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ABSTRACT

COVERT COMMUNICATIONS IN CONTINUOUS-TIME
SYSTEMS

MAY 2021

KE LI

B.S., CHINA UNIVERSITY OF GEOSCIENCES, BEIJING

M.S., STATE UNIVERSITY OF NEW YORK AT BUFFALO

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Dennis L. Goeckel

This dissertation studies covert wireless communications where a transmitter (Al-

ice) intends to transmit messages to a legitimate receiver (Bob) such that the presence

of the message is hidden from an attentive warden (Willie). Here we consider perti-

nent aspects of covert communications that focus on moving such systems closer to

implementation. For example, previous studies use the standard discrete-time com-

munication model when analyzing covert communications, since this is commonly

assumed without loss of generality in standard communication theory. However, it

is not clear that such a model captures the salient aspects of the continuous-time

covert communications problem. A power detector that is optimal for the warden in

a discrete-time covert communications scenario may not be optimal on a continuous-

time model. Thus, it is of interest to consider this more realistic model for physical

channels. After analyzing a power optimization problem using the standard discrete-

time model, we move to the key part of system implementation: the instantiation in

vii



true continuous-time systems of the discrete-time models studied to this point in the

literature. A key goal is to examine Willie’s detection capability on a continuous-time

model and study how the limits of covert communications change from the discrete-

time case. In particular, we show that detectors for Willie can benefit from the

continuous-time setting and outperform detectors based on the discrete-time model;

not surprisingly, this has a significant impact on the true covert throughput of the

system. Nevertheless, we establish constructions such that efficient covert communi-

cations can still be achieved in a continuous-time model, and prove the fundamental

limit on the covert communication rate. After considering the continuous-time prob-

lem in detail, we then turn to addressing another limitation of previous work - the

requirement for an intentional jammer to facilitate efficient covert communication.

Instead, we consider how to exploit a pre-existing interference source - a radar - to

achieve covert communication. We establish a covert communication scheme in such

an environment, and analyze the corresponding covert rate. Finally, we consider the

use of a detection technique similar to that in the covert communications problem,

in the area of quantized signal detection.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Secrecy in modern communications plays a crucial role in many applications. In a

typical wireless communication system, secrecy is often obtained through encryption.

In particular, a message is encoded before being transmitted to the legitimate receiver

in order to protect it from potential eavesdroppers. A generated key is given to the

legitimate receiver to decrypt the received message. In contrast, the eavesdropper

has difficulty decrypting the message without possessing the key. Although modern

communication technologies enable advanced algorithms for information encryption

that require considerable computational resources and skills for the eavesdropper to

decrypt the message, this standard cryptographic security is often not sufficient. This

is due to two main reasons: 1) adversaries can enhance their decipher capabilities

over time as technologies improve, putting current and especially past encrypted

transmissions in danger; and 2) adversaries can apply side-channel attacks [1] to infer

message content without acquiring the exact decrypted message. Thus, it is often

desirable to achieve information-theoretic security that does not depend on unproven

assumptions about computational hardness.

In information-theoretic secrecy, physical layer encryption exploits the wireless

channel to achieve provable and unbreakable security. In the 1970s, Wyner posed the

Alice-Bob-Eve problem where Alice wants to send secret messages to Bob without

being decoded by Eve [2]. Wyner defined the secrecy capacity that measures the

level of security of a communication system - the rate at which Alice can secretly

1



transmit information to Bob. He showed that secure communication is possible if

the channel from Alice to Bob is statistically better than that from Alice to Eve.

Later Csiszár and Körner [3] showed that secure communication is possible even if

the channel from Alice to Eve is statistically better. The key of the information

theoretic approach to communication security is to exploit the difference between the

channel to the legitimate receiver and the channel to the adversary or eavesdropper,

using the randomness of the physical medium (e.g., channel noise and fading), to

benefit the legitimate receiver.

In addition to the vulnerability to developments in decipher power, in many real-

life scenarios, the very existence of the transmission arouses suspicion. For example

in military communications, the detection of a transmission may reveal an activity in

that region, or in Internet of things (IoT) applications, the detection of a transmission

can compromise a user’s location privacy. A practical way of hiding the existence of a

message is to conceal it within another message. This is termed steganography. The

first recorded uses of steganography were mentioned by the ancient Greek historian

Herodotus [4]. One example is that the spartan king Demaratus sent a warning about

a forthcoming attack to Greece by writing it directly on the wooden backing of a wax

tablet (commonly used then as reusable writing surfaces) before applying its beeswax

surface. Nowadays, steganography is widely used in the digital world for hiding

communications in document files, image files, programs or protocols. However, in

the analog world, applying steganography to communication systems can be difficult

due to the existence of noise. Another issue is that steganography cannot be applied

when there is no cover text to hide the covert message, which is often true for many

applications where the existence of the transmission needs to be hidden, such as the

examples mentioned in the previous paragraph.

Covert communications can be employed to address the problem. The intuition

of covert communications is simple: the transmitter must send a signal power strong

2



enough for the receiver to receive and decode the message, but weak enough so that

the adversary cannot detect its presence. The research challenges are to determine

under what conditions covert communications can be achieved, and to find the the-

oretical limits on the covert transmission rate. This can help the transmitter and

the receiver evaluate their abilities in covert transmissions (whether it is capable to

transmit covert and reliable messages and what transmission rate can be employed).

Analogously, this also helps adversaries to evaluate their detection capabilities. It

will eventually help us to design technologies that enable or prevent covert communi-

cations in real-life scenarios. Many studies have been done on covert communications

to study the fundamental limits (as a function of the blocklength of the transmitted

message) in a wide range of scenarios, which we will introduce in detail in the next

section. Some works take other perspectives, such as considering an infinite block-

length to better understand the underlying mechanisms of the covert communication

problem. They provide inspiration for our work on optimal power adaptation in covert

communications in the second chapter where we question how to efficiently allocate

power to the transmitter such that the receiver can receive the message reliably under

a covertness constraint.

However, almost all previous work, including our power adaptation work, focused

on a discrete-time model, which assumes an equivalence to the actual continuous-time

model of interest since a discrete-time equivalent model is often sufficient for digital

communications. Given a pulse-shaped baseband signal, by the Nyquist folding cri-

terion, the receiver can extract all of the information of the signal by sampling at a

certain rate, resulting in no intersymbol interference (ISI). But in covert communi-

cations, sampling at a higher rate has utility for signal detection. Since commonly

generated signals are periodic and do not resemble Gaussian noise, it allows the eaves-

dropper to extract features in the transmitted signal that are different from the noise

to detect the presence of a transmission. This may provide more information to the
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Figure 1.1: ROC curves of the standard power detector and the successive cancellation
detector employed by Willie in the Alice-Bob-Willie-jammer scenario with AWGN
channels.

eavesdropper in comparison to the discrete-time model. In a discrete-time model,

Bash et al. in [5] and [6] proved that Alice can transmit at most O(
√
n) covert bits

to Bob in n channel uses of an AWGN channel. Although Lee and Baxley in [7]

showed that O(n) covert bits can be achieved if Willie is unaware of his background

noise, Goeckel et al. in [37] stated that Willie can estimate his noise through a large

collection of observations and hence Alice can only achieve O(
√
n) covert bits. A

possible scenario to achieve O(n) covert bits in a discrete-time channel is provided

in [9] by Sobers et al. where an uninformed jammer is added to the system. How-

ever, in [10] and [11], the O(n) result is challenged in a continuous setting. By having

Willie employing a more advanced detector, the jammer’s power can be cancelled and

we revert to the O(
√
n) result. Considering a continuous-time model may changes

the fundamental limits of covert communications, but since some assumptions in [10]

and [11] may not hold in practice, a deeper understanding of the problem is needed

to help realize covert communications in real-life applications. Figure 1.1 provides

an example that compares the ROC curve of another advanced detector for Willie
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(developed in Chapter 3) with that of the standard power detector (which is proved

optimal for a discrete-time model) in a continuous-time covert communication sys-

tem. This shows that the covert rates that can be achieved in actual continuous-time

channels are lower than those predicted in [9].

The above studies consider covert communications in an Alice-Bob-Willie-jammer

scenario where a friendly jammer is used as an interference source to assist Alice to

achieve covert communications, and in many cases, we need to have some control over

the jammer in order to help Alice. However, this may not be operable in many practi-

cal scenarios. For example in military communications, introducing a friendly jammer

will arouse suspicion. Therefore, it is desirable to develop covert communication sys-

tems that are able to exploit interference sources already existing in the environment.

