823 research outputs found

    Two-stage code acquisition in wireless optical CDMA communications using optical orthogonal codes

    Get PDF
    In this paper, we analyze the performance of code acquisition system in atmospheric optical code division multiple access (OCDMA) communications using optical orthogonal codes. Memory introduced by temporal correlation of optical fading process precludes us from using the Markov chain model for a code acquisition analysis. By considering this issue, we discuss how to extend the applicability of the Markov chain model to the atmospheric OCDMA communications. We analyze and compare the performance of correlator and chip level detector (CLD) structures in the acquisition system. In our analysis, we consider the effects of free space optical channel impairments, multiple access interference, and receiver thermal noise in the context of semi-classical photon-counting approach. Furthermore, we evaluate the performance of various two stage schemes that utilize different combinations of active correlator, matched filter, and CLD in search and verification stages, and we find the optimum acquisition scheme among them. Numerical results show significant improvement in reducing the acquisition time and required power for synchronization using our optimum scheme in the wireless OCDMA communications

    Investigation of the impact of fibre impairments and SOA-based devices on 2D-WH/TS OCDMA codes

    Get PDF
    In seeking efficient last-mile solutions for high-capacity, optical code division multiple access (OCDMA) emerges as a promising alternative high-speed optical network that can securely support a multitude of simultaneous users without requiring extensive equipment. This multiplexing technique has recently been the subject of comprehensive research, highlighting its potential for facilitating high-bandwidth multi-access networking. When contrasted with techniques such as wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM), OCDMA offers a more effective and equitable split of available fibre bandwidth among the users. This thesis presents my research focused on the incoherent OCDMA under the influence of optical fibre impairments that uses picosecond multiwavelength pulses to form two-dimensional wavelength hopping time-spreading (2D-WH/TS) incoherent OCDMA codes. In particular, self-phase modulation, temperature induced fibre dispersion, chromatic dispersion, as well as the impact of semiconductor optical amplifier SOA devices deployment on 2D-WH/TS OCDMA code integrity were investigated. These aspects were investigated using a 17-km long bidirectional fibre link between Strathclyde and Glasgow University. In particular, I investigated the impact of temporal skewing among OCDMA code carriers and the importance of selecting small range of wavelengths as code carriers where wide range manifest high dependency on wavelength. This wavelength dependency is exploited furthermore to measure the induced temperature dispersion coefficient accurately and economically. I have conducted experiments to characterise the impact of SOA-device on 2D OCDMA code carries which is evaluated under different bias conditions. This evaluation addressed the potential challenges and ramifications of the gain recovery time of SOA and its wavelength dependency with respect to gain ratio and self-phase modulation (SPM). The OCDMA code was built using multiplexers and delay lines to create a 2D OCDMA code to allow studying the impact of deploying a SOA under different conditions on each wavelength. The concept described above is then extended to the investigation of the SOA’s impact on a 2D-WH/TS OCDMA prime code under high bias current/gain conditions. The overall performance of two different 2D-WH/TS OCDMA systems deploying the SOA was also calculated. I have also investigated the possibility of manipulating chirp in 2D-WH/TS incoherent OCDMA to counteract the self-phase modulation-induced red shift by using single mode fibre and lithium crystals. I have investigated the performance of the picosecond code based optical signal when subjected to temperature variations similar to that experience by most buried fibre systems. I have proposed and demonstrated a novel technique, which I examined analytically and experimentally, that utilises a SOA at the transmitter to create a new code with a new wavelength hopping and spreading time sequences to achieve a unique physical improved secure incoherent OCDMA communication method. A novel fully automated tuneable compensation testbed is also proposed of an autonomous dispersion management in a WH/TS incoherent OCDMA system. The system proposed manipulates the chirp of OCDMA code carriers to limit chromatic dispersion detrimental effect on transmission systems.In seeking efficient last-mile solutions for high-capacity, optical code division multiple access (OCDMA) emerges as a promising alternative high-speed optical network that can securely support a multitude of simultaneous users without requiring extensive equipment. This multiplexing technique has recently been the subject of comprehensive research, highlighting its potential for facilitating high-bandwidth multi-access networking. When contrasted with techniques such as wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM), OCDMA offers a more effective and equitable split of available fibre bandwidth among the users. This thesis presents my research focused on the incoherent OCDMA under the influence of optical fibre impairments that uses picosecond multiwavelength pulses to form two-dimensional wavelength hopping time-spreading (2D-WH/TS) incoherent OCDMA codes. In particular, self-phase modulation, temperature induced fibre dispersion, chromatic dispersion, as well as the impact of semiconductor optical amplifier SOA devices deployment on 2D-WH/TS OCDMA code integrity were investigated. These aspects were investigated using a 17-km long bidirectional fibre link between Strathclyde and Glasgow University. In particular, I investigated the impact of temporal skewing among OCDMA code carriers and the importance of selecting small range of wavelengths as code carriers where wide range manifest high dependency on wavelength. This wavelength dependency is exploited furthermore to measure the induced temperature dispersion coefficient accurately and economically. I have conducted experiments to characterise the impact of SOA-device on 2D OCDMA code carries which is evaluated under different bias conditions. This evaluation addressed the potential challenges and ramifications of the gain recovery time of SOA and its wavelength dependency with respect to gain ratio and self-phase modulation (SPM). The OCDMA code was built using multiplexers and delay lines to create a 2D OCDMA code to allow studying the impact of deploying a SOA under different conditions on each wavelength. The concept described above is then extended to the investigation of the SOA’s impact on a 2D-WH/TS OCDMA prime code under high bias current/gain conditions. The overall performance of two different 2D-WH/TS OCDMA systems deploying the SOA was also calculated. I have also investigated the possibility of manipulating chirp in 2D-WH/TS incoherent OCDMA to counteract the self-phase modulation-induced red shift by using single mode fibre and lithium crystals. I have investigated the performance of the picosecond code based optical signal when subjected to temperature variations similar to that experience by most buried fibre systems. I have proposed and demonstrated a novel technique, which I examined analytically and experimentally, that utilises a SOA at the transmitter to create a new code with a new wavelength hopping and spreading time sequences to achieve a unique physical improved secure incoherent OCDMA communication method. A novel fully automated tuneable compensation testbed is also proposed of an autonomous dispersion management in a WH/TS incoherent OCDMA system. The system proposed manipulates the chirp of OCDMA code carriers to limit chromatic dispersion detrimental effect on transmission systems

