
Improved Bounds for Shortest Paths in Dense
Distance Graphs
Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Adam Karczmarz1

University of Warsaw, Poland
a.karczmarz@mimuw.edu.pl

Abstract
We study the problem of computing shortest paths in so-called dense distance graphs, a basic
building block for designing efficient planar graph algorithms. Let G be a plane graph with a
distinguished set ∂G of boundary vertices lying on a constant number of faces of G. A distance
clique of G is a complete graph on ∂G encoding all-pairs distances between these vertices. A dense
distance graph is a union of possibly many unrelated distance cliques.

Fakcharoenphol and Rao [7] proposed an efficient implementation of Dijkstra’s algorithm
(later called FR-Dijkstra) computing single-source shortest paths in a dense distance graph. Their
algorithm spends O(b log2 n) time per distance clique with b vertices, even though a clique has
b2 edges. Here, n is the total number of vertices of the dense distance graph. The invention of
FR-Dijkstra was instrumental in obtaining such results for planar graphs as nearly-linear time
algorithms for multiple-source-multiple-sink maximum flow and dynamic distance oracles with
sublinear update and query bounds.

At the heart of FR-Dijkstra lies a data structure updating distance labels and extracting
minimum labeled vertices in O(log2 n) amortized time per vertex. We show an improved data
structure with O

(
log2 n

log2 logn

)
amortized bounds. This is the first improvement over the data

structure of Fakcharoenphol and Rao in more than 15 years. It yields improved bounds for
all problems on planar graphs, for which computing shortest paths in dense distance graphs is
currently a bottleneck.
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61:2 Improved Bounds for Shortest Paths in Dense Distance Graphs

1 Introduction

Finding a truly subquadratic, strongly polynomial algorithm for many of the most basic
real-weighted graph problems like the single-source shortest paths or the maximum flow on
sparse digraphs seems to be very difficult. However, the situation changes significantly if we
restrict ourselves to planar digraphs, which constitute an important class of sparse graphs.
In this regime the ultimate goal is to obtain linear or almost linear time complexity.

In their breakthrough paper, Fakcharoenphol and Rao gave the first nearly-linear time
algorithm for single-source shortest paths in real-weighted planar graphs [7]. Their algorithm
had O(n log3 n) time complexity. Although their upper bound was eventually improved
to O

(
n log2 n

log logn

)
by Mozes and Wulff-Nilsen [22], the techniques introduced in [7] proved

very useful in obtaining not only nearly-linear time algorithms for other static planar graph
problems, but also first sublinear dynamic algorithms for shortest paths and maximum flows.

A major contribution of Fakcharoenphol and Rao was introducing the general concept
of a dense distance graph. Let G be a real-weighted plane digraph and let ∂G denote some
subset of its vertices, called boundary vertices, such that there exist ` = O(1) faces f1, . . . , f`
of G satisfying ∂G ⊆ V (f1) ∪ . . . V (f`). Such graphs with a topologically nice boundary
typically emerge after decomposing a plane graph using a cycle separator. For example, by
using a cycle separator of Miller [19], one can decompose any n-vertex triangulated plane
graph H into two subgraphs Hin and Hout such that (i) Hin ∪Hout = H, (ii) Hin and Hout
are smaller than H by a constant factor, (iii) the set ∂Hin = ∂Hout = V (Hin) ∩ V (Hout) has
size O(

√
n) and lies both on a single face of Hin and on a single face of Hout.

We define a distance clique of G, denoted DC(G), to be a complete graph on ∂G such
that the weight of an edge uv is equal to the length of the shortest path from u to v in G.
A dense distance graph is a union of possibly many unrelated distance cliques.

We note that such a definition of a dense distance graph (also used in [23]) is a bit more
general than that of Fakcharoenphol and Rao [7], who defined it only with respect to a
recursive decomposition of G using cycle-separators. In fact, subsequently dense distance
graphs have been also defined a bit differently with respect to so-called r-divisions [13], and
even the two sides of a cycle-separator [15] (i.e., DC(Hin)∪DC(Hout) in the above example).
The definition we assume in this paper captures all these cases.

Suppose we are given q distance cliques DC(G1), . . . ,DC(Gq) explicitly. Let DDG =⋃q
i=1 DC(Gi), V = ∂G1 ∪ . . . ∪ ∂Gq and n = |V |. Clearly, DDG has

∑q
i=1 |∂Gi|2 edges in

total. Fakcharoenphol and Rao showed how to compute single-source shortest paths in such
graph DDG with non-negative edge weights in only O

(∑
i |∂Gi| log2 n

)
time, i.e., for each

DC(Gi) one only needs to spend time nearly-linear in the number of vertices of DC(Gi), as
opposed to its number of edges, i.e., |∂Gi|2. Their method is often called the FR-Dijkstra,
as it follows the overall approach of Dijkstra’s algorithm. Whereas Dijkstra’s algorithm
uses a priority queue to maintain its distance labels and extract a non-visited vertex with
minimum label, a much more sophisticated data structure is used in FR-Dijkstra. This
data structure is capable of relaxing many edges in a single step, by leveraging the fact that
certain submatrices of the adjacency matrix of a distance clique are Monge matrices.