In the fourth chapter, we will study covert communications in an environment with

an illuminating radar that will play the role of a jammer.

The job of a detector at the warden in a covert communication system is to decide

between hypotheses that either Alice is transmitting or not transmitting. Besides

covert communications, this kind of hypothesis testing is involved in many other areas

of wireless communications, e.g., in detecting quantized signals. Detecting quantized

signals is important since in many applications, such as network security or radar

systems, we want to know whether a received signal was sent directly by a friend,

or was recorded (hence quantized) by an adversary and then replayed. This problem

needs advanced study to learn the theoretical limits in signal detection, which will

help us evaluate the security level in such applications.

1.2 Background

1.2.1 Covert Communications

In the basic model of covert communication shown in Figure 1.2, a transmitter

(Alice) attempts to reliably transmit messages to a receiver (Bob) without a warden
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Figure 1.2: Alice-Bob-Willie model: Alice attempts to transmit reliably and covertly
to Bob in the presence of a warden Willie.

(Willie) detecting her communication. The original work by Bash et al. in [5] and [6]

demonstrates a square-root law (SRL) of the fundamental limits of covert commu-

nications over AWGN channels. They show that O(
√
n) bits in n channel uses of a

discrete-time channel can be transmitted covertly and reliably from Alice to Bob. In

terms of transmission power, O( 1√
n
) power can be employed by Alice for covert and

reliable communications. Beyond that power, Alice’s transmission will be detected

by Willie with high probability. Below that power, her message cannot be success-

fully decoded by Bob with small probability of error. Follow-on work has studied

covert communications and proved the SRL over various channel models. Che et

al. in [13] considered covert communications on Binary Symmetric Channels (BSCs).

More generic Discrete Memoryless Channels (DMCs) are considered by Wang et al.

in [15] and [16]. This work was also extended to classical-quantum channels in [17].

Many works in covert communications are based on models assuming that Alice

and Bob share a secret key that is unknown to Willie. Bloch studied the length

of the secret key needed to achieve the SRL in covert communications over DMCs

in [18] and [19]. He proved that the SRL can be achieved if Alice and Bob share on

O(
√
n)-bit key irrespective of the quality of the channels. If the Alice-to-Bob channel
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is better than the Alice-to-Willie channel, then the SRL can be achieved without a

secret key. Tahmasbi and Bloch also studied first- and second-order asymptotics for

covert communications with three different covertness metrics in [20] and [21]. Exact

first-order asymptotics are established for all metrics.

The aforementioned works all consider covert communications when Willie has

full knowledge of his channel statistics. We can also consider the case when there

are uncertainties at Willie, e.g., he is not sure of the background noise or additional

interference is involved. The results of many works show that a positive rate, i.e.,

O(n) bits in n channel uses, can be achieved. Lee et al. in [7, 22, 23] and Che et al.

in [14] found that if Willie is uncertain of his noise power, then Alice can achieve a

positive covert rate. However, the assumption that Willie’s receiver does not know

the noise power may not be true in real-life scenarios since Willie can estimate his

noise through a collection of channel observations when Alice does not transmit [37].

To achieve positive covert rate when Willie is certain about his noise power, Sobers

et al. introduced a scenario where an uninformed (does not have any coordination

with Alice) jammer is added in the communication system in [9, 11]. This jammer

randomly generates interference and creates uncertainties at Willie which allows a

positive covert rate for Alice. They also investigated covert communications over

fading channels in addition to AWGN channels in such a scenario. Our work in

Chapters 2 and 3 will be based on this scenario where an uninformed jammer is

added. One difference between this scenario and the scenario when Willie does not

know his received power is that the interference generated by the jammer not only

affects Willie, but also impacts Bob. Therefore, although a positive rate might be

achieved such as in [9], this scenario with a jammer does not necessarily guarantee a

higher covert rate than the basic Alice-Bob-Willie scenario with the same environment

settings. For example, when Bob is located relatively close to the jammer, the covert

rate will be degraded significantly.
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1.2.2 Power Adaptation in Covert Communications

Many works in covert communications focus on obtaining the scaling limits as a

function of the block length n. The authors in [24] take a different approach and

consider an infinite blocklength; they then ask what is the probability that channel

conditions are such that a communication is reliable and covert. We term this an

“outage” approach [25]- [27] which often captures the salient aspects of the problem

and can clearly illustrate the underlying mechanisms.

In [24], the authors use the outage approach to consider possible power adaptation

schemes at the transmitter to achieve covert communication. In particular, they

studied standard and truncated channel inversion (TCI) schemes, where Alice varies

her transmit power based on the channel from herself to Bob in order to keep the

received signal power at Bob a constant. The authors examine the performance in

terms of the achieved effective covert throughput and show that TCI outperforms the

standard channel inversion. However, [24] does not establish the optimality of the

scheme, and the parameters of the scheme need to be obtained numerically. Our work

in the second chapter will establish the exact optimal power adaptation schemes for

different scenarios.

1.2.3 Covert Communications on a Continuous-Time Model

Although covert communications have been intensively studied for the past few

years, some important issues are ignored. Almost all current research is based on a

discrete-time model where transmitters sends discrete symbols. In standard communi-

cation theory, it is commonly assumed that the discrete-time model is approximately

equivalent to a continuous-time model since, by sampling at the correct time instances,

the receiver is able to get exactly the original sent symbols with no intersymbol inter-

ference (ISI). However, the assumption on perfect symbol synchronization may not

always hold in practice. In addition, the generated continuous signals contain peri-
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odic features that can be made use of by the receiver in differentiating the signal from

Gaussian noise and/or interference. Based on this fact, a power detector for Willie

that is optimal in the discrete-time model may not still be optimal in the continuous-

time case. One example of a possible better detector is the cyclostationary detector

(CSD). CSDs are signal-presence detectors that exploit the cyclostationarity of digital

communication signals. It is particularly useful in detecting low signal-to-noise ratio

(SNR) signals. Gardner in [28]- [31] extensively researched CSDs and the optimal

CSDs for different modulation schemes. Kim et al. extended the study on CSDs and

introduced the cyclostationary approaches to both signal detection and classification

in cognitive radio in [32].

Although CSDs are efficient in extracting periodic features from a signal and hence

can perform detection in basic Alice-Bob-Willie scenarios, they may not work well

in the presence of a jammer in the system since the jammer also generates periodic

signals. However, there are still detectors we can explore that work better than a

power detector. Sobers et al. in [11] introduced a linear detector that exploits different

timing offsets between Alice’s and the jammer’s pulse shaped signals. However, this

detector only works for limited scenarios and requires that Willie have an accurate

estimate of the timing offsets of both Alice’s and the jammer’s signals. In the third

chapter, we will provide a different detector for Willie that works in more general

scenarios and does not require knowledge of Alice’s timing offset.

1.2.4 Covert communications under the cover of a radar

In covert communications, Willie attempts to determine whether he is only ob-

serving the background environment or a signal from Alice in that environment.

Hence, uncertainty about the environment helps Alice hide her transmission. Sobers

et al., [9], introduced a model with an interference source to achieve positive covert

rate: introducing an uninformed jammer to the system that randomly generates in-
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terference, hence providing the required uncertainty at Willie. It shows that Alice

can covertly transmit at most O(n) bits in n channel uses over both discrete-time

AWGN and block fading channels.

In many scenarios, the jammer is assumed to be an intentional jammer that coop-

erates with Alice to help her achieve covert communications on purpose [33]. However,

this require an active non-covert Alice-Bob teammate, which may be difficult to pro-

vide in some situations. For example, in military communications where a transmitter

attempts to covertly communicate with a receiver in enemy territory. In addition,

the jammer in [9] is itself not covert since the warden knows that the jammer is

present and potentially trying to hide something. Hence, it is often useful to exploit

an interference source that is already existing in the environment, such as radar emis-

sions [34,35] and other existing communication sources [36,37], so that Alice and Bob

can move into the area and hide under such interference.