    Telecommunications for a deregulated power industry

    Get PDF
    Telecommunication plays a very important role in the effective monitoring and control of the power grid. Deregulation of the US power industry has enabled utilities to explore various communication options and advanced technologies. Utilities are increasingly investing in distributed resources, dynamic real-time monitoring, automated meter reading, and value added services like home energy management systems and broadband access for its customers. Telecommunication options like power line communications (PLC) and satellites are fast replacing legacy telephone and microwave systems in the US.;The objective of this thesis is to study the communication options that are available for utilities today. Phasor measurement units (PMUs) are analyzed in detail and communication delays due to the use of PMUs in wide area measurement systems (WAMS) are also studied. The highlight of this thesis is a close look at the characteristics of the power line channel by presenting a power line channel model and the use of digital modulation techniques like SS and OFDM, which help overcome the effects of such a hostile medium of communication. (Abstract shortened by UMI.)

    Space Station communications and tracking systems modeling and RF link simulation

    Get PDF
    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort

    Fiber-optic code division multiple access : multi-class optical orthogonal codes, optical power control, and polarization encoding

    Get PDF
    Ever since the mid- 1980s when the single-mode fiber-optic media were believed to become the main highways of future telecommunications networks for transporting high-volume high-quality multipurpose information, the need for all-optical multi-access networking became important. An all-optical multi-access network is a collection of multiple nodes where the interconnection among various nodes is via single- or multi-mode fiber optics and for which they perform all their essential signal processing requirements such as switching, add-drop, multiplexing/demultiplexing and amplification in the optical domain. Optical CDMA networking is one possible technique that allows multiple users in local area networks to access the same fiber channel asynchronously with no delay or scheduling. Optical CDMA networks are not without their own problems. Search for codes suitable to the optical domain is one of the important topics addressed in the literature on optical CDMA. Existing codes developed in the late 80's are limited to single class traffic or can support multiclass traffic but with restrictions on code lengths and weights. Also the number of generated codes is severely limited due to orthogonality issues. In this thesis, we pay particular attention to propose new codes that can support multiclass traffic with arbitrary code weights and lengths. Therefore, data sources with varying traffic demands can be accommodated by optical CDMA networks using the proposed codes. We also present a simple generation technique for the proposed multiclass codes and analyze their performance. The number of users supported by the proposed multiclass codes will be limited since it is an extension of existing code designs with such limitation. We then propose the use of polarization dimension in order to double the number of supported users. On the other hand, incoherent optical CDMA systems are considered as positive systems meaning that only unipolar codes can be considered for such systems. Therefore, multiple access interference will be quite high in optical CDMA due to the nature of incoherent power detection. Reducing the effect of the interference on the performance of optical CDMA is an important topic. We propose the use of power control to decrease the effects of interference in optical star networks in which users' fiber lengths and data rates are not equal. We consider the case of optically amplified network with amplifier noise as the main source. We then elaborate by considering the nonlinearity in the photodetection process and propose the use of an iterative algorithm to find the solution of the non-linear optical power control problem. Finally, we propose an optical CDMA system based on polarization encoding. Since the encoding is performed in the spatial domain, therefore, positive and negative levels can be realized. This approach leads to increasing the number of supported users of optical CDMA by the use of known codes, such as Gold and Hadamard codes, with enhanced performance.reviewe

    A New Prime Code for Synchronous Optical Code Division Multiple-Access Networks

    Get PDF

    Co-channel interference reduction in Optical Code Division Multiple Access systems

    Get PDF
    In this thesis few new code sets and a multi-user interference (MUI) cancellation scheme have been proposed for Optical Code Division Multiple Access (OCDMA) systems, which can be employed in the next generation of global communication networks to enhance their existing systems’ performance dramatically. The initial evaluation of the proposed code sets shows that their implementation improves the performance, decreases the BER and increases security considerably. Also the proposed MUI cancellation scheme totally removes all the cross-talk and interference between the active users within the network. These novel schemes and codes can be easily implemented in the optical packet switched networks. Optical switching has the ability of bandwidth manipulation at the wavelength level (e.g. with optical circuit/packet/burst switching); the capability to accommodate a wide range of traffic distributions, and also to make dynamic resource reservations possible. This thesis first gives a brief overview of co-channel interference reduction in OCDMA networks, then proposes two novel code sets, Uniform Cross-Correlation Modified Prime Code (UC-MPC) and Transposed UC-MPC (T-UCMPC), along with their evaluation and analysis in various systems, including IP routing over an OCDMA network. Thereafter, the new MUI cancellation scheme is proposed and then the proposed code sets and the MUI cancellation scheme are implemented and analysed in a laboratory-based experimental test bed. Finally the conclusion of this research is discussed
    • …
    corecore