264 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Achieving Covert Wireless Communications Using a Full-Duplex Receiver

    Full text link
    Covert communications hide the transmission of a message from a watchful adversary while ensuring a certain decoding performance at the receiver. In this work, a wireless communication system under fading channels is considered where covertness is achieved by using a full-duplex (FD) receiver. More precisely, the receiver of covert information generates artificial noise with a varying power causing uncertainty at the adversary, Willie, regarding the statistics of the received signals. Given that Willie's optimal detector is a threshold test on the received power, we derive a closed-form expression for the optimal detection performance of Willie averaged over the fading channel realizations. Furthermore, we provide guidelines for the optimal choice of artificial noise power range, and the optimal transmission probability of covert information to maximize the detection errors at Willie. Our analysis shows that the transmission of artificial noise, although causes self-interference, provides the opportunity of achieving covertness but its transmit power levels need to be managed carefully. We also demonstrate that the prior transmission probability of 0.5 is not always the best choice for achieving the maximum possible covertness, when the covert transmission probability and artificial noise power can be jointly optimized.Comment: 13 pages, 11 figures, Accepted for publication in IEEE Transactions on Wireless Communication

    Security Improvements for the S-MIM Asynchronous Return Link

    Get PDF
    S-MIM is a hybrid terrestrial and satellite system that enables efficient and high-performance communication in the return link. For communication to be possible between a device and the satellite, a preamble has to be established. Some parameters to generate the preamble are broadcasted by the satellite without protection. It is very important to protect the preamble, because if an attacker knows the preamble he could avoid the communication. This project presents a method without the necessity of establishing the preamble in a way that ensures the communication. However, to achieve this security the trade-off is degradation of throughput and a delay in communication

    Secret Channel Training to Enhance Physical Layer Security With a Full-Duplex Receiver

    Get PDF
    This work proposes a new channel training (CT) scheme for a full-duplex receiver to enhance physical layer security. Equipped with NB full-duplex antennas, the receiver simultaneously receives the information signal and transmits artificial noise (AN). In order to reduce the non-cancellable self-interference due to the transmitted AN, the receiver has to estimate the self-interference channel prior to the data communication phase. In the proposed CT scheme, the receiver transmits a limited number of pilot symbols which are known only to itself. Such a secret CT scheme prevents an eavesdropper from estimating the jamming channel from the receiver to the eavesdropper, hence effectively degrading the eavesdropping capability. We analytically examine the connection probability (i.e., the probability of the data being successfully decoded by the receiver) of the legitimate channel and the secrecy outage probability due to eavesdropping for the proposed secret CT scheme. Based on our analysis, the optimal power allocation between CT and data/AN transmission at the legitimate transmitter/receiver is determined. Our examination shows that the newly proposed secret CT scheme significantly outperforms the non-secret CT scheme that uses publicly known pilots when the number of antennas at the eavesdropper is larger than one.ARC Discovery Projects Grant DP15010390

    Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances

    Full text link
    Sixth-generation (6G) networks pose substantial security risks because confidential information is transmitted over wireless channels with a broadcast nature, and various attack vectors emerge. Physical layer security (PLS) exploits the dynamic characteristics of wireless environments to provide secure communications, while reconfigurable intelligent surfaces (RISs) can facilitate PLS by controlling wireless transmissions. With RIS-aided PLS, a lightweight security solution can be designed for low-end Internet of Things (IoT) devices, depending on the design scenario and communication objective. This article discusses RIS-aided PLS designs for 6G-IoT networks against eavesdropping and jamming attacks. The theoretical background and literature review of RIS-aided PLS are discussed, and design solutions related to resource allocation, beamforming, artificial noise, and cooperative communication are presented. We provide simulation results to show the effectiveness of RIS in terms of PLS. In addition, we examine the research issues and possible solutions for RIS modeling, channel modeling and estimation, optimization, and machine learning. Finally, we discuss recent advances, including STAR-RIS and malicious RIS.Comment: Accepted for IEEE Internet of Things Journa
    corecore