Applications of Dense Distance Graphs and FR-Dijkstra. Fakcharoenphol and Rao origi-
nally employed FR-Dijkstra to construct their dense distance graph recursively and answer
distance queries on it. However, the applications of FR-Dijkstra proved much broader and thus
it has become an important planar graph primitive used to obtain numerous breakthrough
results in recent years. We briefly cover the most important of these results below.
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The dense distance graphs and FR-Dijksta have been used to break the long-standing
O(n logn) barrier for computing minimal s, t-cuts [12] in undirected planar graphs and
global min-cuts in both undirected [17] and directed [20] planar graphs. Borradaile et al. [5]
developed an oracle answering arbitrary min s, t-cut queries in an weighted undirected
planar graph after only near-linear preprocessing. This result has been later generalized to
bounded-genus graphs [3], thus proving the usefulness of FR-Dijkstra in more general graph
classes.

The most sophisticated applications of FR-Dijkstra are probably those related to com-
puting maximum flow in directed planar graphs. Borradaile et al. [4] gave a nearly-linear
time max-flow algorithm for the case of multiple source and multiple sinks and maximum
bipartite matching. Later, Łącki et al. [18] gave a nearly-linear time algorithm computing
the maximum flow values between a specified source and all possible sinks.

Most recently, Asathulla et al. [2] used FR-Dijkstra to break through the O(n3/2) barrier
for minimum-cost bipartite weighted matching with integer weights. Cabello [6] showed the
first truly subquadratic algorithm for computing a diameter of a weighted planar graph.
Even though it mainly builds on a new concept of additively weighted Voronoi diagrams
for planar graphs, dense distance graphs and FR-Dijkstra are still used extensively in his
work. The diameter algorithm was later improved by Gawrychowski et al. [9] to run in
O(n5/3 polylogn). Currently, [9] does not require FR-Dijkstra, but it seems that using it
would be again required if one gave a more efficient Voronoi diagrams construction algorithm
for planar graphs. Last but not least, FR-Dijkstra has been instrumental to obtaining
virtually all exact dynamic algorithms for shortest paths, maximum flows and minimum cuts
in planar graphs, with sublinear update/query bounds [7, 12, 13, 14, 17].

Significance. Dense distance graphs are pivotal in designing efficient planar graph algo-
rithms, and therefore obtaining fine-grained bounds for computing and manipulating them is
an important direction. Although a better algorithm (in comparison to the recursive method
of [7]) running in O((|V |+ |∂G|2) logn) time has been proposed for computing a distance
clique [14], improving the FR-Dijkstra itself proved very challenging and no progress over [7]
has been made so far in the most general setting that we study.

Related Work. For the important case of a dense distance graph over an r-division, i.e.,
when the individual graphs Gi are the pieces of an r-division with few holes of a single planar
graph (see e.g., [16]), Mozes et al. [21] gave an algorithm for computing single source shortest
paths in O

(
n√
r

log2 r
)
time. The original FR-Dijkstra runs in O

(
n√
r

logn log r
)
time in

that case. Hence, [21] does not improve over it in the case of r = polyn, which emerges in
many important applications, e.g., [2, 3, 4, 13, 18]. However, dense distance graphs over
r-divisions with r = polylog(n) have also found applications, most notably in O(n log logn)
algorithms for minimum cuts [12, 17, 20]. Computing shortest paths in dense distance graphs
is not a bottleneck in those algorithms, though. For other applications of dense distance
graphs over r-divisions with small r, consult [21].

Our Contribution. In this paper we show an algorithm for computing single-source shortest
paths in a DDG in O

(∑q
i=1 |∂(Gi)| log2 n

log2 logn

)
time, which is asymptotically faster than

FR-Dijkstra in all cases. Specifically, for a dense distance graph defined over an r-division,
the algorithm runs in O

(
n√
r

log2 n
log2 logn

)
time.

We treat the problem of computing shortest paths in DDG from a purely data-structural
perspective. At a high level, instead of developing an entirely new shortest paths algorithm,
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61:4 Improved Bounds for Shortest Paths in Dense Distance Graphs

we propose a new data structure for maintaining distance labels and extracting minimum
labeled vertices in amortized O

(
log2 n

log2 logn

)
time, as opposed to O(log2 n) time in [7].

In [7], a distance clique is first partitioned into square Monge matrices, each handling a
subset of its edges. For any such matrix, a separate data structure is used for relaxing the cor-
responding edges and extracting the labels possibly induced by these edge relaxations. Recall
that in the case of Dijkstra’s algorithm, the improvement from O(m logn) to O(m+ n logn)
is obtained by noticing that relaxing edges is cheaper than extracting minimum labeled
vertices. Consequently, one can use a Fibonacci heap [8] in place of a binary heap. We show
that in the case of the data structure originally used in [7] for handling Monge matrices,
the situation is in a sense the opposite: label extractions can be made cheaper than edge
relaxations. We make use of this fact by proposing a biased scheme of partitioning distance
cliques into rectangular (as opposed to square) Monge matrices, different than in [7]. Whereas
in [7], the partition follows from a very natural idea of splitting face boundary into halves,
our partition is tailored to exploit this asymmetry between the cost of processing a row and
the cost of processing a column.