The works [34, 35] by Blunt et al. introduces an intra-pulse radar-embedded

communication system where the transmitter attempts to covertly send transmis-

sion symbols to the radar. In order to achieve covertness, the transmission symbols

are embedded with the incident radar pulses, and are hidden behind the backscatter

induced by the radar reflections. The design of intra-pulse covert symbols based on

the incident radar waveform is studied in [34] such that the covert symbols are suffi-

ciently different from the ambient radar scattering to ensure acceptable bit error rate

(BER) but at the same time sufficiently similar to the scattering to avoid detection

by any adversary. Our work in the fourth chapter will exploit the idea of embedding

covert symbols with radar signal in a standard covert communication system, and

analyze the fundamental covert rate in such system.
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1.2.5 Detecting Quantized Signals

In many scenarios it is important to know whether a received signal was sent

directly by a friend, or was recorded by an adversary and then replayed. Such an

attack could be the replay attack (or playback attack) in network security, where an

adversary records the transmitted message and replays it later to trick the receiver

into unauthorized operations. This kind of attack also occurs in radar jamming and

deception to protect targets from being detected by enemy radar systems. Extensive

research [78]- [81] has proposed methods to efficiently detect false signals that are

recorded and replayed in such fields. However, the fundamental limits of such attacks

with hardware imperfections has not been explored. The fifth chapter will initiate

a study on the theoretical limits in the detection of quantized signals. Learning the

fundamental thresholds for the characteristics of the hardware (quantizer) will provide

us with both theoretical insight and application utility.

1.3 Contributions

• Optimal Power adaptation in Covert Communications (Chapter 2):

We consider a covert communication system consisting of a transmitter Alice, a

legitimate receiver Bob, a warden Willie and an uninformed jammer that is not

coordinated with Alice. With the information about the gain on the channel be-

tween Alice and Bob, Alice can adapt her transmit power to this gain to achieve

a certain rate and meet the requirement of covertness such that Willie detects

the presence of the transmission with low probability. We seek to find the

optimal power adaptation that minimizes the average outage probability sub-

ject to the covertness constraint. We consider the following scenarios: 1) the

jammer-to-Willie channel is AWGN; and 2) the jammer-to-Willie channel ex-

periences Rayleigh fading. In both scenarios, we established the optimal power

adaptation schemes separately under two covertness constraints: 1) an aver-
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age covertness constraint; and 2) an instantaneous covertness constraint. We

proved that in both scenarios, the optimal scheme under the average covertness

constraint is truncated channel inversion. Under the instantaneous covertness

constraint, TCI is not optimal, and we have provided the exact optimal power

adaptation schemes. These schemes outperform standard approaches such as

TCI by reducing the average outage probability significantly.

• Covert Communications on a Continuous-Time Model (Chapter 3):

Dropping the assumption in most prior work that a discrete-time model in covert

communications is equivalent to a continuous-time model, we directly study the

Alice-Bob-Willie-jammer scenario on a continuous-time model in this work. We

first provide an interference cancellation detector for Willie, which is inspired

by co-channel interference cancellation techniques in cellular networks, that can

mitigate the jammer’s signal and detect Alice’s presence in a continuous-time

system. We show that this detector outperforms the standard power detector

implemented in a continuous-time system in various circumstances, and that

it does not require Willie to know Alice’s timing offset. Then, we prove that

covert communications can still be achieved with a continuous-time model re-

gardless of the choice of Willie’s receiver. In particular, given a time T , for a

continuous-time channel with asymptotic bandwidth W as T →∞, we establish

constructions such that O(WT ) information bits can be transmitted covertly

and reliably from Alice to Bob in T seconds.

• Covert communications under the cover of a radar (Chapter 4):

Instead of using a friendly jammer as an interference source to assist Alice to

achieve covert communications, in this work, we move Alice and Bob to an

environment with a pre-existing illuminating radar. We exploit the idea of

embedding covert symbols with radar signals and hide the transmission behind
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the radar clutter. We provide a design of covert communication waveforms

exploiting the radar signal. We also show that covert communications can be

achieved with such a communication scheme, and establish the theoretical limit

on the covert rate of transmission between Alice and Bob. In particular, we show

that O(n) bits can be transmitted covertly and reliably to Bob in n samples of

the radar signal.

• Detecting Whether a Signal Has Been Quantized (Chapter 5):

In many areas like network security or radar jamming and deception, it is im-

portant to know whether a received signal was sent directly by a friend, or was

recorded by an adversary and then replayed. In this work, we use a character-

istic of the recording, namely the quantization, to study if the replayed (quan-

tized) signal can be detected. In particular, we consider the requirements on

the quantizer to keep the quantization from being detected in additive Gaus-

sian noise. If a signal with length m is sent and a uniform quantizer with b

quantization bits is employed for recording, we prove that 2b = ω(
√
m) and a

quantizer span of ω(
√

lnm) is sufficient for the adversary to avoid detection;

that is, the probability of error Pe of the observer is bounded as Pe ≥ 1
2
− ε for

any ε > 0. Conversely, having 2b = O(
√
m) or a quantizer span of o(

√
lnm)

results in detection by the observer with high probability as m→∞.
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CHAPTER 2

OPTIMAL POWER ADAPTATION IN COVERT
COMMUNICATION WITH AN UNINFORMED JAMMER

2.1 Introduction

While most secure communication focuses on preventing an adversary from de-

termining the content of a message, covert communication hides the existence of the

communication between Alice and Bob, which is important for some applications.

For example, in military communications the detection of a transmission may reveal

activity in the region, or in IoT applications, the detection of a transmission can

compromise a user’s location privacy.

Recent work studied the limits of reliable covert communication. In [6] and [5],

the fundamental limits of covert communications over additive white Gaussian noise

(AWGN) channels were first studied. They show that O(
√
n) bits in n channel

uses of a discrete-time channel can be transmitted covertly and reliably. This is

related to steganography, which is the practice of concealing a message within an-

other message. Finite-alphabet steganographic systems have a similar square root

law: at most O(
√
n) symbols in a length n covertext may safely be modified to hide

a length O(
√
n log n)-bit message [12]. The extra log n factor is due to the lack of

noise in the steganographic context. Successive work has extended the results of [6]

and [5] to binary symmetric channels (BSCs) [13, 14] and discrete memoryless chan-

nels (DMCs) [15,16]. The work in [16]- [19] also established the constants behind the

Big-O notation for both DMC and AWGN channels.

Since Willie detects the presence of Alice by detecting deviations from the back-

ground noise environment, uncertainty about that environment will make it harder
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for Willie to determine if Alice is transmitting. Thus, when Willie is uncertain about

the statistical characterization of the Alice-to-Willie channel, Alice can transmit O(n)

bits in n channel uses reliably and covertly [7]- [23]. To remove the restrictions on

Willie, [9] and [11] introduce an uninformed jammer to assist the communication by

actively generating jamming signals. This might be an electronic jammer placed by

Alice and Bob to enhance security, or a jammer placed by an adversary that tries to

jam potential communication from Alice.

The aforementioned works focus on obtaining the scaling limits of reliable covert

communication as a function of the blocklength n. The authors in [24] take a different

approach and consider an infinite blocklength; they then ask what is the probability

that channel conditions are such that a communication is reliable and/or covert. We

term this an “outage” approach [25]- [27]. This approach often captures the salient

aspects of the problem and can clearly illustrate the underlying mechanisms. We

adopt such an approach, which allows Willie to have a perfect estimate of the power

at his receiver. Next, we consider how such an outage formulation impacts the design

of reliable communication between Alice and Bob. Since the variation on the Alice-

to-Bob channel can significantly affect the outage probability, if this current channel

gain is known to Alice then Alice can adapt her power to minimize outage under a

covertness constraint. This motivates the derivation of an optimal power adaptation

scheme.

Adapting power to enhance performance in wireless communications has long been

studied. The authors in [38] prove that the optimal power adaptation to maximize

channel capacity under an average power constraint is “water-pouring”. To simplify

designs, they also consider two suboptimal adaptation schemes: channel inversion

and truncated channel inversion (TCI), which adapt the transmit power but keep

the transmission rate constant. The standard channel inversion scheme is simple to

implement but can exhibit a large capacity penalty in extreme fading environments.
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TCI, on the other hand, only compensates for fading above a certain cutoff point,

and hence avoids the capacity penalty when the channel is bad. This technique has

been employed in many non-covert systems to minimize outage or to achieve good

throughput under an outage constraint, such as in cellular uplink transmission [39],

in cognitive radio broadcasting [40] and in hybrid free-space optical/radio-frequency

transmission [41]. It can also be employed in covert communication systems to as-

sist Alice in achieving reliable and covert transmission. In [24], the authors consider

channel inversion power adaptation at the transmitter to achieve reliable covert com-

munication, where Alice varies her transmit power based on the channel from herself

to Bob in order to keep the received signal power at Bob a constant. The authors

examine the performance in terms of the achieved effective covert throughput and

show that TCI outperforms the standard channel inversion. However, [24] does not

establish the optimality of the scheme, and the parameters of the scheme need to be

obtained numerically. Here, we show that TCI is optimal in certain scenarios and

provide exact optimal schemes that may or may not be TCI in different scenarios.

