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Abstract of thesis entitled: 
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for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in June 2011 

In this thesis, based on an existing model for constrained 
convex optimization, a one-layer recurrent neural network is pro-
posed for solving pseudoconvex optimization problems subject 
to linear equality constraints. 

The global convergence of the reconstructed neural network 
can be guaranteed for any pseudoconvex objective function. The 
finite-time state convergence to the feasible region defined by 
the equality constraints is also proved. In addition, global ex-
ponential convergence is proved when the objective function is 
strongly pseudoconvex on the feasible region. 

Besides simulation results on illustrative samples, an appli-
cation on chemical process data reconciliation is provided to 
demonstrate the effectiveness and characteristics of the neural 
network. 

The model is then modified to solve pseudoconvex optimiza-
tion with linear equality constraints and also bound constraints. 
Application on real-time portfolio optimization is shown. 
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摘要 

本論文將一種單層回饋神經網路改進，使之能夠解決含線性等式約束條件的偽凸優 

化問題。 

本文從理論上證明了在優化函數是偽凸的情況下，重新構造的神經網路模型仍然可 

以保證全域收敛到最優解。同時本論文還證明了到可行域的有限時間收斂，以及在優化目 

標函數是強偽凸的情況下，到最優解的全域指數收赦° 

在列舉了一些簡單數值例子的方針結果之後，本論文硏究了該神經網路模型的一類 

工程應用：化工過程資料和解°通過模擬實驗，該神經網路優化方法的有效性和相關特徵 

得以闡述。 

此外，在隨後的一章，該神經網路優化模型得到了進一步的改進。改進之後的模型 

不僅對優化函數的條件放寬了，同時可以解決包含上下界約束的偽凸優化問題。這一章以 

證券投資優化作為該模型求解相關優化問題的一個應用，具體闡述了模擬結果，並做出相 

關分析。 
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Chapter 1 

Introduction 

Chapter Outline 

In this chapter, basic backgrounds and the motivations 
of this thesis are described. With the rapid develop-
ment in industry, optimization of more and more proce-
dures are necessary. Many of these optimization prob-
lems are time-varying ones, where the parameters of the 
processes are changing from time to time. Real-time op-
timization of these dynamic processes is a major chal-
lenge for traditional optimization methods. Recurrent 
neural networks have good properties that can be uti-
lized to solve some of these problems effectively. The 

� last section also gives the organization of this thesis. 

1.1 Constrained Pseudoconvex Optimization 

Constrained optimization is optimizing an objective function 
over a domain. With mathematical notations, it can be written 
as 

1 



CHAPTER 1. INTRODUCTION 2 

minimize f(x), , 
) (1.1) 

subject to X e 

where x G and the domain Q can be described by a group 
of equality and inequality constrains. 

Many problems in science and engineering can be formulated 
as Constrained optimization problems, such as robot control, 
manufacturing system design, signal and image processing, and 
pattern recognition [9] [8]. Most of the time, the objective func-
tion and domains are not static, which can be described as hav-
ing a list of time-varying parameters. Then the problem is time-
varying constrained optimization one. 

minimize f{x,e{t)), “2) 

subject to X e Q⑴， 

In this thesis, the following nonlinear optimization problem 
with equality constraints will be considered. 

minimize fix)' 
“ � ) � (1.3) 

subject to Ax = b, 

where x e R^ is the vector of decision variables, A G EJ^^^ is 
a coefficient matrix with full row-rank (i.e., rank(A) = m < n), 
and the objective function f{x) : —> E is differentiable, 
bounded below, locally Lipschitz continuous [51] [60] and pseu-
doconvex on the feasible region {x\Ax — 6 = 0}. In this thesis, 
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we assume that problem (1.3) has at least one finite solution. 
While most approaches to optimization focus on convex opti-

mization, nonconvex optimization is rarely investigated. In par-
ticular, among nonconvex optimization problems, constrained 
pseudoconvex optimization will be studied in this thesis, and the 
definitions of pseudo convex, strictly pseudoconvex, and strongly 
pseudoconvex are given below. 
Definition 1: A differentiable function / : —> R is said to be 
pseudoconvex on a set Q if Vx, y e ^ y, 

V f { x f { y - x ) > 0 ^ f { y ) > f { x ) . 

The function f is said to be strictly pseudoconvex on Q if 

Vf{xf{y-x)>0^f{y)>f{x); 

and strongly pseudoconvex on fl if there exists a constant p > 0 

such that Vx y G n, 

^f{xf{y-x)>0=> f{y) > fix) + P\\x 一 y\\l 

where ||.丨！之 is the L2-norm, which will be written as ||. || hereafter. 
Prom the definition, pseudoconvex is weaker than convex, 

which means approaches on constrained pseudoconvex optimiza-
tion are promising ones to convex optimization problem, but 
not so vice versa. Constrained pseudoconvex optimization has 
widespread applications, such as fractional programming [19 
11], frictionless contact analysis [7], production planning, finan-
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cial and corporate planning [24]，computer vision [57], health-

care and hospital planning. 
Real-time solutions are often required in engineering applica-

tions, especially for time-varying optimization problems. Cur-
rent methods on pseudoconvex optimization mostly face specific 
problems, but not generalized ones, while a few of them may not 
provide optimal solution real-time. One promising approach for 
solving optimization problems in real time is recurrent neural 
networks (RNNs). 

1.2 Recurrent Neural Networks 

Neural networks have become a popular research field in com-
puter science, mathematics, and cognitive science. Historically, 
the neural network was first proposed to study the brain the-
ory. Then, with the developing computer technologies, neural 
networks are considered more as a powerful family of nonlinear 
model and analog computing paradigm. As the counterparts 
of biological neural systems, properly designed artificial neural 
networks can serve as goal-seeking computational models for 
solving various optimization problems. 

Among various neural networks, a couple of networks have 
been utilized for optimization, such as Hopfield neural networks 
29], self-organizing feature maps [40], and Boltzmann machines 
1]. Compared with traditional numerical methods for con-

strained optimization, recurrent neural network has several ad-
vantages: 
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• it can solve many optimization problems with time-varying 
parameters; 

• it can handle large-scale problems with its parallelizable 
ability; 

• it can be implemented effectively using VLSI and optical 
technologies [15 . 

Therefore, neural network can solve optimal control problems 
in running times at the orders of magnitude much faster than 
the most popular optimization algorithms executed on general-
purpose digital computers. 

In 1940s, the first conceptual elements of neural networks 
were introduced. Since then, numerous neural network models 
have been developed. Most feedforward neural networks have 
layered structure, synchronous mode, operate on discrete time, 
are described by the difference equations, and thus are stud-
ied by arithmetic methods. However, recurrent neural networks 
have interconnected structure, asynchronous mode, operate on 
continuous time, are described by the ordinary differential equa-
tions, and thus are studied by ordinary differential equation 
theory. Prom the system theory viewpoint, continuous recur-
rent neural networks can be regarded as a continuous dynamic 
system, and thus its stability property can be investigated. 

Moreover, the continuous model is superior to the discrete one 
in terms of the local minimum problem, because of its smoother 
energy surface. Hence, the continuous recurrent networks have 
dominated the solving techniques for optimization problems, es-
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pecially for combinatorial problems, and will be the major con-
cern of this thesis. 

Consider recurrent neural network as a system, the inputs are 
signals coming from the environment, while outputs are the ones 
go out of the network to the environment, encoding the end re-
sult of the computation. As a “ computing machine", which was 
associated with automation, the computability and complexity 
of neural networks are also concerned. A most popular automa-
tion is the Turing machine, which is mathematical equivalent to 
modern computer. It is shown that the analog recurrent neural 
network is more powerful than Turing machine, although their 
upper limits are both unknown [68]. Besides the ultimate power, 
theories in computational complexity also contains expressive 
power constraints on resources, such as time and space. Thus 
scalability of neural networks is very important: some neural 
networks has shown great performance on small problems, but 
when the are scaled up to larger problems, too more neurons 
are often necessary. The number of neurons, number of con-
nections, and also convergence time are all resources for neuron 
computation. 

