracket [0}, 0;]=1[0,, ]]’ Then for ¢ # 0 we have
an isomorphism 0,20 10, €D, whereas Dy is an abelian Lie algebra.
Then {CurH W(®,)},cx,» where H,=U(d,), H,=U(d)), is a family of
pseudoalgebras all isomorphic to Cur, W(d’) for t+#0. The fiber of this
family at =0 has been shown in Proposition 5.14(ii) to have no nontrivial
central extensions. In the same way, if we set y,(0%) =1y(0;), then
{Curg’ S, %)} sex is a family of pseudoalgebras all isomorphic to

Curfl, S(V', x) for t#0, and the fiber at 1=0 is CUI"HO S(dy, 0) where
Dy =D, are isomorphic to D’ =D as vector spaces but have tr1v1a1 bracket.

If L is a current pseudoalgebra over K(d', 8), for finite-dimensional Lie
algebras d' = d, choose a basis {a;, b;, s} of D" as in Lemma 8.4, and com-
plete it with {d,, .., d,} to a basis of . Then a continuous family {d,} of
Lie algebras can be constructed for 1#0 as d, ~bd spanned by a!=1q;,
bi=tb;, s'=t>, d'=1*d;,, and by setting a?, b?, = —s° to span a
Heisenberg algebra, and all brackets involving d? to be zero. Define
0,e(d,)* by 0,(a’)=0,(b")=0, 0,(s")=—1. Then CurHOK( ,0,) is the
limit of the Lie pseudoalgebras {Cur 1 K(d), 0,)} #0,0 Wthh are all
isomorphic to Cur%, K(d’, 0), and the former Lie pseudoalgebra is of the
type treated in Proposition 15.6. |



134 BAKALOV, D’ANDREA, AND KAC

16. APPLICATION TO THE CLASSIFICATION OF POISSON
BRACKETS IN CALCULUS OF VARIATIONS

In calculus of variations the phase space consists of C* vector functions
u=(u,(x), .., u,(x)) where u; (x) are, for example, functions with compact
support on a closed N-dimensional manifold. We will consider /inear local
Poisson brackets,

{u; (x), u,(y)} = ZBW )05 0(x—) (16.1)

where the sum runs over a finite set of multi-indices o = (ay, ..., ay) € ZY ,
the B,; are linear combinations of the u; and of their derivatives
u? :=07 u;, where 07 :=(0/dx, )" ---(0/dx )", and (x — y) is the delta-
function (defined by [ f(x)d(x—y)dx=/f(y)). By Leibniz rule and
bilinearity, the Poisson bracket (16.1) extends to arbitrary polynomials P
and Q in the u; and their derivatives. Explicitly

0P(x) 0
{P(X), Q(y)} = Z au((f)) a%((;)) 6‘; 65{”1 (X), u](y)} (162)

o B, i j

This bracket, apart from bilinearity and Leibniz rule, should satisfy skew-
commutativity and the Jacobi identity.

The basic quantities in calculus of variations are local functionals
(Hamiltonians) 7 sz P(x) dx. Using bilinearity and integration by parts
(| (0P/ox;) Q dx = —| P(0Q/0x;) dx), we get from (16.2) the following well-
known formula,

oP 0
{Up. 10} = [[ 2500 29U

i, j i J

{u;(x).uy(y)} dxdy,  (163)

where

oP(x) N
50, ~ L (—00) e (164)

is the variational derivative.
More generally, one usually considers a class of Poisson brackets of the
form

{u: (), w(y)} = By(», 05) 6(x — p), (16.5)

where Bj; are differential operators in 05 whose coefficients are polynomials
in u’(y). Then the r x r matrix B=(B,) is called a Hamiltonian operator,
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and, integrating by parts, formula (16.3) can be rewritten in its most
familiar form

O0P(x)\ 0Q(x)
Ip, 1ot =| | B . 16.
{Ip, 1) f< 5u> o dx (16.6)
Given a Hamiltonian /= P(x)dx, we have the corresponding
Hamiltonian system of evolutionary partial differential equations

oP
Lil.z{h’ ui}EZ B, —, (16.7)
~ 7 ou,

so that if another Hamiltonian /%, is in involution with 4, ie., {h, h;} =0,
then £, is an integral of motion of (16.7), i.e., h; =0.

It is shown in [DNI1, M] that for »>2, any Poisson bracket of
hydrodynamic type (i.e., linear in the derivatives) under certain non-
degeneracy conditions can be transformed into a linear Poisson bracket
of hydrodynamic type by a change of the field variables. The latter
Poisson brackets have been studied rather extensively (see [ Do, DN2] and
references there, [ GD, M, Z]).

Let H=C[0/0x,, .., 0/0x,] be the universal enveloping algebra of the
N-dimensional abelian Lie algebra d. Let F=@)_, Hu; be the free
H-module of rank r on generators u;. Consider a linear Poisson bracket
(16.1). For any three subspaces 4, B, C of F, we will use the notation
{4, B} < Cif for any ae 4, be B all coefficients in front of 03 d(x — y) in
{a(x),b(y)} belong to C. We call a linear Poisson algebra any
H-submodule L of F which is closed under the Poisson bracket, i.e., such
that {L, L} = L. By an isomorphism of two such algebras we mean a
C-linear isomorphism preserving Poisson brackets.

