7,742 research outputs found

    Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in O(n1.5logn)O(n^{1.5} \log n) Time

    Full text link
    We give an O(n1.5logn)O(n^{1.5} \log n) algorithm that, given a directed planar graph with arc capacities, a set of source nodes and a set of sink nodes, finds a maximum flow from the sources to the sinks.Comment: to be merged with 1) Yahav Nussbaum 1012.4767 2) Philip N. Klein and Shay Mozes 1008.5332 3) Glencora Borradaile and Christian Wulff-Nilsen 1008.496

    Improved Bounds for Shortest Paths in Dense Distance Graphs

    Get PDF
    We study the problem of computing shortest paths in so-called dense distance graphs, a basic building block for designing efficient planar graph algorithms. Let G be a plane graph with a distinguished set partial{G} of boundary vertices lying on a constant number of faces of G. A distance clique of G is a complete graph on partial{G} encoding all-pairs distances between these vertices. A dense distance graph is a union of possibly many unrelated distance cliques. Fakcharoenphol and Rao [Fakcharoenphol and Rao, 2006] proposed an efficient implementation of Dijkstra\u27s algorithm (later called FR-Dijkstra) computing single-source shortest paths in a dense distance graph. Their algorithm spends O(b log^2{n}) time per distance clique with b vertices, even though a clique has b^2 edges. Here, n is the total number of vertices of the dense distance graph. The invention of FR-Dijkstra was instrumental in obtaining such results for planar graphs as nearly-linear time algorithms for multiple-source-multiple-sink maximum flow and dynamic distance oracles with sublinear update and query bounds. At the heart of FR-Dijkstra lies a data structure updating distance labels and extracting minimum labeled vertices in O(log^2{n}) amortized time per vertex. We show an improved data structure with O((log^2{n})/(log^2 log n)) amortized bounds. This is the first improvement over the data structure of Fakcharoenphol and Rao in more than 15 years. It yields improved bounds for all problems on planar graphs, for which computing shortest paths in dense distance graphs is currently a bottleneck

    Single Source - All Sinks Max Flows in Planar Digraphs

    Full text link
    Let G = (V,E) be a planar n-vertex digraph. Consider the problem of computing max st-flow values in G from a fixed source s to all sinks t in V\{s}. We show how to solve this problem in near-linear O(n log^3 n) time. Previously, no better solution was known than running a single-source single-sink max flow algorithm n-1 times, giving a total time bound of O(n^2 log n) with the algorithm of Borradaile and Klein. An important implication is that all-pairs max st-flow values in G can be computed in near-quadratic time. This is close to optimal as the output size is Theta(n^2). We give a quadratic lower bound on the number of distinct max flow values and an Omega(n^3) lower bound for the total size of all min cut-sets. This distinguishes the problem from the undirected case where the number of distinct max flow values is O(n). Previous to our result, no algorithm which could solve the all-pairs max flow values problem faster than the time of Theta(n^2) max-flow computations for every planar digraph was known. This result is accompanied with a data structure that reports min cut-sets. For fixed s and all t, after O(n^{3/2} log^{3/2} n) preprocessing time, it can report the set of arcs C crossing a min st-cut in time roughly proportional to the size of C.Comment: 25 pages, 4 figures; extended abstract appeared in FOCS 201
    corecore