In this thesis, a one-layer recurrent neural network with very 
simple architecture is proposed to solve constrained pseudocon-
vex optimization problem. Among existing neural network mod-
els to related problems, it has the least number of neurons and 
connections. It's finite time convergence to the feasible region 
also shows its low computational complexity. 
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1.3 Thesis Organization 

This thesis consists of six chapters. After the introduction of 
backgrounds and motivations, Chapter 2 gives the literature re-
view. Then, an existing recurrent neural network model is ex-
tended for solving pseudoconvex optimization problems subject 
to linear equality constraints in Chapter 3, where theoretical 
analysis of the neural network model will also be stated. Chap-
ter 4 shows several simple simulation results based on numerical 
examples, and two applications of the proposed neural network 
model on chemical process data reconciliation and robot mo-
tion planning will be discussed afterwards in Chapters 5 and 6. 
Chapter 7 introduces another recurrent neural network model 
and shows a promising application on real-time portfolio opti-
mization. Finally Chapter 8 concludes the thesis. 

• End of chapter. 



Chapter 2 

Literature Review 

Chapter Outline 

In this chapter, researches related to the work described 
in this thesis are reviewed. The first section mainly fo-
cuses on studies on pseudoconvex optimization. The sec-
ond section reviews works on neurodynamic optimiza-
tion approaches. 

2.1 Pseudoconvex Optimization 

In classical scalar optimization theory, convexity plays a funda-
mental role since it guarantees the validity of important prop-
erties: a local minimizer is also a global minimizer，a station-
ary point is a global minimizer and the usual first order neces-
sary optimality conditions are also sufficient for a point to be a 
global minimizer. Many algorithms have been proposed to solve 
constrained optimization problems in the past decades, such as 
Rosen's gradient projection method in 1960 [65] and Zangwill's 

8 
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penalty function method in 1967 [83 . 
Pseudoconvexity was formulated and first studied in 1960s 

51], where it is pointed out that pseduconvexity turns out to be 
weaker than strict convexity and stronger than quasiconvexity. 
In particular it is shown that a local minimum pseduconvexity 
function over a convex set of Euclidean n-space is at the same 
time a global minimum [60]. With this properties, the van-
ishing of the gradient insures a global minimum, which made 
the extension of several basic results of convex programming to 
pseudoconvex ones possible. 

However, from a practical point of view, it is still very difficult 
to recognize pseudoconvexity. Prom Definition 1, pseudoconvex-
ity is defined by conditions involving infinitely many inequalities 
and that there is no general criterion requiting the examination 
of finitely many conditions. Necessary and sufficient second or-
der conditions are obtained in this thinking [17] [55 . 

Since the definition of pseudoconvexity in 1960s, its strict 
relationship with fractional programming has been highlighted 
and from the beginning, fractional programming has benefited 
from advances in generalized convexity, and vice versa [69]. Pseu-
do convex fractional programming are extremely important for 
its good properties and numerous applications such as Data En-
velopment Analysis, tax programming, risk and portfolio the-
ory, logistics and location theory [6] [12] [13] [56]. Many papers 
about fractional programming have been published in the last 
decades and both theoretical and algorithmic point of views have 
been handled [54] [22] [41] [8] [10]. Several of these results deal 
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with the pseudoconvexity of the objective function, since this 
property plays a key role in the study of minimization prob-
lems. Among them, most algorithms solve the pseudoconvex 
optimization problem by transforming it into convex one, and 
many of them requires various kinds of properties of the objec-
tive function. 

2.2 Recurrent Neural Networks 

In the past two decades, recurrent neural networks for opti-
mization and their engineering applications have been widely 
investigated. Since Tank and Hopfield，s pioneering work on a 
neural network approach to linear programming [70], the theory 
and applications of recurrent neural networks for optimization 
have been widely investigated. Based on the penalty functions 
and gradient methods, constrained optimization problems were 
first converted approximately or exactly to unconstrained op-
timization problems, then some gradient-based neural network 
models were constructed to compute the approximate or exact 
optimal solutions. The gradient method was widely used in the 
neural network design. Two classical recurrent neural network 
models for optimization are the Hopfield neural network [70] for 
linear programming, and the one by Kennedy and Chua [38] for 
nonlinear programming. 

The common LP problems have the following formulation: 
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minimize f(x) = €�0：， 

(2.1) 
subject to Ax > b(gj(x) > bjj = 1 , . . . ,m), 

where G G IR̂ x̂n， n̂d b G R爪.Tank and Hopfield first 
proposed the neural network structure to solve the LP problem, 
and its energy function can be defined as 

m n 

ETH{X) = fix) + J^iglixf ^YAI她, (2.2) 

3=1 i=l • 
where R is an n x n diagonal matrix, g+ = {g^,..., is a 
penalty vector when 分(a:) < hj, and s > 0 is a penalty parameter 
which must be sufficiently large. 

The Hopfield neural network emulates the behavior of neu-
rons through an electronic circuit. After the circuit is established 
with many similar sets of components, a parallel computation 
can be realized for an on-line solution. These special charac-
teristics are beneficial for real-time optimization and have been 
applied to solve optimization problems. 

Kennedy and Chua proposed a kind of neural network struc-
ture based on Hopfield network with an inexact penalty function, 
where is energy function is 

m 

EKc{x) = f { x ) + '-J2{gl{x))\ (2.3) 
� = 1 

where 5 > 0 is the penalty parameter, and for an inexact penalty 
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rule, the states converges to the solution as s oo. To improve 
this, Rodriguez-Vazquez et al. [62] directly use another penalty 
method and transform the LP problem into an unconstraint op-
timization problem, where its energy function is illustrated as 

m 

ERV{X) = f { x ) + — BJ}L ( 2 . 4 ) 

where a � 0 . It is shown that once the feasible region is reached, 
the trajectory moves toward the minimal direction of the objec-
tive function. 

In addition to the gradient method, other methods have been 
developed for neurodynamic optimization. The penalty func-
tion method is a popular technique for optimization in which 
it is used to construct a single unconstrained problem or a se-
quence of unconstrained problems. Although non-linear pro-
gramming problems are complex in computation, neural net-
work approaches with a penalty function offer a faster conver-
gence [28]. A general non-linear programming problem is in the 
following form: 

minimize f(x), 

subject to hi{x) = 0, z = 1 , . . . , n; 
. / 、 （2.5) 

g j W < 0 , j = l , . . . , m ; 
X eCl. 

In general, the penalty function fp{x) is represented as 
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m n 

/ p W = m + E K j max{0, g 碰 + [ 
j = l 2=1 

(2.6) 

where a,j3 > 0, and the penalty parameters are Ki, Kj , which 
are usually sufficiently large or increase as network training. A 
searching method can be adopted to search for the solution in 
the decision space, and the steepest descent approach is the 
popular technique for obtaining the searching direction [15 . 

The deterministic annealing neural networks were developed 
for solving linear and nonlinear convex programming problems 
by Wang [72]，which were utilized to solve the assignment prob-
lems [73] and shortest path problems [74]. Some differentiable 
and convex penalty functions are given and used, for example 

fp(^) = ^ � + v-'figix) + ”+] + ^h{vfh{v), (2.7) 

Based on the Lagrangian function and Lagrangian optimality 
conditions, the Lagrangian network [84] was proposed for solv-
ing the general optimization problems, in which the local con-
vergence was guaranteed. For convex optimization, the global 
convergence of the Lagrangian network was analyzed and proven 
by Xia [77]. Similar to the penalty function methods, Lagrange 
multiplier and augmented Lagrange multiplier methods merge 
an objective function and constraints into an energy function of 
the target networks. This category uses two kinds of dynamic 
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structures to handle real variables and Lagrange multiplier (dual 
variables), and its energy function for linear programming is 

m 

五 二 + (…. （2.8) 

j=i 
In recent years, based on the Karush-Kuhn-Tucker (KKT) 

optimality conditions, the primal-dual network [76], dual net-
work [80] and simplified dual network [45] were developed for 
solving convex optimization problems. It is suggested that the 
equilibrium point is the same as the exact solution when simul-
taneously solving the primal problem and its dual problem. The 
energy function of the primal-dual network for linear program-
ming is 

EpD{x,y) = - h^yf + - \x\) + — M) 

+ 臺 - b\\l + liA'y - c)Vy-c)-\{A^y - c)|]. 
(2.9) 

These neural network approaches have three important ad-
vantages: (i) avoiding a significant amount of parameters, (ii) 
escaping from an infeasible solution, and (iii) being able to es-
timate the duality gap indirectly. 