In this chapter, we consider a covert communication system consisting of a trans-

mitter Alice, a legitimate receiver Bob, a warden Willie and an uninformed jammer

that is not coordinated with Alice. The jammer actively sends jamming signals that

interfere with reception at both Willie and Bob. With the information about the

gain on the channel between Alice and Bob, Alice can adapt her transmit power to

this gain to achieve a certain rate and meet the requirement on covertness such that

Willie detects the presence of the transmission with low probability. We seek to find

the optimal power adaptation that minimizes the average outage probability subject

to the covertness constraint. We consider the following scenarios: 1) the jammer-to-

Willie channel is AWGN; and 2) the jammer-to-Willie channel experiences Rayleigh

fading.
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We present the system model and metrics in Section 2.2. Section 2.3 considers

the scenario when the jammer-to-Willie channel is AWGN, and Section 2.4 proves

similar results in the scenario when there is a fading channel between the jammer and

Willie. Both sections provide the optimal power adaptation in two cases: 1) long-term

adaptation with an average covertness constraint; and 2) short-term adaptation with

an instantaneous covertness constraint. Numerical results that examine and compare

the performance of different power adaptation schemes are also presented. Finally,

Section 2.5 draws the conclusions.

2.2 System Model and Metrics

2.2.1 System Model

Consider the scenario shown in Fig. 2.1 where Alice wants to transmit a message to

Bob reliably and covertly without detection by a warden Willie, and a jammer assists

the communication by actively sending jamming signals but without any coordination

with Alice [9, 11]. We are interested in Alice’s ability to transmit covertly in a time

Figure 2.1: System model: With help from a jammer, Alice attempts to transmit
reliably and covertly to Bob in the presence of a warden Willie.

slot equal to the codeword length n and Willie’s ability to detect such a transmission

in that slot. If Alice decides to transmit, she maps her message to the complex

symbol sequence f = [f1, f2, . . . , fn]. We assume that Alice transmits each symbol
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of a codeword with an average power Pa. The jammer transmits complex symbol

sequence g = [g1, g2, . . . , gn] with power Pj in the time slot, where Pj will be drawn

randomly as discussed below.

We denote hxy as the fading coefficient between transmitter x and receiver y,

where x is either “a” (Alice) or “j” (jammer), and y is either “w” (Willie) or “b”

(Bob). We assume that the fading processes do not change during one time slot

and that those affecting different transmitter-receiver pairs are independent of one

another. The path loss between transmitter x and receiver y is denoted as dαxy, where

α is the path loss exponent.

Denote the vector of channel outputs observed at Willie over the time slot as

z = [z1, z2, . . . , zn]. Then,

zi =


haw

d
α/2
aw

· fi +
hjw

d
α/2
jw

· gi +N
(w)
i , when Alice transmits

hjw

d
α/2
jw

· gi +N
(w)
i , when Alice does not transmit

where [N
(w)
1 , N

(w)
2 , . . . , N

(w)
n ] is a set of independent and identically distributed (i.i.d.)

zero-mean complex Gaussian random variables, each with variance σ2
w. Similarly,

denote the vector of channel outputs observed at Bob over the time slot as y =

[y1, y2, . . . , yn]. Then.

yi =


hab

d
α/2
ab

· fi +
hjb

d
α/2
jb

· gi +N
(b)
i , when Alice transmits

hjb

d
α/2
jb

· gi +N
(b)
i , when Alice does not transmit

where [N
(b)
1 , N

(b)
2 , . . . , N

(b)
n ] is a set of i.i.d. zero-mean complex Gaussian random vari-

ables, each with variance σ2
b . Without loss of generality, we let the path loss d

α/2
xy

(from each transmitter x to receiver y) to be one for our proofs to make the exposi-

tion cleaner. The results obviously extend to cases with different path losses, and we

will present numerical results for the general case.
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We assume that Alice has channel state information (CSI) about the channel hab

from herself to Bob. For example, Bob might be allowed to transmit and thus can

send a pilot signal or could send it covertly to Alice so that Alice could measure

the channel condition. Since Alice learns the channel, she uses a transmit power Pa

that adapts to the channel variation (i.e., as a function of |hab|2). We are interested

in finding the optimal function Pa(|hab|2) under the constraints and metrics defined

in the next two sections. Normally, it is hard for Willie to know hab, since Willie

is in a different location with different reflections. However, hab is not completely

unknown to Willie. For example, Willie might be close to Alice or there could be

high channel correlations between Alice’s and the adversary’s channel even for large

spatial separations, resulting in some leakage to Willie about hab [42,43]. Willie could

also estimate hab by making a detailed record of the physical environment and the

location of Alice and Bob, and then applying a ray-tracing algorithm [44]. Since we

want to be pessimistic, we assume conservatively here that Willie knows hab. We also

assume that he knows the function Pa. Thus, Willie knows Pa(|hab|2).

We study power adaptation under two channel models: 1) AWGN model and 2)

Rayleigh fading model. In the AWGN model, we assume that the Alice-to-Willie,

jammer-to-Willie and jammer-to-Bob channels are all AWGN channels, i.e., haw =

hjw = hjb = 1. The only fading channel in the system is the Alice-to-Bob channel

which experiences Rayleigh fading with E[|hab|2] = 1 for simplicity. The jammer’s

power Pj is assumed to be uniformly distributed, i.e., Pj ∼ U [0, PJ ], per [9]. In the

Rayleigh fading model, both the Alice-to-Bob and the jammer-to-Willie channels are

Rayleigh fading channels with E[|hab|2] = E[|hjw|2] = 1. The other channels are

AWGN channels, i.e., haw = hjb = 1 which is pessimistic for Alice. In this Rayleigh

fading case, the jammer is assumed to employ a constant power Pj = PJ since the

channel randomizes the power received at Willie from the jammer [9].
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In this work, we use an outage approach where we assume that the blocklength

n is sufficiently large that Willie has an accurate power measurement at his receiver.

This approach has been used in recent work (e.g. [24]- [27]) to provide a clear way to

understand the underlying mechanisms of the problems.

2.2.2 Receivers and Performance Metrics

1) Willie: Based on his observations over the time slot, Willie attempts to deter-

mine whether Alice transmitted or not. We define the null hypothesis (H0) as that

Alice did not transmit during the time slot and the alternative hypothesis (H1) as

that Alice transmitted a message. The optimal test for Willie to minimize the error

probability is to employ the likelihood ratio test (LRT):

Λ(z) =
fPw(z|H1)

fPw(z|H0)

where fPw(z|H1) and fPw(z|H0) are the probability density functions of Willie’s re-

ceived power Pw when H1 is true and when H0 is true, respectively. It is straight-

forward to show that under both the AWGN model and the Rayleigh fading model,

Λ(z) is non-decreasing as z increases. Thus, the LRT is equivalent to a threshold test

on the received power. Willie’s received power Pw given H0 is true and H1 is true

are, respectively:

• H0: Pw = |hjw|2Pj + σ2
w;

• H1: Pw = |haw|2Pa + |hjw|2Pj + σ2
w.

Willie’s detector compares Pw to a threshold σ2
w + τ :

Pw
H1

≷
H0

σ2
w + τ.

Define P (H0) = 1−p as the probability that Alice did not transmit and P (H1) = p

as the probability that Alice transmitted in the time slot, where we assume that p is
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known to Willie. Willie tries to minimize his probability of error Pe,w = (1−p)PFA +

pPMD, where PFA and PMD are the probabilities of false alarm and missed detection

at Willie, respectively. Since Pe,w ≥ min(p, 1− p)(PFA + PMD) [5], we say that Alice

achieves covert communication if, for a given ε > 0, PFA + PMD ≥ 1− ε [5].

