218 research outputs found

    Modeling Bottom-Up and Top-Down Attention with a Neurodynamic Model of V1

    Get PDF
    Previous studies in that line suggested that lateral interactions of V1 cells are responsible, among other visual effects, of bottom-up visual attention (alternatively named visual salience or saliency). Our objective is to mimic these connections in the visual system with a neurodynamic network of firing-rate neurons. Early subcortical processes (i.e. retinal and thalamic) are functionally simulated. An implementation of the cortical magnification function is included to define the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel computational definitions of top-down inhibition (in terms of inhibition of return and selection mechanisms), are also proposed to predict attention in Free-Viewing and Visual Search conditions. Results show that our model outpeforms other biologically-inpired models of saliency prediction as well as to predict visual saccade sequences during free viewing. We also show how temporal and spatial characteristics of inhibition of return can improve prediction of saccades, as well as how distinct search strategies (in terms of feature-selective or category-specific inhibition) predict attention at distinct image contexts.Comment: 32 pages, 19 figure

    A neurodynamic optimization approach to constrained pseudoconvex optimization.

    Get PDF
    Guo, Zhishan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 71-82).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement i --- p.iiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Constrained Pseudoconvex Optimization --- p.1Chapter 1.2 --- Recurrent Neural Networks --- p.4Chapter 1.3 --- Thesis Organization --- p.7Chapter 2 --- Literature Review --- p.8Chapter 2.1 --- Pseudo convex Optimization --- p.8Chapter 2.2 --- Recurrent Neural Networks --- p.10Chapter 3 --- Model Description and Convergence Analysis --- p.17Chapter 3.1 --- Model Descriptions --- p.18Chapter 3.2 --- Global Convergence --- p.20Chapter 4 --- Numerical Examples --- p.27Chapter 4.1 --- Gaussian Optimization --- p.28Chapter 4.2 --- Quadratic Fractional Programming --- p.36Chapter 4.3 --- Nonlinear Convex Programming --- p.39Chapter 5 --- Real-time Data Reconciliation --- p.42Chapter 5.1 --- Introduction --- p.42Chapter 5.2 --- Theoretical Analysis and Performance Measurement --- p.44Chapter 5.3 --- Examples --- p.45Chapter 6 --- Real-time Portfolio Optimization --- p.53Chapter 6.1 --- Introduction --- p.53Chapter 6.2 --- Model Description --- p.54Chapter 6.3 --- Theoretical Analysis --- p.56Chapter 6.4 --- Illustrative Examples --- p.58Chapter 7 --- Conclusions and Future Works --- p.67Chapter 7.1 --- Concluding Remarks --- p.67Chapter 7.2 --- Future Works --- p.68Chapter A --- Publication List --- p.69Bibliography --- p.7

    Zonally Robust Decentralized Optimization for Global Energy Interconnection:Case Study on Northeast Asian Countries

    Get PDF
    • …
    corecore