Furthermore, based on the projection method (e.g., [78] [82], 
.32])’ optimality conditions for constrained optimization prob-
lems can be written in the form of linear (or nonlinear) varia-
tional inequalities, and transformed into projection equations. 
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Then neural networks based on the projection equations were 
constructed for solving the constrained optimization problems. 
Moreover, for convex optimization problems, the global conver-
gence of the projection neural networks can be guaranteed for 
the global optimal solutions [79] [33] [5]. To reduce the model 
complexity, some one-layer recurrent neural networks were pro-
posed for solving linear and quadratic programming problems 
46] [47]. As there is no bound constraints, the projection neu-

ral network will degeneration to the Lagrangian network [84] [85 
which is given by the following equations for problem (4.1) where 
X is the output state vector and y is the hidden state vector. 

奢 • 爛 + 而 ， （2 10) 蟹二-歸 ( 0 ) 

Another projection network, the two-layer recurrent neural 
network in [81] is proposed for quadratic programming with lin-
ear inequality constraints, and its equivalent form for problem 
(4.1) can be described as follows: 

dy + � 4 1 r -b] (2.11) 
—A 0 

_ J w . 
where y+ = [ y 广 ， a n d y^ = max(0, yi). 

Apart from the recurrent neural networks for solving smooth 
constrained optimization problems, neurodynamic approaches 
to nonsmooth constrained optimization were investigated by 
some researchers recently. The generalized nonlinear program-
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ming circuit for solving nonsmooth nonconvex optimization prob-
lems were proposed by Forti et al. [25]. Specifically, some recur-
rent neural networks for solving linear and quadratic program-
ming with discontinuous activation functions were proposed [45 
48；. 

e*^ G -Px - ( / - P)df{x) +q,Xo = x{to), (2.12) 

where x is the state vector, e is a positive scaling constant, I is 
the identity matrix, P = q = and 
df{x) is the sub-differential of f{x). 

While most neural network approaches to optimization focus 
on convex optimization, nonconvex optimization is rarely in-
vestigated. In particular, among nonconvex optimization prob-
lems, pseudoconvex optimization has many applications. Hu 
and Wang [31] extended the projection neural network for op-
timization with differentiable pseudoconvex objective functions 
and bound constraints. 

However, for more general pseudoconvex optimization prob-
lems subject to linear equality constraints, the projection neural 
network is not applicable for solving these problems due to its 
convergence conditions. 

• End of chapter. 



Chapter 3 

Model Description and 
Convergence Analysis 

Chapter Outline 

In this chapter, a new RNN model is proposed for solv-
ing pseudoconvex optimization problems subject to lin-
ear equality constraints. After the model is given, some 
necessary preliminary concepts and results including the 
definition of global convergence are stated for further 
discussion. Theorem 1 discusses the finite-time conver-
gence to the feasible region of problem (1.3). Then in 
Theorems 2 and 3，the Lyapunov stability of the pro-
posed neural network is proved, based on which the glob-
ally convergence to the optimal solution of problem (1.3) 
is then shown. Theorem 4 analyzes the exponential con-
vergence of the neural network when the gradient of the 
optimal function Vf{x) is strongly pseudomonotone. 

17 



CHAPTER 3. MODEL DESCRIPTION AND CONVERGENCE ANALYSISIS 

3.1 Model Descriptions 

Consider problem (1.3), and an existing recurrent neural net-
work model (2.12) [48], when f in problem (1.3) is differen-
tiable, Vf{x) is used instead of df{x) as the differential of f{x). 

Therefore, we have: 

e年=-(/- P)Vf(x) + 仏 0；0 二 
at 

However, its global convergence results are established for 
convex optimization problems only, and theoretically its state 
reaches the feasible region only when time approaches to infinity. 

In this thesis, in order to guarantee the finite-time conver-
gence to the feasible region and global convergence to optimal 
solutions for pseudoconvex optimization problems, the model is 
modified to: 

6— = -(/ - F)Vf(x) - A'^giAx - b),xo = x(to), (3.1) 
dt 

where g = {g{xi), g{x2),... and its component is de-

fined as 

'1, if > 0, 

g{xi) = 0, if rci = 0, (i 二 1 ,2 , . . . , m). (3.2) 

- 1 , • if Xi < 0; 
v 

The structure of one-layer recurrent neural network (3.1) is 
shown in Figure 3.1, where \pij]nxn = P, [^ilnxn = I — P, 
[aiiUxn 二 [、，‘..•，^r/ = b, and "“•）二 dR.Vdxi for 
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Figure 3.1: The structure of one-layer recurrent neural network (3.1). 

For the convenience of later discussions, several definitions 
and theorems on pseudoconvex optimization are introduced at 
first. 
Definition 2: A function F : —> E^ is said to be pseudomono-
tone on a set if Vx, e — 

F{xf{x' - x) > 0 F { x Y { x ' - x ) > 0 . (3.3) 

A very important result on pseudoconvex optimization is 
given by the following lemma, and its proof follows directly from 
Theorem 4.3.8 in [8；. 
Lemma 1 [8]: For problem (1.3), if the Karush-Kuhn-Tucker 
conditions hold at a feasible solution x] i.e., 3y G M"̂ , V / ( x ) — 
A^y = 0, then x is a global optimal solution to problem (1.3). 
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3.2 Global Convergence 

The state vector of the neural network (3.1) is said to be glob-
ally convergent to an optimal solution of problem (1.3) if for 
any x{t) of the neural network with initial point XQ G W^, such 
that limt^+oox{t) = x*, where x* is an optimal solution. Since 
the dynamical system is described by an ordinary differential 
equation with discontinuous right hand side, Filippov solution 
is considered in this thesis. 

The existence of the solution can be derived from the locally 
Lipschitz continuity of the objective function /(•) and Proposi-
tion 3 in [16]. The solution for discontinuous system may not 
be unique [3], and the LaSalle invariant set theorem does not 
require the uniqueness of the solution. 

Denote the feasible region as <S = {x\Ax = b}. 

Theorem 1: The state vector of the recurrent neural network 
(3.1) is globally convergent to the feasible region S in finite 
time by ts = e||Aa:o — and stays there thereafter, 
where XQ is the initial value, and Amin is the minimum eigenvalue 
of the matrix. 
Proof: Note that >6(0；) 二 ||Aa:-6||i’ which is convex and regular, 
by using the chain rule [2] [25], we have 

I召⑷=e^yC e dB{x{t)) = A^K[g[Ax — b)]. 

where K{') denotes the closure of the convex hull; i.e., the Fil-
ippov set-valued map [16], and x{t) is given by (3.1). 
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From the definition of P, we know that A(I — P) = A -

= 0. Thus for any xq G IT，when � e R�<S， 

we have 

= — � | 2 ， V " G K[g{Ax - b)]. 

For any x G Ax - b 0. So at least one of the 
components of 77 is 1 or - 1 . On one hand, since A has full 
row-rank, AA^ is invertible. It follows that 

Since AA^ is positive definite, we have 

WA^rjf = rj^AA^n > Amin(A4，|M|2 > Amin(AA了). 

Thus 

dB(x(t)) 1 � … T � 
y )) < < 0. (3.4) 

Integrating the both sides of (3.4) from to = 0 to t, we have 

\\Ax{t) — 6||i < IIAco - 6||i — ^AminCAA了)t. 