Our result implies an immediate improvement by a factor of O(log2 logn) in the time
complexity for a number of planar digraph problems such as multiple-source multiple-sink
maximum flows, maximum bipartite matching [4], single-source all-sinks maximum flows [18],
for which the best known time bounds were O(n log3 n), i.e., already nearly-linear. It also
yields polylog-logarithmic speed-ups to both preprocessing and query/update algorithms
of dynamic algorithms for shortest paths and max-flows [12, 13, 14]. More generally, we
make polylog-logarithmic improvements to all previous results (such as [2]). for which the
bottleneck of the best known algorithm is computing shortest paths in a dense distance
graph. A more detailed discussion on the implications of our result and on how FR-Dijkstra
is used in different algorithms for planar graphs can be found in the full version [11].

It should be noted that for small values of r, such as r = polylog(n), our algorithm does
not improve on [21] for the case of a dense distance graph over an r-division.

Model of Computation. We assume the standard word-RAM model with word size Ω(logn).
However, we stress that our algorithm works in the very general case of real edge lengths,
i.e., we are only allowed to perform arithmetical operations on lengths and compare them.

Outline of the Paper. In Section 2 we introduce the matrix notation that we use and
state some important properties of Monge matrices. In Section 3 we give an overview of our
shortest paths algorithm and also discuss the main ideas behind the improved data structure
for reporting column minima of a staircase Monge matrix in an online fashion.

In Sections 4, 5 and 6 we develop the increasingly more powerful data structures for
reporting column minima in online Monge matrices. Each of these data structures is used in
a black-box manner in the following section.

Due to space limitations, many technical details, most proofs and discussion of the
applications can be found in the full version [11].

2 Monge Matrices and Their Minima

In this paper we define a matrix to be a partial functionM : R× C → R, where R (called
rows) and C (called columns) are some totally ordered finite sets. Set R = {r1, . . . , rk} and
C = {c1, . . . , cl}, where r1 ≤ . . . ≤ rk and c1 ≤ . . . ≤ cl. If for ri, rj ∈ R we have ri ≤ rj , we
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also say that ri is (weakly) above rj and rj is (weakly) below ri. Similarly, when ci, cj we
have ci < cj , we say that ci is to the left of cj and cj is to the right of ci.

For some matrixM defined on rows R and columns C, for r ∈ R and c ∈ C we denote
byMr,c an element ofM. An element is the value ofM on pair (r, c), if defined.

For R′ ⊆ R and C ′ ⊆ C we defineM(R′, C ′) to be a submatrix ofM. M(R′, C ′) is a
partial function on R′ ×C ′ satisfyingM(R′, C ′)r,c =Mr,c for any (r, c) ∈ R′ ×C ′ such that
Mr,c is defined. We sometimes abuse this notation by writingM(R′, c′) orM(r′, C ′) when
R′ or C ′ are single-element, i.e., when R′ = {r′} or C ′ = {c′}.

The minimum of a matrix min{M} is defined as the minimum value of the partial
functionM. The column minimum ofM in column c is defined as min{M(R, {c})}.

We call a matrixM rectangular ifMr,c is defined for every r ∈ R and c ∈ C. A matrix
is called staircase (flipped staircase) if |R| = |C| andMri,cj is defined iff i ≤ j (i ≥ j resp.).

Finally, a subrectangle of M is a rectangular matrix M({ra, . . . , rb}, {cx, . . . , cy}) for
1 ≤ a ≤ b ≤ k, 1 ≤ x ≤ y ≤ l. We define a subrow to be a subrectangle with a single row.

For a matrix M and a function d : R → R, define the offset matrix off(M, d) to be a
matrixM′ such that for all r, c such thatMr,c is defined, we haveM′r,c =Mr,c + d(r).

We say that a matrixM with rows R and columns C is a Monge matrix, if for each r1, r2 ∈
R, r1 ≤ r2 and c1, c2 ∈ C, c1 ≤ c2 such that all elementsMr1,c1 ,Mr1,c2 ,Mr2,c1 ,Mr2,c2 are
defined, the Monge property holds, i.e., we have

Mr2,c1 +Mr1,c2 ≤Mr1,c1 +Mr2,c2 .

I Fact 1. Let M be a Monge matrix. For any R′ ⊆ R and C ′ ⊆ C, M(R′, C ′) is also a
Monge matrix.

I Fact 2. LetM be a rectangular Monge matrix. Assume that for some c ∈ C and r ∈ R,
Mr,c is a column minimum of c. Then, for each column c− to the left of c, there exists a
row r− ≥ r, such thatMr−,c− is a column minimum of c−. Similarly, for each column c+
to the right of c, there exists a row r+ ≤ r, such thatMr+,c+ is a column minimum of c+.

I Fact 3. LetM be a Monge matrix and let d : R→ R. Then off(M, d) is also Monge.

I Fact 4. LetM be a rectangular Monge matrix and assume R is partitioned into disjoint
blocks R = R1, . . . , Ra such that each Ri is a contiguous group of subsequent rows and
each Ri is above Ri+1. Assume also that the set C is partitioned into blocks C = C1, . . . , Cb
so that Ci is to the left of Ci+1. Then, a matrixM′ with rows R and columns C defined as
M′Ri,Cj = min{M(Ri, Cj)}, is also a Monge matrix.

I Fact 5. LetM be a rectangular Monge matrix. Let r ∈ R and C = {c1, . . . , cl}. The set
of columns Cr ∈ C having one of their column minima in row r is contiguous, that is either
Cr = ∅ or Cr = {ca, . . . , cb} for some 1 ≤ a ≤ b ≤ l.