If L is a linear Poisson algebra, we define the A-bracket (A=(Ay, ..., Ax))
on L as the Fourier transform of the linear Poisson bracket (16.1):

[uu]1=73 2*Byy;. (16.8)

Then we get a Lie conformal algebra in N (commuting) indeterminates
(defined in the same way as for the N =1 case in the introduction). Thus,
the classification of linear Poisson algebras follows from the classification
of Lie U(d)-conformal algebras, where d is the N-dimensional abelian Lie
algebra.

Recall that the structure of a Lie conformal algebra is equivalent to the
structure of a Lie pseudoalgebra (see Section 9). The relationship between
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the linear Poisson bracket (16.1) and the pseudobracket can be described
explicitly as

[u,+u]=Y PEO® L, 1®0) @y uy, (16.9)
k
if
{010} =X Ph0s 0)ue(y) Sx=2)) - (16.10)

for some polynomials P Note that Eq. (16.1) can always be written in the
form (16.10). Indeed, 1f

{u:(x), u;(p)} ZQ"a 0)(ur(1) 6(x = y))|,—, (16.11)

for some polynomials Qf, then we have (16.10) with Pi(z, w)=

ij°

“(—z,z+w). In this case, the A-bracket (16.8) is given by
[upu,] = Z 0% (4, d) u (16.12)

Remark 16.1. The constant terms of B,; in (16.1) give a central exten-
sion of the linear Poisson algebra corresponding to the B,; with constant
terms removed. In terms of the associated Lie pseudoalgebras this
corresponds to a central extension by C with a trivial action of H. By
Theorem 15.1, these central extensions are parameterized by H?(L, C).

ExampLE 16.1. (cf. [M, DN2, K4, BKV]).
(1) General Poisson algebra W, , where 1 <r<N (1<, j<r):

ou.
{us (0, 1)} = ")

0
o, d(x—y).

J

o(x—y)+u(y) o(x—y)+u;(y)

9
0y,

i

(2) Special Poisson algebra S,  ,, where 2<r<N and y=
(X1, - x-) € C, is the following subalgebra of W, y:

d 0
Y (5 +u) Pion=o}.

It is generated over H= C[0/0x,, ..., 0/0x, ] by elements

0 0
”y(x) = <5)C-+Xi> uj(-x) - <(—M+Xj> u;(x).
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(3) Hamiltonian Poisson algebra H,, n, 2<r=2s<N:

& [Ouly) 0 Ju(y) 0 o
{”(x)’“(”}‘,;l(ay,- ot -5 y>>.

i+s
We have an inclusion H,, y = W, » by letting

c <aui+s(x) . Ju, (X)>

0x; 0X;i s

(4) Current Poisson algebra Cur, g associated to a simple r-dimen-
sional Lie algebra g with structure constants cg. (1<, j,k<r)

(0,0, 50 = Y e o(y) dx— ).
k=1

(5)  Semidirect sum of W, 5 or one of its subalgebras S, y ,, Hy »
with Cury g defined by (1 <i<r, v(x)eCury g)

0 0
(13 (x), o)} =g(yf) Bx = )+ 0(3) 7 0lx ).

A subspace I of a Poisson algebra L is called an ideal if it is invariant
under taking Poisson brackets with elements of L, ie., if {L,I} <L
A Poisson algebra L is called simple (respectively semisimple) if the Poisson
bracket is not identically zero and L contains no nonzero H-invariant
ideals 7 such that I# L (respectively {I, I} #0). Note that the Poisson
algebras that we consider here are finite, ie., finitely generated as
H-modules.

Then Theorems 13.2 and 13.3 and Corollary 13.6 imply:

THEOREM 16.1. (1) Any simple linear Poisson algebra is isomorphic to
one of the Poisson algebras W, y, S, n ,, Hys n, Cury g.

(1) Any semisimple linear Poisson algebra is a direct sum of simple
ones and of the semidirect sums described in Example 16.1(5).

Remark 16.2. It follows from Remark 16.1 and the results of Section
15.4 that all nontrivial central extensions of simple Poisson algebras are
described by the following 2-cocycles.

For aeC" let

13

. 0
Vo, y)=i§1 5 o(x—y).
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Then all nontrivial 2-cocycles for H,  are

Valu(x), u(y)) =y (x, ).

All nontrivial 2-cocycles for Cury g are

yoc(vi (x)7 U](y)) :bijl//oc(xa y)a

where b;= (v, | v;) is the invariant scalar product.
The Poisson algebra W, » has a nontrivial central extension iff r =1, and
in the latter case it is given by the well-known Virasoro cocycle,

a 3
ﬂMXLMyD=<@> O(x—y).

The Poisson algebra S, y , has no nontrivial central extensions if r>2
or y#0, and S, 5 o~ H, y has nontrivial central extensions described
above.
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