Thus, Ax{t) - 6 = 0 as ^ = e\\A{xo) - That 
is, the state vector of neural network (3.1) reaches S in finite 
time and an upper bound of the hit time is ts = e||A(a:o)— 

Next, we prove that, when t > ts, the state vector of neural 

I 
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network (3.1) remains inside S thereafter. If not so, assume 
that the trajectory leaves S at time ti and stays outside of S for 
almost all t G (^1,^2), where ti < h. Then, \\A{x{ti)) - b\\i = 

0, and from above analysis, \\A{x{t)) - 6||i < 0 for almost all 
t e (ti，t2), which is a contradiction. That is, the state vector of 
neural neural (3.1) reaches the equality feasible region S by ts 

at the latest and stays there thereafter. • 
Theorem 2: Let f{x) be pseudoconvex on <5. The state vector of 
the neural network (3.1) is stable in the sense of Lyapunov and 
globally convergent to the equilibrium point set for any XQ G R^. 
In particular, assume that f{x) is strictly pseudoconvex on <S, 
then the neural network (3.1) is globally asymptotically stable. 
Proof: Denote x as an equilibrium point of system (3.1); i.e., 
0 G A^K[g{Ax - 6)] + ( / - P)Vf{x). Since by Theorem 1, any 
trajectory x{t) will convergent to the feasible region S in finite 
time ts = and will remain in S forever; 
1.e., Vt > ts, x(t) e S. As a result, it suffices to show the stability 
of the system with x(t) G S. 

Consider the following Lyapunov function: 

Vi(x) = fix)-f(x) + ^\\x-x\\'. (3.5) 

Clearly, Vx e S and x ^ x, Vi{x) > 0, 0 = 77 G K[g{Ax -

6)], and Ax - b = 0.- so A(x - x) 二 0, and {x — = 

{x - xfA^iAA^y'^A = [A{x - = 0’ as well as 
P^{x-x) = 0. Since x = P ^ x + i l - P ^ x and {I-P)Vf{x) = 0, 
as a result: 
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Vf(xf(x - x) = Vf(xflP^(x -x) + { I - Pf(x - x)] 

= [ ( / — P)V/(旬严(a: - x) = 0. (3.6) 

By the pseudo convexity of f{x) on S, we know that V / ( x ) 
is a pseudomonotone mapping on S [37]. Thus from (3.6), we 
know that for any x e S and x^x.Vf{xY{x - x) > 0. 

譬 = 赠 . t 
=—(•/(⑷+ 旬『（(/ — + A了77) 

= - V / ( x f ( / — P)Vf{x) - { x - xfVfix) + 

{x - xfPVf{x) 

< -|| ( / -P )V / (x )||2<0 . (3.7) 

Furthermore, d{Vi{x))/dt = 0 if and only if ( / - P ) V / ( x ) = 0, 
since / ( . ) is locally Lipschitz continuous, from LaSalle invariant 
set Theorem [42][39][16], r r � Cl = {x\d{Vi{x))/dt = 0}. 

Now we show that {x\dVi{x)/dt = 0} is the same set as 
{x\dx/dt = 0}. 

From equation (3.7), it's obvious that d(Vi{x))/dt = 0 
(I-P)Vf(x) = 0. Since the assumption that x(t) G S has been 
made at the beginning of the proof, we have 0 G K[g(Ax - b). 
Thus d(Vi(x))/dt = 0 ( / - P)Vf(x) = 0 => dx/dt = 0. 
For any x that satisfies dx/dt = 0，it is clear that d{Vi{x))/dt = 
d{Vi{x))/dx-dx/dt = 0. As a result, a:(t) — = {x\d{Vi{x))/dt = 
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0} = {x\dx/dt = 0}, thus the neural network is stable in the 
sense of Lyapunov and globally convergent to the equilibrium 

points set. 
If f{x) is strictly pseudoconvex on S, Vf{x) is a strictly 

pseudomonotone mapping on S [37], then \/x £ S and x ^ x, 

(x — > 0. Prom (3.7), we know that Va; G 5 and 
x^x, dVi{x)/dt < 0, and dVi{x)/dt 二 0 if and only if :r 二无. 

Also f{x) > f{x) can be derived from Vf{xf{x - x) = 0 for 
any xeS since f{x) is strictly pseudoconvex. As a result, x is a 
unique equilibrium point. Thus if f{x) is strictly pseudoconvex 
on S, the neural network (3.1) is globally asymptotically stable. 
• 

Theorem 3: Let f{x) be pseudoconvex on S. The state vector 
of the neural network (3.1) is globally convergent to optimal 
solution set of the problem (1.3) for any XQ G W. In addition, 
when f{x) is strictly pseudoconvex on «S, the neural network 
(3.1) is globally convergent to the unique optimal solution x* of 
problem (1.3). 
Proof: From Theorem 2, we know that the system (3.1) is stable 
in the sense of Lyapunov, and globally convergent to equilib-
rium point set n = {x\dx/dt 二 0}. As 0 G -{I - P)Vf{x)-

A^K[g{Ax-b)] holds for any x and P = A^iAA^y^A, we have 

0 € Vf{x) — A^iAA'r'AVfix) + A'KlgiAx - b)]. 

Let y e - K[g{AX - b)]. Then V f { X ) -
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A^y = 0，which means x satisfies KKT condition of problem 
(1.3). Considering Lemma 1, we can conclude that any equilib-
rium point X of system (3.1) is an optimal solution x* of problem 
(1.3). Thus the neural network (3.1) is globally convergent to 
the optimal solution set of problem (1.3). 

For strictly pseudoconvex optimization, since the solution x* 

is unique, it is obvious that the neural network (3.1) is conver-
gent to the optimal solution of problem (1.3). • 
Theorem 4-' Let V/(a;) be strongly pseudomonotone on S. For 
any initial point rco G IR。，the state vector of the neural network 
(3.1) is exponentially convergent to the optimal solution x* of 
the problem (1.3) after t > ts. 

Proof: By the strongly pseudomonotone of Vf{x) on S, since 
in (3.6) we have Vf(x)^(x - x) = 0, 3j > 0，such that Vt > ts, 

Vf{xf{x - x) 

where x is an equilibrium point that satisfies 0 € —A^K[g{Ax — 
b)]-{I-P)Vf{x). 

Consider the following Lyapunov function: 

V2{x) = (3.8) 

We have 

^ ^ < — ( 工 - < -7||x 一 到 |2 = -27I/2 ⑷ . 

As a result, Vt > ts, 
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V2{x{t)) < V2{x{ts)) exp ( -27( t - ts)). 

From Lemma 1 and the proof in Theorem 3, as • / � is 
strongly pseudomonotone on S, f{x) is pseudoconvex on S. 

Thus we know that x satisfies KKT condition and is the op-
timal solution X*. Because V2{x) 二 0 if and only if x = x, the 
neural network (3.1) is exponentially convergent to the optimal 
solution X* of the problem (1.3) after t > ts- 口 

Note that strictly convex quadratic function is also strongly 
pseudoconvex (since the matrix in a strictly convex quadratic 
function has a minimum positive eigenvalue). Thus the state 
vector of the neural network (3.1) is also exponentially conver-
gent to the optimal solution for strictly convex quadratic opti-
mization subject to linear equality constraints. 

• End of chapter. 



Chapter 4 

Numerical Examples 

Chapter Outline 

To demonstrate the performance of the proposed one-
layer neural network in solving pseudoconvex optimiza-
tion problems with linear equality constraints, several 
illustrative examples are given in this section. 

Many functions in nature are pseudoconvex, such as But-
terworth filter functions, fractional functions, and some den-
sity functions in probability theory. Among them, the Gaussian 
function as shown in Figure 4.1 is chosen in Example 4.1, and 
quadratic fractional function is chosen as the objective function 
for Example 4.2. Example 4.3 considers a strictly convex objec-
tive funtion, which is also strongly pseudoconvex. 

In the following simulations, the differential equation defined 
by (3.1) is solved using MATLAB r2008a ode45 algorithm on a 
2.4GHZ Intel CoreTM2 Qrad PC running Windows Vista with 
2.0GB main memory. 

27 

I 
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4.1 Gaussian Optimization 

Example 4.1: Consider the following pseudoconvex optimization 
problem with linear equality constraints: 

2 

minimize — e x p ( _ X X V 也 … � 
i=i l^-J-j 

subject to Ax = b, 

where o; G R2, ^̂  二 (1，1)�the elements of A = [0.787，0.586: 
and b = 0.823 are randomly drawn from the uniform distribution 
over (0,1). Obviously, the objective function is locally Lipschitz 
continuous and strictly pseudoconvex on 

Since the conditions in Theorems 1，2 and 3 hold, the one-
layer recurrent neural network (3.1) is globally asymptotically 
stable and capable of solving this optimization problem. Figure 
4.2 is the state phase plot of the neural network (3.1) from 20 

random initial points converging to the feasible set S = {x\Ax-

6 = 0} in finite time, and then converging to x*. It is also 
obvious that the state variables stay in the feasible region S once 
reaching it. Figure 4.3 shows the transient states of the neural 

network (3.1) with e = 10"® in Example 4.1, where 20 random 

initial points are generated from the uniform distribution over 

(-1,1). 
The projection neural network [82] and the two-layer recur-

rent neural network [81] are also used for solving the same prob-
lem (4.1). 