2) Bob: Bob should be able to reliably decode Alice’s message. This is charac-

terized by the probability 1 − Pout,b where Pout,b is the outage probability at Bob,

i.e., the probability that Bob’s received signal-to-noise ratio (SNR) is below a certain

threshold. We will seek to minimize the value of Pout,b under power and covertness

constraints.

2.2.3 Constraints

Alice wants to use as much power as possible to minimize outage, but she is

bounded by average power and covertness constraints.

The average power constraint is given by:

E|hab|2 [Pa(|hab|2)] ≤ PA (2.1)

where PA is a constant power budget.

We also have an average covertness constraint, i.e., for a given ε1 > 0,

E|hab|2 [PFA(Pa(|hab|2)) + PMD(Pa(|hab|2))] ≥ 1− ε1. (2.2)

Some of our results will consider only the average covertness constraint, where the

averaging is done over the channels that Alice will encounter on the Alice-to-Bob

link. However, this constraint might be problematic operationally, as it can result

in Alice sometimes sending messages knowing that she will be detected by Willie

with certainty, with the idea that, since she will not be caught at other times, the

long-term average of her covertness meets the constraint. Since this might not be
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desirable, as Alice might want every message to be covert with some probability, we

also consider cases where an instantaneous covertness constraint has been added: for

a given ε2 > 0,

PFA(Pa(|hab|2)) + PMD(Pa(|hab|2)) ≥ 1− ε2 (2.3)

for all |hab|2.

2.3 AWGN Model

In this section, we consider the AWGN model, where recall that the Alice-to-

Willie, jammer-to-Willie and jammer-to-Bob channels are all AWGN channels, i.e.,

haw = hjw = hjb = 1, and the Alice-to-Bob channel is assumed to be a Rayleigh

fading channel with E[|hab|2] = 1. We prove an optimal power adaptation scheme for

two cases: under the average covertness constraint, and under both the average and

the instantaneous covertness constraints.

2.3.1 Average Covertness Constraint

We first consider a power adaptation scheme that minimizes the outage probability

at Bob and achieves covertness on average as given in (2.1). For Bob to reliably decode

Alice’s message, the received SNR at Bob needs to be above a threshold γb. Given a

transmit power Pa(|hab|2), the outage probability at Bob is given by:

Pout,b(Pa(|hab|2)) = P

(
|hab|2Pa(|hab|2)

σ2
b + Pj

< γb

)

where, per Section 2.2, |hab|
2Pa(|hab|2)

σ2
b+Pj

is random because of the randomly chosen jam-

ming power Pj ∼ U [0, PJ ]. Thus,

Pout,b(Pa(|hab|2)) =

 1− σ2
b

PJ
− |hab|

2Pa(|hab|2)
PJγb

, Pa(hab) <
γb(σ

2
b+PJ )

|hab|2

0, Pa(hab) ≥
γb(σ

2
b+PJ )

|hab|2
.
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Since employing additional power beyond
γb(σ

2
b+PJ )

|hab|2
does not decrease the outage prob-

ability but increases Alice’s transmitted power, leading uniformly not only to wasted

power but a loss in covertness, we add the constraint:

0 ≤ Pa(hab) ≤
γb(σ

2
b + PJ)

|hab|2
. (2.4)

Taking the expectation of Pout,b(Pa(|hab|2)) over |hab|2 yields:

E|hab|2 [Pout,b(Pa(|hab|2))] = 1− σ2
b

PJ
− 1

PJγb

∞∫
0

xPa(x)e−xdx.

Given that |hab|2 is exponentially distributed with E[|hab|2] = 1, the average power

constraint in (2.1) can be written as:

∫ ∞
0

Pa(x)e−xdx ≤ PA. (2.5)

The false alarm probability at Willie given Pa(|hab|2) is given by:

PFA(Pa(|hab|2)) = P (Pw > σ2
w + τ |H0)

= P (Pj > τ)

=


PJ−τ
PJ

, τ < PJ

0, τ ≥ PJ ,

and the missed detection probability at Willie is given by:

PMD(Pa(|hab|2)) = P (Pw < σ2
w + τ |H1)

= P (Pa(|hab|2) + Pj < τ)

=


τ−Pa(|hab|2)

PJ
, τ > Pa(|hab|2)

0, τ ≤ Pa(|hab|2).
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Willie picks a threshold τ that minimizes his error probability Pe,w. If Pa(|hab|2) ≥

PJ , then Willie can choose τ such that PJ ≤ τ ≤ Pa(|hab|2) and achieves PFA(Pa(|hab|2))+

PMD(Pa(|hab|2)) = 0. Thus,

PFA(Pa(|hab|2))+PMD(Pa(|hab|2)) =


PJ−Pa(|hab|2)

PJ
, PJ > Pa(|hab|2)

0, PJ ≤ Pa(|hab|2).
(2.6)

Recall that the Alice-to-Bob channel is Rayleigh fading with E[|hab|2] = 1. Thus,

|hab|2 is exponentially distributed and taking the expectation of PFA(Pa(|hab|2)) +

PMD(Pa(|hab|2)) over |hab|2 yields:

E|hab|2 [PFA(Pa(|hab|2)) + PMD(Pa(|hab|2))] =

∫
Pa(x)<PJ

e−xdx− 1

PJ

∫
Pa(x)<PJ

Pa(x)e−xdx.

(2.7)

Then, the average covertness constraint in (2.2) requires:

∫
Pa(x)≥PJ

e−xdx+
1

PJ

∫
Pa(x)<PJ

Pa(x)e−xdx ≤ ε1 (2.8)

for a given ε1 > 0.

We are interested in looking for an optimal Pa(|hab|2) such that the outage prob-

ability at Bob is minimized under the constraints in (2.8), (2.5) and (2.4). Therefore,

we form the functional optimization problem:

maximize:
Pa(x)

∫ ∞
0

xPa(x)e−xdx , x ≥ 0

subject to:

∫
Pa(x)≥PJ

e−xdx+
1

PJ

∫
Pa(x)<PJ

Pa(x)e−xdx ≤ ε1,∫ ∞
0

Pa(x)e−xdx ≤ PA,

0 ≤ Pa(x) ≤ γb(σ
2
b + PJ)

x
. (2.9)

The following lemma provides a valuable tool for the succeeding optimizations.
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Lemma 2.1. For the optimization problem:

maximize:
f(x)

∫ ∞
0

xf(x)e−xdx , x ≥ 0

subject to:

∫ ∞
0

f(x)e−xdx ≤ C0 and 0 ≤ f(x) ≤ g(x)

where C0 is a constant. If
∫∞

0
g(x)e−xdx > C0, the optimal solution is:

f ∗(x) =

 g(x), x ≥ ∆

0, 0 ≤ x < ∆
(2.10)

where ∆ > 0 is such that
∫∞

∆
g(x)e−xdx = C0. Otherwise,

f ∗(x) = g(x) , x ≥ 0. (2.11)

Proof. We prove the optimal solution by showing that any f(x) in the constraint

set other than f ∗(x) will not increase the objective function. For a given candidate

function f(x), we write f(x) = f ∗(x) + u(x). If f(x) is in the constraint set, then we

must have three conditions: (a)
∫∞

0
u(x)e−xdx ≤ 0 since f ∗(x) already has achieved

equality in the first constraint; (b) u(x) ≥ 0 when 0 ≤ x < ∆ since f(x) ≥ 0; and

(c) u(x) ≤ 0 when ∆ ≤ x since f(x) ≤ g(x). Thus, when f ∗(x) in given in (2.10), we

have:

∫ ∞
0

xu(x)e−xdx =

∫ ∆

0

xu(x)e−xdx+

∫ ∞
∆

xu(x)e−xdx

≤ ∆

∫ ∆

0

u(x)e−xdx+ ∆

∫ ∞
∆

u(x)e−xdx (2.12)

≤ −∆

∫ ∞
∆

u(x)e−xdx+ ∆

∫ ∞
∆

u(x)e−xdx (2.13)

= 0
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where (2.12) is obtained from condition (b) and (c), and (2.13) is obtained from

condition (a). Therefore,
∫∞

0
xf(x)e−xdx ≤

∫∞
0
xf ∗(x)e−xdx. When f ∗(x) is given in

(2.11), it is obvious that u(x) ≤ 0 for all x ≥ 0. Then, clearly,
∫∞

0
xu(x)e−xdx ≤ 0

and
∫∞

0
xf(x)e−xdx ≤

∫∞
0
xf ∗(x)e−xdx.