3 Shortest Paths in a Dense Distance Graph: an Overview

Recall that we are explicitly given q graphs DC(G1), . . . ,DC(Gq), such that each DC(Gi)
is a complete digraph encoding the distances between boundary vertices ∂Gi of a plane
digraph Gi. Additionally, we assume that ∂Gi is distributed into some O(1) faces of Gi. We
also assume that the distances between the boundary vertices of Gi are non-negative.

Let DDG = DC(G1) ∪ . . . ∪DC(Gq), V = ∂G1 ∪ . . . ∪ ∂Gq and n = |V |. Our goal is to
find an efficient algorithm for computing single-source shortest paths in DDG.

ICALP 2018



61:6 Improved Bounds for Shortest Paths in Dense Distance Graphs

As the graphs DC(Gi) are given explicitly, we can assume that we are allowed to preprocess
each DC(Gi) once in time asymptotically no more than the time used to construct it, which
is clearly Ω(|∂Gi|2). To the best of our knowledge, in all known applications this time is
Θ((|V (Gi)|+ |∂Gi|2) log |V (Gi)|), which is the running time of Klein’s algorithm [14]. After
the preprocessing stage, we may need to handle multiple shortest-path queries.

In order to obtain the speedup over FR-Dijkstra we use a subtle combination of techniques.
The single-source shortest paths in DDG are computed with an optimized implementation of
Dijkstra’s algorithm. Recall that Dijkstra’s algorithm run from the source s grows a set S of
visited vertices of the graph such that the lengths d(v) of the shortest paths s→ v for v ∈ S
are already known. Initially S = {s} and we repeatedly choose a vertex y ∈ V \ S such that
the value (a distance estimate) z(y) := minx∈S{d(x) + `(x, y) : (x, y) ∈ E} is the smallest.
The vertex y is then added to S with d(y) = z(y). The vertices y ∈ V \S are typically stored
in a priority queue with keys z(y), which allows to choose the best y efficiently.

Since the vertices of ∂Gi lie on O(1) faces of a planar digraph Gi, we can exploit the
fact that many of the shortest paths represented by DC(Gi) have to cross. Formally, this is
captured by the following lemma. Denote by DC(Gi)[u, v] the weight of uv in DC(Gi).

I Lemma 1 ([22]). Each DC(Gi) can be decomposed into O(1) (possibly flipped) staircase
Monge matrices Di of at most |∂Gi| rows and columns. For each u, v ∈ ∂Gi we have:

for eachM∈ Di such thatMu,v is defined,Mu,v ≥ DC(Gi)[u, v].
there existsM∈ Di such thatMu,v is defined andMu,v = DC(Gi)[u, v].

The decomposition can be computed in O(|∂Gi|)2) time if ∂Gi is a subset of a single face
of Gi and in O((|V (Gi)|+ |∂Gi|2) log |V (Gi)|) time otherwise.

In other words, the adjacency matrix of DC(Gi) can be partitioned into a constant number
of staircase Monge matrices. Consequently, a natural approach to maintaining the minimum
distance estimate z(y), for y /∈ S, is to split the work needed to accomplish this task between
the individual matricesM∈

⋃q
i=1Di that encode the edges of DDG. Then, it is sufficient

to design a data structure reporting the column minima of the offset matrix off(M, d) in
an online fashion. Specifically, the data structure has to handle row activations intermixed
with extractions of the column minima in non-decreasing order. Once Dijkstra’s algorithm
establishes the distance d(v) to some vertex v, the row of off(M, d) corresponding to v is
activated and becomes available to the data structure. This row contains values d(v)+`(v, w),
where `(v, w) is, by Lemma 1, no less than the length of the edge vw in DDG. Alternatively,
a minimum in some column corresponding to v (in the revealed part of off(M, d)) may be
used by Dijkstra’s algorithm to establish a new distance label z(v) = d(v), even though not
all rows of off(M, d) have been revealed so far. In this case, we can guarantee that all the
inactive rows of off(M, d) contain entries not smaller than d(v) and hence we can safely
extract the column minimum of off(M, d).

Such an approach was also used by Fakcharoenphol and Rao [7] and Mozes et al. [21],
who both dealt with staircase Monge matrices by using a recursive partition into square
Monge matrices, which are easier to handle. In particular, Fakcharoenphol and Rao showed
that a sequence of row activations and column minima extractions can be performed on an
m×m square Monge matrix in O(m logm) time. The recursive partition assigns each row
and column to O(log |∂Gi|) square Monge matrices. As a result, in [7], the total time for
handling all the square matrices is O(|∂Gi| log2 |∂Gi|). The details and the pseudocode of
the above shortest path algorithm can be found in the full version [11].
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The Data Structure. Developing an improved data structure reporting the column minima
of an online offset staircase Monge matrix is the main contribution of this paper. This goal
is achieved in three steps, presented in the following three sections in a bottom-up fashion.
Below we sketch the main ideas behind these steps.

Our first component is a refined data structure for handling row activations and column
minima extractions on a rectangular Monge matrix, described in Section 4. We show a data
structure supporting any sequence of operations on a k × l matrix in O

(
k logm

log logm + l logm
)

total time, where m = max(k, l). In comparison to [7], we do not map all the columns to
active rows containing the current minima. Instead, the columns are assigned potential row
sets of bounded size that are guaranteed to contain the “currently optimal” rows. This
relaxed notion allows to remove the seemingly unavoidable binary search at the heart of [7]
and instead use the SMAWK algorithm [1] to split the potential row sets once they become
too large. The maintenance of a priority queue used for reporting the column minima in
order is possible with the recent efficient data structure supporting subrow minimum queries
in Monge matrices [10] and priority queues with O(1) time Decrease-Key operation [8].