The global convergence of the Lagrangian network for convex 
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备 - ‘ . . . . . . " ^ ^ l i i g i ^ j : � . . . 

X -1 -1 
2 X̂  

Figure 4.1: Isometric of of inverted 2D non-normalized Gausssian function 
with (J = [1,1]'^'. 
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i.5| � o ~ ‘ ‘ 1 一 � =n 
\ ——x(t) 
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\ \o 1 
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画 
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Xl 
Figure 4.2: Transient belia.viors of the neural network (3.1) with 20 random 
initial points in Example 4.1. 
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1 | • — 
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0 1 2 

time .--4 
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Figure 4.3: Transient states of the neural network (3.1) in Example 4.1. 
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optimization was studied in [75]. However, global convergence is 
not guaranteed for pseudoconvex problems. Figure 4.4 shows the 
transient states of both the Lagrangian network (in dashed line) 
and the two-layer recurrent neural network (in continues line) in 
Example 4.1, where two random initial points are generated from 
the uniform distribution over ( - 2 , 2 ) for models. It is obvious 
that the state vectors of both the Lagrangian network and the 
two layer recurrent neural network oscillate and do not converge 
to X* for this example. 

41 > 

厂、 / 、 r\ 广 \ 

^ \ \ / \ ' \ 
3 - / / ‘ / ；. / \ -
/ / \ \ / / \、\ / / \ 

\ ' \ I \ > 
- 1 . � \ \ // \ \ // \ \ / / \ . ,\ \ 丨丨 \ \ I \ �/ \ , \ \\ ” \ �• . \ \ 

-2 \ / \ / \ / \ 

-31 ‘ 

0 1 2 
time x10"' 

Figure 4.4: Transient states of both the Lagrangian network (in dashed line) 
and the two-layer recurrent neural network (in continues line) in Example 
4.1. 
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Furthermore, consider problem (4.1) in a higher-dimension 
case with n = 5, where a = [1 ,1/2,1/4,1/2 ’ 1 厂，A E ]R3x5 ^nd 
b e R^ are drawn from the uniform distribution over (0,1)^. 
Figure 4.5 depicts the transient states of the one-layer recurrent 
neural network (3.1) with e = where five random initial 
points are generated from the uniform distribution over (—1，1”. 

It also shows the global convergence of the states to the unique 
optimal solution of the problem. 

-0.8 • -

-1 1 1 1 I 
0 1 2 3 4 5 

time 
X 10 

Figure 4.5: Transient states of the one-layer recurrent neural network (3.1) 
from 5 random initial points in Example 4.1(n = 5). 

Again, the Lagrangian network [85] is applied to solve the 
problem (4.1). In Figure 4.6，5 random initial points are gener-
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ated from the uniform distribution over (—1,1)5, and the states 
are drawn in different colors. It is obvious that the Lagrangian 
network does not converge. 

31 1 1 1 1 — 

-ol -L ' 1 1 
0 0.2 0.4 0.6 0.8 1 

time x10一4 

Figure 4.6: Transient behaviors of the Lagrangian network with 5 random 
initial points in Example 4.1(n 二 5). 

Figure 4.7 shows the transient behaviors of the two-layer re-
current neural network [81] in Example 4.1, where five random 
initial points are generated from the uniform distribution over 
(一 1，1)5. It shows that the state vectors of the neural network 
oscillate or even diverge for the example. 
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21 1 1 1 1 

-3' 1 J 1 ‘ 
0 0.2 0.4 0.6 0.8 1 

time X10-4 

Figure 4.7: Transient behaviors of the two-layer recurrent neural network 
(2.11) with 5 random initial points in Example 4.1(71 = 5). 
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4.2 Quadratic Fractional Programming 

Example 4.2: One of the important classes of pseudoconvex 
optimization problems is the quadratic fractional programming 
problem: 

. .…； ^ x'^Qx+aF'x+ao 

minimize >^+co , (4.2) 
subject to Ax = b, 

where Q is an n x n positive semidefinite matrix, a,c G and 
ao, Co G R. It is known that the objective function is pseudocon-
vex on the half space {x\c^x + cq > 0} [19 . 

Let n 二 4, 

/ 5 - 1 2 0\ / 1 \ / 2 \ 
- 1 5 - 1 3 - 2 1 

Q = , a = , c = , 
^ 2 - 1 3 0 - 2 - 1 

3 0 5； \ 1 / \ 0 j 

^ / 2 1 - 1 0 \ /4\ 
A = , 0 = , do = -2，Co = 5 . 

乂 1 0 2 - 2 j \5J 

As Q is symmetric and positive definite in the objective 
function is pseudoconvex on the feasible region {x\Ax = b}. 

Figure 4.8 depicts the transient states of the one-layer recurrent 
neural network (3.1) with e == 10—6, where 10 random initial 
points are generated from the uniform distribution over (0，5”. 
It shows the global convergence to the unique optimal solution 
of the problem. 

Figure 4.9 shows the transient states of both the Lagrangian 
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0 0.5 1 1.5 2 

time 
X 10 

Figure 4.8: Transient behaviors of the one-layer recurrent neural network 
(3.1) with 10 random initial points in Example 4.2. 
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Figure 4.9: Transient states of both the Lagrangian network (dashed line) 
and the two-layer recurrent neural network (continues line) in Example 4.2. 
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network (in dashed line) and the two-layer recurrent neural net-
work (in continues line) in Example 4.2, with a random initial 
point generated from the uniform distribution over (0, 5). 

These two examples have, shown that for strictly pseudocon-
vex optimization problem, the one-layer recurrent neural net-
work is globally asymptotically stable at x*. While other net-
works such as the Lagrangian network and a novel recurrent 
neural network may not converge to the global minimum or even 
vibrate and divergence. 

4.3 Nonlinear Convex Programming 

Example 4-3: It is obvious from the definition that strictly con-
vex functions are also strongly pseudoconvex ones. A nonlinear 
convex function will be taken as the objective in this example, in 
order to show and compare the performances of related neural 
networks. 

minimize {xi - 4 ” + (^2 + x^f + {x4 + 2 ” + 工4, 
subject to Ax = 6, 

(4.3) 
/ 2 —3 1 Q 

where A = ’ and b = [1, —3厂 
\0 1 2 - l y 

Figure 4.10 depicts the transient states of the one-layer re-
current neural network (3.1) with e = 10"^, where 5 random 
initial points are generated from the uniform distribution over 
(—1,1)4, It shows the global convergence to the unique optimal 
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solution of the problem. 

fe J 
- 2 ' ‘ ‘ ‘ ‘ 

0 0.2 0.4 0.6 0.8 1 
time x10 ' ' 

Figure 4.10: Transient states of the one-layer recurrent neural network (3.1) 
with 5 random initial points in Example 4.3. 

Using the same parameters, the problem is solved with two 
other neural networks. Figure 4.11 shows the transient states 
of both the Lagrangian network (in dashed line) and the two-
layer recurrent neural network (in continues line) in Example 
4.3. These networks are designed for constrained convex op-
timization, and the convergence of their states to the optimal 
solution has been proved theoretically, and Figure 4.11 shows 
exactly the transient behaviors. However, when comparing Fig-
ures 4.10 and 4.11, we can see that the proposed neural network 
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converges faster than the other existing method. 

2.5 1 1 1 1 1 

1.5 - // -

I 0.5 
S o f _ 

I 
X4 

-0.5 . 一 ^ -

-1�j, -

-2 1 1 I I 
0 1 2 3 4 5 6 

time X10-4 

Figure 4.11: Transient states of both the Lagrangian network (dashed line) 
and the two-layer recurrent neural network (continues line) in Example 4.3. 