Theorem 2.1. For the optimization problem in (2.9), let η =
γb(σ

2
b+PJ )

PJ
, the optimal

solution is given by:

P ∗a (x) =


γb(σ

2
b+PJ )

x
, x ≥ δ

0, 0 ≤ x < δ
(2.14)

where δ = max(∆1,∆2), ∆1 is such that
∫∞

∆1

γb(σ
2
b+PJ )

x
e−xdx = PA and ∆2 is such that:


∫ η

∆2
e−xdx+ 1

PJ

∫∞
η

γb(σ
2
b+PJ )

x
e−xdx = ε1, if

∫∞
η

γb(σ
2
b+PJ )

x
e−xdx ≤ PJε1∫∞

∆2

γb(σ
2
b+PJ )

x
e−xdx = PJε1, otherwise.

(2.15)

Proof. The proof makes use of Lemma 2.1 and is provided in detail in the appendix

in Section 2.6.1.

From Theorem 2.1, we conclude that the optimal power adaptation under the aver-

age covertness constraint when the jammer-to-Willie channel is AWGN is truncated

channel inversion, i.e., transmitting power as the inverse of the channel condition

when the channel is good; and transmitting nothing when the channel is bad. Alice

transmits with power that inverts the channel variation when the channel condition

is good, and does not transmit when the channel condition is bad to save power and

to avoid detection by Willie. The constant (γb(σ
2
b + PJ) in this case) of the inversion

scheme is analytically provided and the cutoff point (δ in this case) can be directly

computed based on the system parameters.

We notice that if δ < η, Alice is allowed to use power greater than PJ . This

will lead to an error probability of zero at Willie according to (5.1), which means

26



that Willie will detect Alice’s transmission for certain. However, although Alice is

completely exposed to Willie for channel conditions such that δ < |hab|2 < η, she still

achieves covertness on average. We add the extra instantaneous covertness constraint

that requires Alice to achieve a certain covertness for any channel condition in the

next section.

2.3.2 Instantaneous Covertness Constraint

Now we consider a power adaptation scheme that minimizes the outage probability

at Bob and achieves covertness both on average and instantaneously. Recall that the

instantaneous covertness constraint is given in (2.3). Applying (2.6) to (2.3) we have

for a given ε2 > 0,

Pa(|hab|2) ≤ PJε2,

which is equivalent to a peak power constraint.

Since Pa(|hab|2) is bounded by PJε2, we modify (5.1) in this case as:

PFA(Pa(|hab|2)) + PMD(Pa(|hab|2)) =
PJ − Pa(|hab|2)

PJ
,

and hence, the average covertness constraint becomes:

∫ ∞
0

Pa(x)e−xdx ≤ PJε1

for a given ε1 > 0. This is equivalent to an average power constraint. Thus, the

smaller of PJε1 and the power budget PA determines the upper bound on the average

power.
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The average outage probability is the same and we still have the constraint in

(2.4). Therefore, the optimization problem in this case is given by:

maximize:
Pa(x)

∫ ∞
0

xPa(x)e−xdx , x ≥ 0

subject to:

∫ ∞
0

Pa(x)e−xdx ≤ min(PJε1, PA),

0 ≤ Pa(x) ≤


γb(σ

2
b+PJ )

x
, x >

γb(σ
2
b+PJ )

PJ ε2

PJε2, x ≤ γb(σ
2
b+PJ )

PJ ε2
.

Note that this problem is different from that encountered in standard (non-covert)

communication systems: 1) with an average power constraint [38] where the optimal

solution that maximizes the average capacity is “water-pouring” and the truncated

channel inversion scheme is suboptimal as it only achieves a certain outage capacity;

2) with an extra peak power constraint [45]. Here we use a different metric (average

outage probability), and our system employs a jammer that interferes with reception

at Bob and thus affects the outage probability.

Theorem 2.2. Let

Ba(x) =


γb(σ

2
b+PJ )

x
, x >

γb(σ
2
b+PJ )

PJ ε2

PJε2, x <
γb(σ

2
b+PJ )

PJ ε2

(2.16)

and β be such that
∫∞
β
Ba(x)e−xdx = min(PJε1, PA), if

∫∞
0
Ba(x)e−xdx ≥ min(PJε1, PA),

the optimal solution to the above optimization problem is given by:

P ∗a (x) =

 Ba(x), x ≥ β

0, 0 ≤ x < β,

and otherwise,

P ∗a (x) = Ba(x) , x ≥ 0.
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Proof. This can be shown by Lemma 2.1 with C0 = PJε1, g(x) = Ba(x) and ∆ = β

if
∫∞

0
Ba(x)e−xdx ≥ min(PJε1, PA).

From Theorem 2.2 we see that the optimal power adaptation scheme is determined

by the parameter β. If β >
γb(σ

2
b+PJ )

PJ ε2
, then the optimal adaptation scheme is truncated

channel inversion. Otherwise, the power is limited by a constant for certain channel

conditions due to the instantaneous covertness constraint.
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(a) AWGN case: Average outage probability Pout in terms of the path loss
dαab between Alice and Bob.

(b) AWGN case: Average outage probability Pout in terms of the path loss
dαjw between the jammer and Willie.

Figure 2.2: Average outage probability in the case under the extra instantaneous
covertness constraint when Alice employs optimal power adaptation, TCI, and trun-
cated constant power.
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Figure 2.3: Power allocations for the optimal scheme, TCI and the truncated constant
scheme.

Figure 2.2 presents the numerical results that examine the performance improve-

ment of the optimal scheme in Theorem 2.2 over TCI and truncated constant power.

The parameters in TCI and truncated constant power are obtained by numerical

search such that the average outage probability is minimized. We set PA = 1, PJ = 5,

ε1 = 0.1, ε2 = 0.2, γb = 2, σ2
b = 2, and the path loss between each transmitter and re-

ceiver is one if not specified. The exact power allocations for the three schemes given

the above parameters with dαab = 0.2 are shown in Figure 2.3. From both Fig. 2.2a

and Fig. 2.2b, we see that there are often significant gains in achieving reliable covert

communication when employing optimal power adaptation. In Fig. 2.2a, we observe

that the performance of the optimal scheme and that of the constant power scheme

approach each other when dαab increases. This is due to the fact that the instantaneous

covertness constraint limits Alice’s power to a constant for channel conditions that

are likely to occur, and Alice uses channel inversion only for channel conditions that
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rarely occur for large dαab. Mathematically, when dαab increases, the channel conditions

that Alice uses constant power also increases (Ba(x) = PJε2 when x <
d2α
ab γb(σ

2
b+PJ )

PJ ε2

from Theorem 2.2) and occupies more of the probabilities.

2.4 Rayleigh Fading Model

In this section, we consider the Rayleigh fading model, where both the Alice-to-

Bob and the jammer-to-Willie channels are Rayleigh fading channels with E[|hab|2] =

E[|hjw|2] = 1. The other channels are AWGN channels, i.e., haw = hjb = 1. We

assume conservatively that Bob is not able to cancel the jamming signal at his receiver.

We prove an optimal power adaptation scheme under both the average covertness

constraint and with the extra instantaneous covertness constraint.

2.4.1 Average Covertness Constraint

Given Pa(|hab|2), the outage probability at Bob is:

Pout,b(Pa(|hab|2)) =

 1, |hab|2Pa(|hab|2) < γb (σ2
b + PJ)

0, |hab|2Pa(|hab|2) ≥ γb (σ2
b + PJ) .

Since letting Pa(|hab|2) >
γb(σ2

b+PJ)
|hab|2

or letting Pa(|hab|2) > 0 for Pa(|hab|2) <
γb(σ2

b+PJ)
|hab|2

does not change the outage probability but increases Alice’s power, Pa(|hab|2) should

always take a value of either zero or
γb(σ2

b+PJ)
|hab|2

. Thus, taking the expectation over

|hab|2, the average outage probability is given by:

E|hab|2 [Pout,b(Pa(|hab|2))] =

∫ ∞
0

IPa(x)=0(x)e−xdx

= 1−
∫ ∞

0

I
Pa(x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx

where IA(x) =

 1, x ∈ A

0, x /∈ A
is the indicator function of set A.
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We obtain the probability of false alarm as:

PFA(Pa(|hab|2)) = P
(
|hjw|2PJ > τ

)
= e

− τ
PJ ,

and the probability of missed detection:

PMD(Pa(|hab|2)) = P
(
Pa(|hab|2) + |hjw|2PJ < τ

)
=

 1− e−
τ−Pa(|hab|

2)

PJ , τ > Pa(|hab|2)

0, τ ≤ Pa(|hab|2).