The second step is to relax the requirements posed on a data structure handling rectangular
k × l Monge matrices. It is motivated by the following observation. Let ∆ > 0 be an integer.
Imagine we have found the minima of l/∆ evenly spread, pivot columns c1, . . . , cl/∆. Denote
by r1, . . . , rl/∆ some rows containing the corresponding minima. A well-known property of
Monge matrices implies that for any column c′ lying between ci and ci+1, we only have to
look for a minimum of c′ in rows ri, . . . , ri+1. Thus, the minima in the remaining columns
can be found in O(k∆ + l) total time. In Section 5 we show how to adapt this idea to an
online setting that fits our needs. The columns are partitioned into O(l/∆) blocks of size
at most ∆. Each block is conceptually contracted to a single column: an entry in row r

is defined as the minimum in row r over the contracted columns. For sufficiently small
values of ∆, such a minimum can be computed in O(1) time using the data structure of [10].
Locating a block minimum can be seen as an introduction of a new pivot column. We handle
the block matrix with the data structure of Section 4 and prove that the total time needed to
correctly report all the column minima is O

(
k logm

log logm + k∆ + l + l
∆ logm

)
. In particular,

for ∆ = log1−εm, this bound becomes O
(
k logm

log logm + l logεm
)
.

Finally, in Section 6 we exploit the asymmetry of per-row and per-column costs of
the developed block data structure for rectangular matrices by using a different partition
of a staircase Monge matrix. Our partition is biased towards columns, i.e., the matrix
is split into rectangular (as opposed to square) Monge matrices, each with roughly poly-
logarithmically more columns than rows. Consequently, the total number of rows in these
matrices is O

(
|∂Gi| log |∂Gi|

log log |∂Gi|

)
, whereas the total number of columns is only slightly larger,

i.e., O
(
|∂Gi| log1+ε |∂Gi|

)
. This yields a data structure handling staircase Monge matrices

in O
(
|∂Gi| log2 |∂Gi|

log2 log |∂Gi|

)
total time. By plugging this data structure into our shortest path

algorithm, we obtain the following theorem.

I Theorem 2. The single-source shortest paths computations in DDG can be performed in
O
(∑q

i=1 |∂Gi|
log2 n

log2 logn

)
time. The required preprocessing time per each Gi is O(|∂Gi|2) if

∂Gi lies on a single face of Gi, and O
(
|V (Gi)|+ |∂Gi|2) log |V (Gi)|

)
otherwise.
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4 Online Column Minima of a Rectangular Offset Monge Matrix

LetM0 be a rectangular k × l Monge matrix. Let R = {r1, . . . , rk} and C = {c1, . . . , cl} be
the sets of rows and columns ofM0, respectively. Set m = max(k, l).

Let d : R → R be an offset function and set M = off(M0, d). By Fact 3, M is also
a Monge matrix. Our goal is to design a data structure capable of reporting the column
minima of M in increasing order of their values. However, the function d is not entirely
revealed beforehand, as opposed to the matrixM0. There is an initially empty, growing set
R ⊆ R containing the rows for which d(r) is known. Alternatively, the set R can be seen as
“active” rows ofM that can be accessed by the data structure. There is also a set C ⊆ C
containing the remaining columns for which we have not reported the minima yet. Initially,
C = C and C shrinks over time. We also provide a mechanism to guarantee that the rows
that have not been revealed do not influence the smallest of the column minima ofM(R,C).

The exact set of operations we support is the following:
Activate-Row(r), where r ∈ R \R – add r to the set R.
Lower-Bound() – compute the number min{M(R,C)}.
Ensure-Bound-And-Get() – inform the data structure that we indeed have
min{M(R \R,C)} ≥ min{M(R,C)} = Lower-Bound(), that is, the smallest element
ofM(R,C) does not depend on the values ofM located in rows R \R.
Observe that such claim implies that for some column c ∈ C we have min{M(R, c)} =
min{M(R,C)}, which in turn means that we are able to find the minimum element in
column c. The function returns any such c and removes it from the set C.
Current-Min-Row(c), where c ∈ C – compute r, where r ∈ R is a row such that
min{M(R, c)} =Mr,c. If R = ∅, return nil. Note that c is not necessarily in C.
Additionally, we require Current-Min-Row to have the following property: once the col-
umn c is moved out of C, Current-Min-Row(c) always returns the same row. Moreover,
for c1, c2 ∈ C, c1 < c2, we have Current-Min-Row(c1) ≥ Current-Min-Row(c2).

Note that Activate-Row increases the size of R and thus cannot be called more than k
times. Analogously, Ensure-Bound-And-Get decreases the size of C so it cannot be called
more than l times. Actually, in order to reveal all the column minima with this data structure,
the operation Ensure-Bound-And-Get has to be called exactly l times.

4.1 The Components
The Subrow Minimum Query Data Structure. Given r ∈ R and a, b, 1 ≤ a ≤ b ≤ l, a
subrow minimum query S(r, a, b) computes a column c ∈ {ca, . . . , cb} such that Mr,c =
min{M(r, {ca, . . . , cb})}. We use the following theorem of Gawrychowski et al. [10].