• End of chapter. 



Chapter 5 

Real-time Data Reconciliation 

Chapter Outline 

This chapter reports the results of the proposed neuro-
dynamic optimization approach in data reconciliation. 
It is shown that data reconciliation problem can be 
formulated as pseudoconvex optimization one with lin-
ear equality constraints. Based on a performance in-
dex, simulation results on three industrial examples are 
shown and compared. 

5.1 Introduction 

Measured process data usually contain several types of errors. 
It is important to understand what is wrong with the values ob-
tained by the measurement and how they can be adjusted [64 . 
Data reconciliation is a means to adjust process data measure-
ments by minimizing the error and ensuring constraint satisfac-
tion, which is a way to improve the quality of distributed control 

42 
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systems. A good estimation is usually defined as the optimal so-
lution to a constrained maximum likelihood objective function 
subject to data flow balance constraints. Real-time data recon-
ciliation is necessary to make proper use of the large amount of 
available process information. 

Consider a series of measured data with errors: 

Viik) = Zi{k) + ei{k),i = 1，.. •，n，A; = 1, 2， . . . （5.1) 

where yi{k) is the kth. measured value of element i, Zi{k) is 
the true value of the element, and ei{k) is the identically in-
dependent distribution error that usually consists of three dif-
ferent types of errors: small random Gaussian errors, Cauchy 
distributed systematic biases and drift, and gross errors which 
are usually large, resulting from instrument malfunction. 

It is shown in literature that Cauchy (Lorentzian) function 
is the most effective generalized maximum likelihood objective 
function with higher data reconciliation performance [18]. Con-
sider equation (5.1), data reconciliation can be stated in the 
following form for each given k: 

maximize ~ ~ t t t t ^ ~ 
n 2) 

subject to YJ aijXj = bi,i = 1,... ,n, 、.乂 
i=i 

where yi is the measurement of variable i, xi is the reconciled 
estimate, cji is a scaler statistical parameter of the error. 

The proposed neurodynamic optimization method can be used 
for solving the data reconciliation problem in chemical processes. 
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The benefit of using neural networks for data reconciliation is 
that the proposed neural dynamic system can achieve the op-
timal solution in very short time, which makes real-time data 
reconciliation possible. 

5.2 Theoretical Analysis and Performance Mea-

surement 

First, we need to show that Cauchy function (which is also the 
objective function of Problem (5.2)) g(x) = 11;1/[71"(7'乂1 + {yi — 

Xif /a f ) ] is strictly pseudoconcave on It is shown in [37] that 
a differentiable function is strictly pseudo concave if and only 
if its negative gradient is a strictly pseudomonotone mapping 
where the definition is given below. 

From the definition of Cauchy function, we have 

dg _ ( . 2{xi - Vi) 

Since g{x) > 0 always holds, G R几,from -Wg{xf{x'-

x) > 0, we have 

^ 2 { x i - y i ) { x ' i - x i ) 

^ [1 + iVi - - ， 

which simply leads to S/g{x'f{x'-x) > 0. Thus g{x) is strictly 
pseudoconvex on R", and problem (5.2) is a pseudoconvex opti-
mization problem with linear equality constraints. 

Total error reductions (TER) [66] is often used to evaluate 
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the data validation performance. 

j t i i V i — — — 

TER = max{0, ^ ^ }. 

担，— 
(5.3) 

The range of TER is [0, 1] and it reaches its maximum when 
the optimal solution x* is exactly the same as the true value z. 

5.3 Examples 

In the following experiments, the measurement sets yi are gener-
ated for each variable by adding noise from Cauchy and normal 
distributions with equal probability to true value Zi. For the 
gross errors, outliers are created in 10 percent randomly selected 
measurements by adding or subtracting 10 - 100 percent of the 
true values. The lower bounds on the measurement variables 
are set to 50 percent of the true values and the upper bounds 
to twice of the true values. 

Example 5.1: Consider a chemical reactor with two entering 
and two leaving mass flows [61], The four variables are related 
by three linear mass balance equations, where 

^0.1 0.6 - 0 . 2 - 0 . 7 � / o \ 
A = 0.8 0.1 -0.2 -0.1 ，6 二 0 , 

�0.1 0.3 - 0 . 6 - 0 . 2 J 
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(J = diag(0.00289,0.0025,0.00576,0.04), 

z 二（0.1850,4.7935,1.2295,3.880)^. 

Figures 5.1 and 5.2 show, respectively, the transient states of 
the neural network (3.1) and the performance index value TER 

with five random initial states and the same errors. It shows the 
global convergence of the neurodynamic optimization approach. 

61 1 1 -1 1 

^ = 

4 ^ — — 

3 - _ w o 
to 

2 - -

1 - • 

： 

一 1 1 1 1 1 
0 0.2 0.4 0.6 0.8 1 

time X10-4 

Figure 5.1: Transient states of the neural network (3.1) for data reconciliation 
with 5 random initial states in Example 5.1. 

Example 5.2: Consider a recycle process network, where seven 
streams are identified with overall material balance as four linear 
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0.91 1 1 , , 

c 
0 0.2 0.4 0.6 0.8 1 

time X10-4 

Figure 5.2: Transient behaviors of the performance index TER in Example 
5.1. 
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equality constraints [63], where 

, 1 - 1 0 1 0 1 0 \ /o\ 
0 1 - 1 0 0 0 0 0 

A = 八,b= ^ ， 
0 0 1 - 1 - 1 0 0 0 

\0 0 0 0 1 - 1 - 1 / \0/ 

G = diag(1.5625,4.5156,4.5156,0.0625，3.5156,0.3906,0.3906), 

z 二（49.5’ 81.5,85.3,10.1’ 72.9,25.7,50.7)^. 

Figure 5.3 shows the transient states of the neural network. 
Example 5.3: Consider a steam metering system with 28 mea-
sured variables and twelve linear equality constraints [67]. A G 

股 12x28 jg a sparse matrix with 56 non-zero elements. The ele-
ments in matrix A that have the value 1 are an, ai2, au, <227，<̂ 28, 
a35, (2410, <̂ 411, (2513, (266，̂ 7145 ̂ 717, <̂ 815，<̂ 821, ̂ 9̂12, 0̂ 916, 0.1019, ai023， 

1̂027， 1̂120, aii26, 0̂ 1128, <̂ 129, 1̂211, <21221, 0̂ 1224，CL1225, and the el-
ements that have the value —1 are ais, “25，<̂ 26，<̂ 29，汉31,仅3i0j 

^412, ^511, (2514, (2515, 0516, <2517，（162, 0^613) <^77? <^719，<^720, <^721, ^^818, 

<̂ 823, <̂ 824, 0,922, CL925, <̂ 1026, <̂ 118, <̂ 124, <̂ 1227，<̂ 1228- 6 = 0 6 Z 

is given in Table II，and a = diag(0.0252；). 

Figure 5.4 shows transient states of the neural network. 
Figure 5.5 depicts the performance index TER during the 

convergent processes in Examples 5.2 and 5.3. It shows that 
there are mainly two parts in this transient behaviors: at first, 
the state vector x converges to a feasible point (that satisfies 
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Figure 5.3: Transient states of the neural network (3.1) for data reconciliation 
in Example 5.2. 
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Figure 5.4: Transient states of the neural network (3.1) for data rec;onciliation 
in Example 5.3. 
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Table 5.1: True values of flow ra.tes for the steam system in Example 5.3 [67]. 
Steam No. Flow Rate (lOOOKg/li) Steam No. Flow Rate (lOOOKg/h) 

1 0.86 15 60.00 一 

2 — 1.00 ~ 16 " 23.64 
3 — 111.82 — 17 32.73 
4 ~ ~ 109.95 — 18 - 16.23 
5 — 53.27 — 19 — 7.95 
6 — 112.27 ~ 20 " 10.50 
7 — 2.32 ~ 21 " 87.27 
8 — 164.05 “ 22 5.45 
9 — 0.86 - 23 2.59 
10 52.41 24 46.64 一 

11 14.86 25 85.45 一 

12 — 67.27 - 26 — 81.32 
13 “ 111.27 — 27 70.77 “ ~ 
14 91.86 28 72.23 

linear constraints) in a very short time, during which the TER 

value may even decrease, and then converges to the optimal 
solution of the problem, where the TER value increases and 
reaches its maximum value. 

