4,118 research outputs found

    Online Ensemble Learning of Sensorimotor Contingencies

    Get PDF
    Forward models play a key role in cognitive agents by providing predictions of the sensory consequences of motor commands, also known as sensorimotor contingencies (SMCs). In continuously evolving environments, the ability to anticipate is fundamental in distinguishing cognitive from reactive agents, and it is particularly relevant for autonomous robots, that must be able to adapt their models in an online manner. Online learning skills, high accuracy of the forward models and multiple-step-ahead predictions are needed to enhance the robots’ anticipation capabilities. We propose an online heterogeneous ensemble learning method for building accurate forward models of SMCs relating motor commands to effects in robots’ sensorimotor system, in particular considering proprioception and vision. Our method achieves up to 98% higher accuracy both in short and long term predictions, compared to single predictors and other online and offline homogeneous ensembles. This method is validated on two different humanoid robots, namely the iCub and the Baxter

    Identification of Evolving Rule-based Models.

    Get PDF
    An approach to identification of evolving fuzzy rule-based (eR) models is proposed. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rules based on ranking using the informative potential of the data. In this way, the rule-base structure is inherited and updated when new informative data become available, rather than being completely retrained. The adaptive nature of these evolving rule-based models, in combination with the highly transparent and compact form of fuzzy rules, makes them a promising candidate for modeling and control of complex processes, competitive to neural networks. The approach has been tested on a benchmark problem and on an air-conditioning component modeling application using data from an installation serving a real building. The results illustrate the viability and efficiency of the approach. (c) IEEE Transactions on Fuzzy System

    Defining and applying prediction performance metrics on a recurrent NARX time series model.

    No full text
    International audienceNonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been successfully demonstrated for modeling the input-output behavior of many complex systems. This paper deals with the proposition of a scheme to provide time series prediction. The approach is based on a recurrent NARX model obtained by linear combination of a recurrent neural network (RNN) output and the real data output. Some prediction metrics are also proposed to assess the quality of predictions. This metrics enable to compare different prediction schemes and provide an objective way to measure how changes in training or prediction model (Neural network architecture) affect the quality of predictions. Results show that the proposed NARX approach consistently outperforms the prediction obtained by the RNN neural network

    Remaining Useful Life Estimation by ClassiïŹcation of Predictions Based on a Neuro-Fuzzy System and Theory of Belief Functions.

    No full text
    International audienceVarious approaches for prognostics have been developed, and data-driven methods are increasingly applied. The training step of these methods generally requires huge datasets to build a model of the degradation signal, and estimate the limit under which the degradation signal should stay. Applicability and accuracy of these methods are thereby closely related to the amount of available data, and even sometimes requires the user to make assumptions on the dynamics of health states evolution. Following that, the aim of this paper is to propose a method for prognostics and remaining useful life estimation that starts from scratch, without any prior knowledge. Assuming that remaining useful life can be seen as the time between the current time and the instant where the degradation is above an acceptable limit, the proposition is based on a classification of prediction strategy (CPS) that relies on two factors. First, it relies on the use of an evolving real-time neuro-fuzzy system that forecasts observations in time. Secondly, it relies on the use of an evidential Markovian classifier based on Dempster-Shafer theory that enables classifying observations into the possible functioning modes. This approach has the advantage to cope with a lack of data using an evolving system, and theory of belief functions. Also, one of the main assets is the possibility to train the prognostic system without setting any threshold. The whole proposition is illustrated and assessed by using the CMAPPS turbofan dataset. RUL estimates are shown to be very close to actual values, and the approach appears to accurately estimate the failure instants, even with few learning data

    Nonparametric identification of linearizations and uncertainty using Gaussian process models – application to robust wheel slip control

    Get PDF
    Gaussian process prior models offer a nonparametric approach to modelling unknown nonlinear systems from experimental data. These are flexible models which automatically adapt their model complexity to the available data, and which give not only mean predictions but also the variance of these predictions. A further advantage is the analytical derivation of derivatives of the model with respect to inputs, with their variance, providing a direct estimate of the locally linearized model with its corresponding parameter variance. We show how this can be used to tune a controller based on the linearized models, taking into account their uncertainty. The approach is applied to a simulated wheel slip control task illustrating controller development based on a nonparametric model of the unknown friction nonlinearity. Local stability and robustness of the controllers are tuned based on the uncertainty of the nonlinear models’ derivatives

    From real data to remaining useful life estimation : an approach combining neuro-fuzzy predictions and evidential Markovian classifications.