I Theorem 3 ([10]). Given a k× l rectangular Monge matrixM, a data structure supporting
subrow minimum queries in O(log log (k + l)) time can be constructed in O(l log k) time.

Recall thatM = off(M0, d). Adding the offset d(r) to all the elements in row r ofM0
does not change the relative order of elements in row r. Hence, the answer to a subrow
minimum query S(r, a, b) inM is the same as the answer to S(r, a, b) inM0.

Therefor, by building a data structure of Theorem 3 forM0 we can answer any subrow
minimum query inM in O(log logm) time.

The Column Groups. The set C is internally partitioned into disjoint, contiguous column
groups C1, . . . , Cq (where C1 is the leftmost and Cq is the rightmost), so that

⋃
i Ci = C. For

each c /∈ C, there is a group consisting of a single element c. Such a group is called done.
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As the groups constitute contiguous segments of columns, we can represent the partition
with a subset F ⊆ C containing the first columns of individual groups. Each group is
identified with its leftmost column. We use a dynamic predecessor data structure [24] for
maintaining the set F . Such representation also allows to split groups and merge neighboring
groups in O(log logm) time.

The Potential Row Sets. For each Ci we store a set P (Ci) ⊆ R, called a potential row set.
Between consecutive operations, the potential row sets satisfy the following invariants:
P.1 For any c ∈ Ci there exists a row r ∈ P (Ci) such that min{M(R, c)} =Mr,c.
P.2 The size of any set P (Ci) is less than 2α, where α =

√
logm.

P.3 For any i < j and any r ∈ P (Ci), r′ ∈ P (Cj), we have r ≥ r′.
The sets P (Ci) are stored as balanced binary search trees, sorted bottom to top. Intuitively,
invariant 3 can be maintained because, by Fact 1,M(R,C) is a Monge matrix, so Fact 2
applies. Then, we have |P (Ci) ∩ P (Ci+1)| ≤ 1, so the sum of sizes of sets P (Ci) is O(k + l).

I Lemma 4. An insertion or deletion of some r to P (Ci) (along with the update of the
auxiliary structures) can be performed in O(logα+ log logm) time.

Clearly, one can answer the Current-Min-Row(c) query by finding the relevant group Ci,
c ∈ Ci, and examining the entriesMr,c for r ∈ P (Ci). This takes O(log logm+ α) time.

Upon activation of a new row r, we first merge the groups Cj such that r contains a
current minimum for each column in Cj . The potential row set of the newly formed group is
set to {r}. Next, we insert r to some (at most two) of the existing potential row sets. This
might make some P (Ci) break invariant 2. In such case the group Ci along with P (Ci) is split,
so that the resulting potential row sets are of size α. The splitting algorithm summarized by
the following lemma which leverages the SMAWK algorithm [1] to decrease the per-row cost
of a split.

I Lemma 5. LetM be a u×v rectangular Monge matrix with rows {r1, . . . , ru} and columns
C = {c1, . . . , cv}. For any i ∈ [1, u], in O

(
u log v

logu

)
time we can find such cs ∈ C that:

1. Some minima of columns c1, . . . , cs lie in rows ri+1, . . . , ru.
2. Some minima of columns cs+1, . . . , cv lie in rows r1, . . . , ri.
As the split of some fixed P (Ci) happens at most once per α insertions, we charge the
O
(
α logm

logα

)
cost of splitting P (Ci) to the α elements inserted since the last split of P (Ci).

The total number of insertions performed on the potential row sets is O(k + l).

The Priority Queue. A priority queue H contains an element c for each c ∈ C. The queue
H satisfies the following invariants between any two operations.
H.1 For each c ∈ C, the key of c in H is greater than or equal to min{M(R, c)}.
H.2 For each group Cj that is not done, there exists such column cj ∈ Cj that the key of cj

in H is equal to min{M(R, cj)} = min
{
M(R, Cj)

}
.

Note that by invariants 1 and 2, the key at the top of H is in fact equal to min{M(R,C)}.
Hence, Lower-Bound can be implemented trivially in O(1) time. The following lemma
follows easily from invariant 1 and Theorem 3.

I Lemma 6. We can ensure 2 is satisfied for a single group Cj in O(α log logm) time.

The detailed description of how the individual operations are implemented can be found
in the full version [11]. The performance of our data structure can be summarized as follows.
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I Lemma 7. LetM be a k × l offset Monge matrix. There exists a data structure built in
O(k+ l logm) time, supporting Lower-Bound in O(1) time and both Current-Min-Row
and Ensure-Bound-And-Get in O(logm) time. Additionally, any sequence of operations
Activate-Row is performed in O

(
(k + l) logm

log logm

)
total time, where m = max(k, l).

5 Online Column Minima of a Block Monge Matrix

LetM = off(M0, d), R, C, l, k,m be defined as in Section 4. In this section we consider
the problem of reporting the column minima of a rectangular offset Monge matrix, but
in a slightly different setting. Again, we are given a fixed rectangular Monge matrix M0
and we also have an initially empty, growing set of rows R ⊆ R for which the offsets d(·)
are known. Let ∆ > 0 be an integral parameter not larger than l. We partition C into
a set B = {B1, . . . , Bb} of at most dl/∆e blocks, each of size at most ∆. The columns
in each Bi constitute a contiguous fragment of c1, . . . , cl, and each block Bi is to the left
of Bi+1. We also maintain a shrinking subset B ⊆ B containing the blocks Bi, such that the
minima min{M(R,Bi)} are not yet known. More formally, for each Bi ∈ B \ B, we have
min{M(R,Bi)} = min{M(R,Bi)}. Initially B = B.