Recall that we assume conservatively here that Willie knows Pa(|hab|2). Then, to

minimize his error probability, Willie will choose a threshold τ = Pa(|hab|2). Thus,

we have:

PFA(Pa(|hab|2)) + PMD(Pa(|hab|2)) = e
−Pa(|hab|

2)

PJ , (2.17)

and taking the expectation over |hab|2 yields:

E|hab|2 [PFA(Pa(|hab|2) + PMD(Pa(|hab|2))] =

∫ ∞
0

e
−Pa(x)

PJ e−xdx. (2.18)

Applying (2.18) to the average covertness constraint in (2.2) yields:

∫ ∞
0

e
−Pa(x)

PJ e−xdx ≥ 1− ε1

for a given ε1 > 0.
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With the average power constraint in (2.5), we form the optimization problem as:

maximize:
Pa(x)

∫ ∞
0

I
Pa(x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx

subject to:

∫ ∞
0

e
−Pa(x)

PJ e−xdx ≥ 1− ε1,∫ ∞
0

Pa(x)e−xdx ≤ PA. (2.19)

Since we focus on reasonable power schemes that could be implemented in practice,

we only consider power control strategies that employ a finite collection of intervals.

Therefore, the theorem below is obtained by assuming that the optimal strategy does

not include singletons or an infinite number of intervals. In other words, recalling

that Pa(x) should always take a value of either zero or
γb(σ

2
b+PJ )

x
since any non-zero

power less than
γb(σ

2
b+PJ )

x
is wasted as it does not change the outage probability, we

assume:

Pa(x) =


γb(σ

2
b+PJ )

x
, x ∈ [a1, b1) ∪ . . . ∪ [an, bn)

0, else
(2.20)

where n ∈ Z+ and an, bn ∈ R+.

Theorem 2.3. Given the structure in (2.20) of the potential strategies, the optimal

solution to the problem in (2.19) is given by:

P ∗a (x) =


γb(σ

2
b+PJ )

x
, x > µ

0, x ≤ µ

where µ = max(µ1, µ2), µ1 is such that
∫ µ1

0
e−xdx+

∫∞
µ1
e
−
γb(σ2

b+PJ)
xPJ e−xdx = 1− ε1 and

µ2 is such that
∫∞
µ2

γb(σ2
b+PJ)
x

e−xdx = PA.
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Proof. Suppose that there is a better solution than P ∗a (x) given in the theorem state-

ment. Denote that solution by (2.20), where 0 ≤ a1 < µ, bn ≤ ∞, and an > bn−1 if

n > 1. Pa(x) must satisfy both the average covertness and power constraints. On the

other hand, P ∗a (x) also satisfies the two constraints and achieves equality in at least

one of the constraints by construction. Suppose that P ∗a (x) achieves equality in the

average power constraint; then, for Pa(x) to satisfy this constraint, we must have:

n∑
i=1

∫ bi

ai

γb(σ
2
b + PJ)

x
e−xdx ≤

∫ ∞
µ

γb(σ
2
b + PJ)

x
e−xdx. (2.21)

However, in Appendix B, we show that in satisfying (2.21), the objective function in

(2.19) cannot get larger, and hence, Pa(x) is not optimal.

Now we look at the average covertness constraint, which can be modified as:

∫ ∞
0

(
1− e−

Pa(x)
PJ

)
e−xdx ≤ ε1

for a given ε1 > 0. Suppose that P ∗a (x) achieves equality in the average covertness

constraint; then, for Pa(x) to satisfy this constraint, we must have:

n∑
i=1

∫ ai

bi

(
1− e−

γb(σ
2
b+PJ )

PJx

)
e−xdx ≤

∫ ∞
µ

(
1− e−

γb(σ
2
b+PJ )

PJx

)
e−xdx. (2.22)

Then, following a similar argument (details provided in the appendix in Section 2.6.2)

when equality in the average power constraint is achieved by P ∗a (x), we can show

that for Pa(x) to satisfy (2.22), the objective function in (2.19) will not get larger.

Therefore, Pa(x) is not optimal in any case, which completes the proof.

We conclude from Theorem 2.3 that in the case when the jammer-to-Willie channel

is faded and we are operating under the average covertness constraint, the optimal
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power adaptation is truncated channel inversion. Again, the constant of the scheme

is analytically provided and the cutoff point can be directly computed based on the

system parameters.

2.4.2 Instantaneous Covertness Constraint

Now we consider the case that we also have the instantaneous covertness constraint

(2.3) which bounds (2.17) by 1− ε2:

Pa(|hab|2) ≤ PJ ln
1

1− ε2

for a given ε2 > 0. In this case, the optimization problem is given by:

maximize:
Pa(x)

∫ ∞
0

I
Pa(x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx

subject to:

∫ ∞
0

e
−Pa(x)

PJ e−xdx ≥ 1− ε1,∫ ∞
0

Pa(x)e−xdx ≤ PA,

Pa(x) ≤ PJ ln
1

1− ε2
.

The optimal solution provided in Theorem 2.4 follows from Theorem 2.3.

Theorem 2.4. Let

Qa(x) =


γb(σ

2
b+PJ )

x
, x >

γb(σ
2
b+PJ )

PJ ln 1
1−ε2

PJ ln 1
1−ε2 , x ≤ γb(σ

2
b+PJ )

PJ ln 1
1−ε2

(2.23)

and λ = max(λ1, λ2), where λ1 is such that
∫ λ1

0
e−xdx +

∫∞
λ1
e
−Qa(x)

PJ e−xdx = 1 − ε1

and λ2 is such that
∫∞
λ2
Qa(x)e−xdx = PA. If either

∫∞
0
e
−Qa(x)

PJ e−xdx ≤ 1 − ε1 or∫∞
0
Qa(x)e−xdx ≥ PA, the optimal solution is given by:
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P ∗a (x) =

 Qa(x), x > λ

0, 0 ≤ x ≤ λ,

and otherwise,

P ∗a (x) = Qa(x) , x ≥ 0.

From Theorem 2.4 we conclude that the optimal power adaptation in the case that

the jammer-to-Willie channel is faded and under the extra instantaneous covertness

constraint is TCI if λ >
γb(σ

2
b+PJ )

PJ ln 1
1−ε2

. Otherwise, the power is limited by a constant for

certain channel conditions due to the instantaneous covertness constraint.
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(a) Rayleigh fading case: Average outage probability Pout in terms of the
path loss dαab between Alice and Bob.

(b) Rayleigh fading case: Average outage probability Pout in terms of the
path loss dαjw between the jammer and Willie.

Figure 2.4: Average outage probability under both the average and the instantaneous
covertness constraints when Alice employs optimal power adaptation, TCI, and trun-
cated constant power The jammer employs constant power.
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(a) Rayleigh fading case: Average outage probability Pout in terms of the
path loss dαab between Alice and Bob.

(b) Rayleigh fading case: Average outage probability Pout in terms of the
path loss dαjw between the jammer and Willie.

Figure 2.5: Average outage probability under both the average and the instantaneous
covertness constraints when Alice employs optimal power adaptation, TCI, and trun-
cated constant power the jammer employs uniformly distributed power.
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Figure 2.4 presents the numerical results that examine the performance of the

optimal scheme in Theorem 2.4 and that of TCI and truncated constant power. The

parameters in TCI and truncated constant power are obtained by numerical search

such that the average outage probability of the scheme is minimized. We set PA = 1,

PJ = 5, ε1 = 0.1, ε2 = 0.2, γb = 2, σ2
b = 2 and the pathloss between each transmitter

and receiver as one if not specified. The jammer’s power is set to be a constant. We see

from both Fig. 2.4a and Fig. 2.4b that, unlike the AWGN case, the optimal schemes

do not have a significant performance gain over TCI. Note that this is for the case

when the jammer’s power is set to be a constant as suggested in [9], since the Rayleigh

fading channel randomizes the jammer’s power and hence makes it unknown at Willie.