    No full text
    International audienceThis paper deals with the proposition of a prognostic approach that enables to face up to the problem of lack of information and missing prior knowledge. Developments rely on the assumption that real data can be gathered from the system (online). The approach consists in three phases. An information theory-based criterion is first used to isolate the most useful observations with regards to the functioning modes of the system (feature selection step). An evolving neuro-fuzzy system is then used for online prediction of observations at any horizons (prediction step). The predicted observations are classified into the possible functioning modes using an evidential Markovian classifier based on Dempster-Shafer theory (classification step). The whole is illustrated on a problem concerning the prediction of an engine health. The approach appears to be very efficient since it enables to early but accurately estimate the failure instant, even with few learning data

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    A Human Driver Model for Autonomous Lane Changing in Highways: Predictive Fuzzy Markov Game Driving Strategy

    Get PDF
    This study presents an integrated hybrid solution to mandatory lane changing problem to deal with accident avoidance by choosing a safe gap in highway driving. To manage this, a comprehensive treatment to a lane change active safety design is proposed from dynamics, control, and decision making aspects. My effort first goes on driver behaviors and relating human reasoning of threat in driving for modeling a decision making strategy. It consists of two main parts; threat assessment in traffic participants, (TV s) states, and decision making. The first part utilizes an complementary threat assessment of TV s, relative to the subject vehicle, SV , by evaluating the traffic quantities. Then I propose a decision strategy, which is based on Markov decision processes (MDPs) that abstract the traffic environment with a set of actions, transition probabilities, and corresponding utility rewards. Further, the interactions of the TV s are employed to set up a real traffic condition by using game theoretic approach. The question to be addressed here is that how an autonomous vehicle optimally interacts with the surrounding vehicles for a gap selection so that more effective performance of the overall traffic flow can be captured. Finding a safe gap is performed via maximizing an objective function among several candidates. A future prediction engine thus is embedded in the design, which simulates and seeks for a solution such that the objective function is maximized at each time step over a horizon. The combined system therefore forms a predictive fuzzy Markov game (FMG) since it is to perform a predictive interactive driving strategy to avoid accidents for a given traffic environment. I show the effect of interactions in decision making process by proposing both cooperative and non-cooperative Markov game strategies for enhanced traffic safety and mobility. This level is called the higher level controller. I further focus on generating a driver controller to complement the automated car’s safe driving. To compute this, model predictive controller (MPC) is utilized. The success of the combined decision process and trajectory generation is evaluated with a set of different traffic scenarios in dSPACE virtual driving environment. Next, I consider designing an active front steering (AFS) and direct yaw moment control (DYC) as the lower level controller that performs a lane change task with enhanced handling performance in the presence of varying front and rear cornering stiffnesses. I propose a new control scheme that integrates active front steering and the direct yaw moment control to enhance the vehicle handling and stability. I obtain the nonlinear tire forces with Pacejka model, and convert the nonlinear tire stiffnesses to parameter space to design a linear parameter varying controller (LPV) for combined AFS and DYC to perform a commanded lane change task. Further, the nonlinear vehicle lateral dynamics is modeled with Takagi-Sugeno (T-S) framework. A state-feedback fuzzy H∞ controller is designed for both stability and tracking reference. Simulation study confirms that the performance of the proposed methods is quite satisfactory

    Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions.

    No full text
    International audienceCondition-based maintenance is nowadays considered as a key-process in maintenance strategies and prognostics appears to be a very promising activity as it should permit to not engage inopportune spending. Various approaches have been developed and data-driven methods are increasingly applied. The training step of these methods generally requires huge datasets since a lot of methods rely on probability theory and/or on artificial neural networks. This step is thus time-consuming and generally made in batch mode which can be restrictive in practical application when few data are available. A method for prognostics is proposed to face up this problem of lack of information and missing prior knowledge. The approach is based on the integration of three complementary modules and aims at predicting the failure mode early while the system can switch between several functioning modes. The three modules are: 1) observation selection based on information theory and Choquet Integral, 2) prediction relying on an evolving real-time neuro-fuzzy system and 3) classification into one of the possible functioning modes using an evidential Markovian classifier based on Dempster-Shafer theory. Experiments concern the prediction of an engine health based on more than twenty observations
    • 

    corecore