For each c ∈ C not contained in the blocks of B, the data structure explicitly maintains
the current minimum, i.e., the value min{M(R, c)}. Moreover, when a new row is activated,
we provide the user with columns of

⋃
(B \ B) for which the current minima have changed.

For blocks B, the data structure only maintains the value min{M(R,
⋃
B)}. Once the user

can guarantee that min{M(R,
⋃
B)} does not depend on the “hidden offsets” of rows R \R,

the data structure moves a block Bi ∈ B such that min{M(R,
⋃
B)} = min{M(R,Bi)} out

of B and makes it possible to access the current minima in the columns of Bi.
More formally, we support the following set of operations:
Activate-Row(r), where r ∈ R \R – add r to the set R.
Block-Lower-Bound() – return min{M(R,

⋃
B)}.

Block-Ensure-Bound() – tell the data structure that indeed min{M(R \ R,C)} ≥
Block-Lower-Bound() = min{M(R,Bi)}, for some Bi ∈ B, i.e., the smallest element
ofM(R,

⋃
B) does not depend on the entries ofM located in rows R \R.

As the minimum ofM(R,Bi) can now be computed, Bi is removed from B.
Current-Min(c), where c ∈ C – for c ∈

⋃
(B \B), return the explicitly maintained value

min{M(R, {c})}. For c ∈
⋃
B, set Current-Min(c) =∞.

Additionally, the data structure provides access to the queue Updates containing
the columns c ∈

⋃
(B \ B) such that the most recent call to either Activate-Row or

Block-Ensure-Bound resulted in a change (or an initialization, if c ∈ Bi and the last up-
date was Block-Ensure-Bound, which moved Bi out of B) of the value Current-Min(c).

Note that there can be at most k calls to Activate-Row and no more than dl/∆e calls to
Block-Ensure-Bound.

5.1 The Data Structure

An Infrastructure for Short Subrow Minimum Queries. In this section we assume that
for any r ∈ R and 1 ≤ i, j ≤ l, j− i+ 1 ≤ ∆, it is possible to compute an answer to a subrow
minimum query S(r, i, j) (see Section 4) on matrixM0 (equivalently: M) in constant time.
We call such a subrow minimum query short.
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The Block Minima Matrix. Define a k × b matrixM′ with rows R and columns B, such
that for all ri ∈ R and Bj ∈ B,M′ri,Bj = min{M(ri, Bj)}. We build the data structure of
Section 4 for matrixM′.

I Lemma 8. M′ is a Monge matrix and its entries can be accessed in O(1) time.

The Exact Minima Array. For each column c ∈
⋃

(B\B), the value cmin(c) = min{M(R, c)}
is stored explicitly. The operation Current-Min(c) returns cmin(c).

Rows Containing the Block Minima. For each Bj ∈ (B \ B) we store the value yj =
M′.Current-Min-Row(Bj). Note that the data structure of Section 4 guarantees that for
Bi, Bj ∈ (B \ B) such that i < j, we have yi ≥ yj . The set of defined yj ’s grows over time.

The Row Candidate Sets. Two subsets D0 and D1 of R are maintained. The set Dq for
q = 0, 1 contains the rows of R that may still prove useful when computing the initial value
of cmin(c) for c ∈

⋃
{Bi : Bi ∈ B ∧ i mod 2 = q}. For each such c, Dq contains a row r such

that min{M(R, c)} =Mr,c. The sets Dq are also stored in dynamic predecessor structures.

Implementation. We now sketch how the data structure’s components are used. Clearly,
a call to Block-Lower-Bound translates into a single call Lower-Bound executed on
M′. When Block-Ensure-Bound is called, some block Bi is moved out of B. Apart from
calling Ensure-Bound-And-Get onM′, we have to initialize the values cmin(c) for c ∈ Bi.
For each such c, we examine multiple rows of Di mod 2 when looking for minima, but it can
be shown that most of these rows can be discarded from Di mod 2 afterwards. This in turn
allows us to charge the work to the insertions into row candidate sets.

When Activate-Row is called, one has to call Activate-Row onM′ first. Moreover,
the values cmin(c) for some c ∈

⋃
(B \ B) have to be updated. It turns out that all such

columns reside in at most two blocks and thus only O(∆) additional time is needed.
The detailed implementation of each operation can be found in the full version [11].

I Lemma 9. Let M = off(M0, d) be a k × l rectangular offset Monge matrix. Let ∆
be the block size. Assume we can perform subrow minima queries spanning at most ∆
columns ofM0 in O(1) time. There exists a data structure initialized in O(k + l + l

∆ logm)
time and supporting both Block-Lower-Bound and Current-Min in O(1) time. Any
sequence of Activate-Row and Block-Ensure-Bound operations can be performed in
O
(
k
(

logm
log logm + ∆

)
+ l + l

∆ logm
)
time, where m = max(k, l).