Table II summarizes the results of Monte Carlo tests with 
random errors of 100 runs. The average, maximum (max), and 
minimum (min) values of TER with Cauchy errors and also 
average TER of Gaussian ones are compared. Obviously, the 
results with Cauchy errors are better than those with Gaussian 
ones. 

• End of chapter. 
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Figure 5.5: Transient behaviors of the performance index TER in Examples 
5.2 and 5.3. 

Table 5.2: Performance of Monte Carlo tests in terms of TER in Examples 
5.1-5.3. 

Example Gaussian Cauchy 
average average max rniri 

~~~5.1 0 . 7 5 1 ] ! ^ 0.757 “ 0.992 " 0 4 ^ 
5.2 "0764 [21] 0.789 0.898 0.260 
5.3 0.466 [18] 0.526 0.558 0.205 



Chapter 6 

Real-time Portfolio 
Optimization 

Chapter Outline 

In this chapter, another neurodynamic optimization ap-
proach is proposed and used to achieve the optimal al-
locate scheme of portfolio selection. First, another neu-
ral network model is described. Then it will be proved 
that the objective function in certain portfolio selec-
tion model is pseudoconvex, and the settings of initial 
points are discussed, which guarantee that the recur-
rent neural network will achieve the optimal solution to 
the problem. Finally, simulation results are given and 
compared. 

6.1 Introduction 

Portfolio optimization [53] is a means to optimize a set of finan-
cial instruments held to achieve goals by spreading the risk of 

53 
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possible loss due to below expected performance. A good port-
folio is not only a long list of good stocks and bonds, but also 
a balanced whole that provides protections and opportunities 
with respect to a wide range of contingencies. 

Since Markowitz's pioneering work of Mean-Variance (MV) 
model in portfolio investment [52], many studies have been done 
to enhance the model. In particular, a portfolio model is pro-
posed to maximize the probability that the rate of return is no 
less than an expected one [44] [43 . 

As the market is changing, real-time portfolio optimization 
approach is both necessary and rewarding. 

6.2 Model Description 

For n securities that the rate of return is a random vector 
� = = ( � 1 ， ， € 几 ) r with normal distribution; i.e., ^ � 7 V ( / i , Q). 
Here /x = • • ‘ , Mn)̂  > 0 is the mean vector of and Q e 

脱nxn ig the positive definite covariance matrix of which is usu-
ally considered as a measurement of risk. Let x — (xi, 0:2, • • • , Xn)'^ 

be the investment ratio vector, such that 二 1. Thus, 
the rate of return is 77 二 77 � a ; � a ; ) , and (77 -

/ i^x) /a /x^Qx � y V ( 0 , 1 ) . Thus the optimization model of port-
folio investment with probability criterion is 

maximize p{r] = ^ ((J^^) , (^ 丄） 

subject to 0 < < 1, Xi = 1, 
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where 歪 � = ^ is the standard normal dis-
tribution function, and r > 0 is the expected rate of return. 
Since <̂ >(.) is monotone increasing on R, the following equivalent 
optimization problem can be formulated. 

T" 
minimize f{x) = 
subject to 0<Xi<l, E i 而 = 1 ， 

For an expected rate of return r, ^{-f{x*)) gives the in-
vestors the maximum probability of the portfolio investment on 
current n securities with respect to certain expected rate of re-
turn r. 

Since bound constraints are necessary in this model, the neu-
ral network model (3.1) is modified to achieve the optimal solu-
tion of the problem (6.2): 

^ -df{x) - aiA^g{Ax - b ) - rro = x{to), (6.3) 

where g = . . . 爪 ) ) � a n d its components are 
defined as 

• 

1, if Xi > 0, 

9{xi) = 0, if = 0，（i = 1,2，...，m) (6.4) 

—1, if Xi < 0; 
\ 

and a2 are nonnegative constants, and another discontinuous 
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activation function /i—] (a;) is defined as 
f 

1， if Xi > Ui, 

h{xi) = 0, if U i < X i < Vi, (i = 1,2，...，n) (6.5) 

-1， if Xi < Vi. 
\ 

Note that for problem (6.2)，Ui = 0 and Vi = 1 for all i = 

1，2 ’ • • •，71/» 

6.3 Theoretical Analysis 

Lemma 忍..If : <S —股 and : <S —> R are convex, then f{x)= 

w{x)lv{x) is pseudoconvex on = {x\w{x) < > 0}. 
Proof: By setting Vf{x2){xi - X2) > 0, we have 

志 卜 ) - ^ ； ^ ^ ) ( … ) " ， 

Since w and v are both convex, Vxix2 G S, we have w(xi)— 

w(x2) > Vw ( x2 ) ( x i — X2) and v{xi) - v{x2) > Vv{x2){xi - X2), 

and w{x2)/v{x2) < 0, we have 

0 < V w { x 2 ) { x i - X2) - - X2) 

< w{xi) - W(X2) - - V(X2)) 

=uj(xi) - 咖 ) . 

Since v(x2) > 0，w{xi)lv{xi) > w{x2)lv[x2) follows directly 
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which indicates that f(x) = w(x)/v(x) is pseudoconvex on S. 
• 

According to Lemma 2, the objective function / ( . ) in (6.2) is 
pseudoconvex on Sq = {x\r — jjFx < 0}. 
Theorem 7; For all r < max^ fii, and large enough cji and C72, the 
states of the neural network (6.3) will converge to the global op-
timal solution of (6.2) for any xq e S = {x\r-fi^x < 0, xi = 
1} and x o e C = {x|0 < xi < 1}. 
Proof: First, the feasible region n C is not empty for any 
r < maxi 从 since the vector with the jth element of 1 and the 
rest ones 0; i.e., ej = ( Q i ， . . . ， P , . . . ， i s a feasible 
state, where j = max^. i. Thus we can always find a feasible 
initial state xq. 

Second, since the denominator of the objective function is 
positive for all x G W, f{xi) < f{x2) always holds if r - /jFxi < 
0 and r - /jFx2 > 0. As <S fl C is not empty, it is clear that the 
optimal solution of problem (6.2) under condition r — fjFx < 0 
is the optimal solution of the original problem (6.2). 

Finally, it has been proved (see Theorems 3 and 5 in [50]) that 
for any xq e SnC, ai and a2 are large enough, the states of the 
neural network (6.3) will remain in the feasible region forever 
and converge to the optimal solution of the problem (6.2) under 
condition r — fjFx < 0, which is also the optimal solution to 
problem (6.2) as just stated. • 
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6.4 Illustrative Examples 

The numerical example is generated randomly in the follow-
ing steps. First, the expected rate of return to a particular 
security varies over time. Thus the function fi(t)i = n k i t + 
Ri sm{t/Ti + cJi), z = 1 ,2 , . . . ,5 is used to describe the mean of 
expected rate of return at time t, where/c � [7(2X10-4,6X10一4), 
R �[7(0.3，1), T � [ 7 ( 2 ’ 5)，and o ;�C/ (0 ,27r ) are all randomly 
generated from uniform distributions. Figure 6.1 shows the sta-
tistically expected rate of return fi over a time period. 

l i i i 
Q QO I 1 1 1 ‘ 

• 0 10 ' 2 0 30 40 50 

t 

Figure 6.1: Mean of expected rate of return /./,. 

The covariance matrix <3 二 + Q2 is randomly generated 
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and fixed over time to compare the results directly, where Qi = 
O.OIU^U y 0，Uij � [ / ( — 1，1 ) are i.i.d variables, and Q2 = 
diag{Ri, R2,…,R^): 

(1.849 0.548 0.089 0.437 0.207 \ 
0.548 2.159 -0.011 -1.155 0.004 

Q= 0.089 一0.011 1.697 -0.010 -0.547 . 
0.437 -1.155 -0.010 3.252 0.372 

�0.207 0.004 -0.547 0.372 1.523 j 
Then, based on the statistic results of the expected return 

rates and their covariance matrices, the probabilities of expected 
returning rate are maximized based on the proposed neurody-
namic optimization model. 

First we only consider a singe case when t = 0, and test the 
performance and properties of the neural network model in this 
application. Figure 6.2 shows the transient states of the one-
layer recurrent neural network (6.3) for a single case portfolio 
optimization when t = 0 and r = 0.1. 

Sometimes, saving money in the bank is considered as a port-
folio selection as well. In this case, a sixth selection which 
implies saving money in the bank is added, and the expected 
rate of return is set to be two percent, and 彻 = 1 0 " ^ since 