6 Online Column Minima of a Staircase Offset Monge Matrix

In this section we show a data structure supporting a similar set of operations as in Section 4,
but in the case when the matricesM0 andM = off(M0, d) are staircase Monge matrices
with m rows R = {r1, . . . , rm} and m columns C = {c1, . . . , cm}. We still aim at reporting
the column minima ofM, while the set R of revealed rows is extended and new bounds on
min{M(R \R,C)} are available.

In comparison to the data structure of Section 4, we loosen the conditions posed on the
operations Lower-Bound and Ensure-Bound-And-Get. Now, Lower-Bound might
return a value smaller than min{M(R,C)} and a single call to Ensure-Bound-And-Get
might not report any new column minimum at all. However, Ensure-Bound-And-Get can
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still only be called if min{M(R \R,C)} ≥ Lower-Bound() and the data structure we de-
velop in this section guarantees that a bounded number of calls to Ensure-Bound-And-Get
suffices to report all the column minima ofM. The exact set of supported operations is:

Activate-Row(r), where r ∈ R \R – add r to the set R.
Lower-Bound() – return a number v such that min{M(R,C)} ≥ v.
Ensure-Bound-And-Get() – tell the data structure that the inequality
min{M(R \R,C)} ≥ Lower-Bound() holds.
With this knowledge, the data structure may report some column c ∈ C such that
min{M(R, c)} is known. However, it’s also valid to not report any new column minimum
(in such case nil is returned) and only change the known value of Lower-Bound().
Current-Min(c), where c ∈ C – if c ∈ C \ C, return the known minimum in column c.

6.1 The Data Structure

The Short Subrow Minimum Queries Infrastructure. Let ∆ = dlog1−ε/2me. The following
lemma allows us to use the data structure of Lemma 9 with block size ∆.

I Lemma 10. The staircase Monge matrix M0 can be preprocessed in O(m∆ logm) time
so that subrow minimum queries onM0 spanning at most ∆ columns take O(1) time.

The Partition of M into Rectangular Matrices M1, . . . , Mq. We partition the stair-
case Monge matrix M into O(m logε/2m) non-overlapping rectangular Monge matrices
M1, . . . ,Mq using the below lemma. EachMi is a subrectangle ofM, each row r (column
c) appears in a set Wr (W c, resp.) of O

(
logm

log logm

)
(O
(

log1+ε/2 m
log logm

)
, resp.) subrectangles.

I Lemma 11. For any ε ∈ (0, 1), a staircase matrixM with m rows and m columns can be
partitioned in O(m) time into O(m logε/2m) non-overlapping rectangular matrices so that
each row appears in O

(
logm

log logm

)
matrices of the partition, whereas each column appears in

O
(

log1+εm
log logm

)
matrices of the partition.

We build the block data structure of Section 5 for each Mi. For each Mi we use
the same block size ∆. As each Mi is a subrectangle of M, Lemma 10 guarantees
that we can perform subrow minimum queries on Mi spanning at most ∆ columns in
O(1) time. Recall that the blocks of the matrix Mi are partitioned into two sets Bi and
Bi \ Bi. Denote by block(Mi) the submatrixMi(Ri,

⋃
Bi) and by exact(Mi) the submatrix

Mi(Ri,
⋃

(Bi \ Bi)). Here, Ri and Ci denote the row and column sets ofMi, respectively.

The Priority Queue H. The core of our data structure is a priority queue H. At any time,
H contains an element c for each c ∈ C and at most one elementMi for each matrixMi. Thus
the size of H never exceeds O(m logε/2m). We maintain the following invariants after the
initialization and each call Activate-Row or Ensure-Bound-And-Get resulting in C 6= ∅:
H.1 For each c ∈ C, the key of c in H is equal to min{Mi.Current-Min(c) :Mi ∈W c}.
H.2 For each Mi such that block(Mi) is not empty, the key of Mi in H is equal to

min{block(Mi)} =Mi.Block-Lower-Bound().

I Lemma 12. Assume invariants 1 and 2 are satisfied. Then H.Min-Key() ≤M(R,C).
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Implementation. The data structure always returns the top key of H when Lower-Bound
is called. Each call to Ensure-Bound-And-Get removes the top element e of H. If e
is a column c, the minimum of c is reported. Otherwise e = Mi and it can be seen that
Mi.Block-Ensure-Bound can now be called. Afterwards,Mi is reinserted into H. Note
that the number of times someMj gets reinserted into H is no more than the total number
of blocks in the matricesM1, . . . ,Mq, i.e., O(m logεm). The row activations are propagated
to the relevant matricesMj of the partition.

Both Ensure-Bound-And-Get and Activate-Row may make invariants 1 and 2
violated. However, the keys in H may only need to be decreased. Given that each operation
Decrease-Key on H takes only O(1) time, the time needed to update H is dominated by
the cost of operations on the individual matricesMj .

The detailed implementation of the individual operations and analysis can be found in
the full version [11]. The following lemma summarizes the performance of our data structure.

I Lemma 13. LetM = off(M0, d) be an m×m offset staircase Monge matrix and let ε ∈
(0, 1). There exists a data structure that can be initialized in O

(
m log2−εm

)
time, supporting

both Lower-Bound and Current-Min in O(1) time. Any sequence of Activate-Row
and Ensure-Bound-And-Get operations takes O

(
m log2 m

log2 logm

)
total time. All the column

minima are computed after O(m logεm) calls to Ensure-Bound-And-Get.
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