there is very little risk when putting money into the bank, and 
QiQ = qQi = 0 for i = 1, •.., 5 since the risk of bank saving has 
nothing to do with other investments. Figure 6.3 shows the 
transient states of the one-layer recurrent neural network (6.3) 
for a single case portfolio optimization with bank saving when 
t = 0 and r = 0.1. We can see that xq remains the value 0 dur-
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Figure 6.2: Transient states of the neural network (6.3) in portfolio selection, 
where £ = 0 and r = 0.1. 
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ing convergence since the returning rate for putting the money 
into the bank (/llq = 0.02) is much lower than the expected rate 
of return. By comparing Figures 6.3 and 6.2, we can see that 
in this case, adding bank saving as a choice causes no changing 
to the optimal portfolio selection, and the maximum probabil-
ity ^(—f(x*)) that returning rate of the investment larger than 
expected (r = 0.1) also remains 77.58%. 

1.21 1 . , 

0,8 - \ -

0.6 - \ -
CO \ 

o \ 
B V w 

0.4 - -

X3 
。.2 “ 工 2 -

0 丨/^^^ ^ 4 — 
XQ 

-0 .21 ‘ ‘ ‘ 
0 0.5 1 1.5 2 

time X10-6 

Figure 6.3: Transient states of the neural network (6.3) in portfolio selection 
with choice of saving money into the bank, where t = Q and r = 0.1. 

Then the expected rate of return is set to a very low value 
(r = 0.02), which is the same as the real returning rate of the 
bank. Figure 6.4 shows the transient states of the one-layer 
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recurrent neural network (6.3) for this case. Not surprisingly, 
the optimal selection scheme suggests that one put almost all 
his or her money into the bank, since this is the safest way with 
0 risk. The maximum probability ^(-f{x*)) that returning rate 
of the investment larger than expected (r = 0.02) increases to 
99.79%. The reason that this probability is not 100% is that in 
order to guarantee that the numerator of the objective function 
to be positive, qee = 10"^ instead of exact 0 in simulation. Thus 
the selection rate of putting money into the bank is only around 
0.9, and there is still about 0.3% risk. 

1 1— —I 1 1 

j 
0.8 - / -

I i 

0.6 j -
i 

j 
0.4 - - - ^ ^ / -

0 - ^ r ^ ： - — 
y 

. � Z 

-0.2 \ Z -

-0.4' ： ‘ •• ‘ ‘ ‘ 

0 0.2 0.4 0.6 0.8 1 
time X10-5 

Figure 6.4: Transient states of the neural network (6.3) in portfolio selection 
with choice of saving money into the bank, where t = 0 and r = 0.02. 
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Now we consider time-varying portfolio optimization prob-
lem. As Figure 6.1 shows, the rate of return changes over 
time. Figure 6.5 shows the optimal selection scheme of the five 
securities over time. The probabilities that rate of return is 
greater or equal than an expected value (r = 0.1) is also calcu-
lated as > r) = ^{{fi^x — and shown in 
dotted line with '+ ' mark in the figure. 

0.91 1 1 , , 

0.8 + + +.+ +•+ ++ ++++•+ +•+ +•+ +++-. 

n 7 +.+ + + +.+ +.+ +.+ +.+ + + + + + +.+ +.+ +.+ + * 
0.7 - X -

...+... r) 
0.6 -

0.5 - / -

0 . 4 : -

-0.1 ‘ 1 1 1 
0 10 20 30 40 50 

t 

Figure 6.5: Optimal portfolio selection and the probability when the expected 
rate of return is at least r = 0.1. 

From Figures 6.5 and 6.1, we can see that the selection rate 
X* of a particular security i is higher if its expected rate of return 
IM is larger and also with less fluctuating {qu). On one hand, 
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though iM is much larger than /X3 when t > 25, its optimal 
selection rate xl is still quite low since its return rate fluctuates 
more than others (with larger ^33). On the other hand, though 
/i3 < fii all the time, x^ > x^ sometimes since 3̂3 < qii- For 
some time (i.e., 5 < t < 25), most of the rates of return for 
the securities are not large enough (< 0.14). As a result, the 
possibility > r) of earnings of 10 percent more (r = 0.1) 

is smaller than the ones on other time. 
Figures 6.6 and 6.7 shows the optimal portfolios as well as the 

possibilities p(jr*T� > 厂）for r = 0.12 and r = 0.08 respectively. 

0.81 1 ‘ ‘ —：―‘ 

0 6 〜+.+ +.+ ++ + + + +.+一 + - - 1 \ 

。 . 5 \ 对 

I ••4- • 

-0.1 ‘ — = — ‘ ‘ ‘ 
0 10 20 30 40 50 

t 

Figure 6.6: Optimal portfolio selection and the probability when the expected 
rate of return is at least r = 0.12. 
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Figure 6.7: Optimal portfolio selection and the probability when the expected 
rate of return is at least r = 0.08. 
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By comparing Figures 6.5 - 6.7, we can see that even under 
the same condition (i.e., exactly the same securities), the opti-
mal selections are different with different expectations. If one is 
more greedy expecting higher rate of return (r), the possibility 
to achieve the goal is smaller. In a word, high expected rate of 
return usually comes along with high risk. 

• End of chapter. 



Chapter 7 

Conclusions and Future Works 

7.1 Concluding Remarks 

In this thesis, a single-layer recurrent neural network for solv-
ing pseudoconvex optimization problems with linear equality 
constraints is proposed based on an existing model for convex 
optimization. The reconstructed recurrent neural network is 
proven to be globally stable in the sense of Lyapunov, globally 
asymptotically stable, and global exponentially stable when the 
objective function is pseudoconvex, strictly pseudoconvex, and 
strongly pseudoconvex in the feasible region, respectively. The 
convergence of its states to the optimal solution of the prob-
lem is also derived. Simulation results on numerical examples 
and application to chemical process data reconciliation is elab-
orated to substantiate the effectiveness of the recurrent neural 
network. Moreover, application on real-time portfolio optimiza-
tion of a improved recurrent neural network model is done in 
this thesis. 

67 
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7.2 Future Works 

In fact, the objective functions of many real world optimization 
problems are non-smooth . There are still challenges on theo-
retical works for the one-layer recurrent neural networks to deal 
with non-smooth objective functions. Besides linear equality 
constraints and bound constraints, linear inequality constraints 
may have much wider application areas, such as 3-D reconstruc-
tion [57]. Thus, modifying the model for solving pseudoconvex 
optimization problem with inequality constraints might also be 
our further investigation. 

• End of chapter. 
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Publication List 

• Qingshan Liu, Jun Wang, and Zhishan Guo, "A one-layer 
recurrent neural network for pseudoconvex optimization sub-
ject to linear equality and bound constraints", Neural Net-

works, Submitted, June, 2011. 

• Zhishan Guo, Qingshan Liu, and Jun Wang, "A one-layer 
recurrent neural network for constrained optimization with 
pseudoconvex objective function subject to linear equality 
constraints"，IEEE Trans, on Neural Networks, Resubmit-
ted, June, 2011. 

• Zhishan Guo and Jun Wang, "Information retrieval from 
large data sets via multiple-winners-take-all", In Proc. of 

ISCAS2011, Rio de Janeiro, Brazil, May, 2011. 

• Zhishan Guo and Jun Wang, “A neurodynamic optimiza-
tion approach to constrained sparsity maximization based 
on alternative objective functions", In Proc. of IJCNN2010, 

pp. 2932-2939, Barcelona, Spain, 2010. 
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• Jun Wang and Zhishan Guo, "Parametric sensitivity and 
scalability of k-winners-take-all networks", In Proc. of ISNN2010, 

Shanghai, China, 2010. 

• End of chapter. 
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