However, it is very unlikely that the jammer power would be set to a constant in

practice, because such a setting would be fragile: the nature of the potential operating

environment is generally uncertain and, if the environment encountered were AWGN

rather than Rayleigh fading, Willie would know the jamming plus noise power exactly

when Alice is not transmitting and covertness would be lost for any positive rate [5].

Therefore, it is of interest to consider a random power at the jammer in the Rayleigh

fading case. If the jammer employs a uniformly distributed power and we adopt the

optimal power adaptation scheme from Theorem 2.4, we can observe from Fig. 2.5

that the optimal scheme significantly outperforms TCI and the truncated constant

power scheme.

2.5 Conclusion

In this chapter, we have considered covert communication with help from an

uninformed jammer. We have taken an outage approach that considers an infinite

blocklength, which allows Willie to have an accurate estimate of his received power,

and established optimal power adaptation schemes in different scenarios. We proved

that in the case of an AWGN channel or a Rayleigh fading channel between the
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jammer and Willie, the optimal scheme under the average covertness constraint is

truncated channel inversion. Under both the average and the instantaneous covertness

constraint, TCI is not optimal, and we have provided exact optimal power adaptation

schemes. These schemes outperform standard approaches such as TCI by reducing

the average outage probability significantly in many scenarios.

2.6 Appendix

2.6.1 Proof of Theorem 2.1

Here we privide the detailed proof of Theorem 2.1. Let us denote the first con-

straint (average covertness constraint) in (2.9) as CSTR1, the second constraint (av-

erage power constraint) in (2.9) as CSTR2 and the last constraint in (2.9) as CSTR3.

We first remove CSTR1 while keep CSTR2 and CSTR3 in the optimization problem.

Then, we note that there always exists ∆1 > 0 such that
∫∞

∆1

γb(σ
2
b+PJ )

x
e−xdx = PA

is satisfied. By Lemma 2.1, the optimal solution can be obtained as in (2.14) with

δ = ∆1. Next, we remove CSTR2 but keep CSTR1 and CSTR3. We show in the

appendix that the optimal solution can also be obtained as in (2.14) using similar

ideas in the proof of Lemma 2.1.

From the discussion above, we see that if ∆1 ≥ ∆2, then the optimal solution that

satisfies the two constraints CSTR2 and CSTR3 also satisfies all three constraints and

hence is optimal when all three constraints are enforced; when ∆1 < ∆2, the optimal

solution that satisfies CSTR1 and CSTR3 also satisfies all three constraints and hence

is optimal under all three constraints. Moreover, since we pick δ = max(∆1,∆2) and

∆1 > 0, we will never have the case that P ∗a (x) =
γb(σ

2
b+PJ )

x
for all x > 0 (having δ = 0).

Therefore, the optimal solution under the three constraints in (2.9) is obtained as in

(2.14) with the cutoff point δ determined by either ∆1 or ∆2, i.e., δ = max(∆1,∆2).

Now we show why (2.14) is the optimal solution to the problem in (2.9) with

the second constraint (CSTR2) removed. Letting J(Pa(x)) =
∫∞

0
xPa(x)e−xdx, we
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take the functional derivative of J (which is the left hand side of the Euler-Lagrange

equation [46]):

∂J(Pa(x))

∂Pa(x)
= xe−x , x ≥ 0.

This cannot equal zero, which shows that there are no stationary points. Thus, if

there exists an optimal solution, it should be on the boundary of the set determined

by the constraints. From the third constraint, we note that the optimal Pa(x) must

be either zero or
γb(σ

2
b+PJ )

x
for all x ≥ 0 to lie on the boundary of the constraint set.

In the case when there exists ∆2 > 0 such that
∫ η

∆2
e−xdx+ 1

PJ

∫∞
η

γb(σ
2
b+PJ )

x
e−xdx =

ε1 is satisfied, suppose
∫∞
η

γb(σ
2
b+PJ )

x
e−xdx ≤ PJε1, then ∆2 ≤ η. For a given function

Pa(x) other than P ∗a (x), we write Pa(x) = P ∗a (x) + u(x). If Pa(x) is in the constraint

set (satisfies CSTR1 and CSTR2) and is a possible optimal solution (is either zero or

γb(σ
2
b+PJ )

x
for all x ≥ 0), then we must have three conditions (note that

γb(σ
2
b+PJ )

x
< PJ

when x > η, and
γb(σ

2
b+PJ )

x
≥ PJ when x ≤ η):

• (a) u(x) is zero or
γb(σ

2
b+PJ )

x
for 0 ≤ x < ∆2 since Pa(x) ≥ 0;

• (b) u(x) is either zero or −γb(σ
2
b+PJ )

x
for x ≥ ∆2 since Pa(x) ≤ γb(σ

2
b+PJ )

x
;

• (c)
∫ ∆2

0
I
u(x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx−
∫ η

∆2
I
u(x)=−

γb(σ
2
b

+PJ )

x

e−xdx+ 1
PJ

∫∞
η
u(x)e−xdx ≤

0 in order for Pa(x) to satisfy the average covertness constraint since the equality

is already reached for P ∗a (x). Here, IA(x) =

 1, x ∈ A

0, x /∈ A
is the indicator

function of set A.

Therefore, we have:
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∫ ∞
0

xu(x)e−xdx =

∫ ∆2

0

xu(x)e−xdx+

∫ η

∆2

xu(x)e−xdx+

∫ ∞
η

xu(x)e−xdx

=

∫ ∆2

0

x · γb(σ
2
b + PJ)

x
I
u(x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx

−
∫ η

∆2

x · γb(σ
2
b + PJ)

x
I
u(x)=−

γb(σ
2
b

+PJ )

x

(x)e−xdx+

∫ ∞
η

xu(x)e−xdx

(2.24)

≤ −γb(σ
2
b + PJ)

PJ

∫ ∞
η

u(x)e−xdx+

∫ ∞
η

xu(x)e−xdx (2.25)

=

∫ ∞
η

(
x− γb(σ

2
b + PJ)

PJ

)
u(x)e−xdx

≤ 0 (2.26)

where (2.24) is obtained from condition (a) and (b), (2.25) is obtained from condition

(c), and (2.26) is obtained from the fact that
γb(σ

2
b+PJ )

x
≤ PJ and u(x) ≤ 0 for x ≥ η.

Suppose
∫∞
η

γb(σ
2
b+PJ )

x
e−xdx > PJε1; then, ∆2 > η. Similarly, we can show that∫∞

0
xu(x)e−xdx ≤ 0 in this case by changing condition (c) to:

∫ η
0
I
u(x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx+

1
PJ

∫∞
∆2
u(x)e−xdx ≤ 0 and prove accordingly.

In the case when there does not exist ∆2 > 0 such that

∫ η

∆2

e−xdx+
1

PJ

∫ ∞
η

γb(σ
2
b + PJ)

x
e−xdx = ε1 ,

the optimal solution should be P ∗a (x) =
γb(σ

2
b+PJ )

x
for all x > 0. In this case, we know

that u(x) must be −γb(σ
2
b+PJ )

x
for all x > 0 for Pa(x) to stay in the constraint set.

Then, it is clear that
∫∞

0
xu(x)e−xdx ≤ 0, which shows the optimality of P ∗a (x). This

is equivalent to having ∆2 = 0 in (2.14).

2.6.2 Proof of Theorem 2.3

Here we prove that the power function Pa(x) given in (2.20) is not optimal since

it fails to satisfy (2.21). With bn <∞, (2.21) implies that:
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γb(σ
2
b + PJ)

bn

n∑
i=1

∫ b1

ai

e−xdx ≤ γb(σ
2
b + PJ)

µ

∫ ∞
µ

e−xdx.

When bn ≤ µ,

n∑
i=1

∫ b1

ai

e−xdx ≤ bn
µ

∫ ∞
µ

e−xdx ≤
∫ ∞
µ

e−xdx,

which shows:

∫ ∞
0

I
Pa(x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx <

∫ ∞
0

I
P ∗a (x)=

γb(σ
2
b

+PJ )

x

(x)e−xdx. (2.27)

When bn > µ, first suppose that am ≤ µ < bm and 1 ≤ m ≤ n, from (2.21) we

have:

m−1∑
i=1

∫ bi

ai

γb(σ
2
b + PJ)

x
e−xdx+

∫ µ

am

γb(σ
2
b + PJ)

x
e−xdx

≤
n−1∑
i=m

∫ ai+1

bi

γb(σ
2
b + PJ)

x
e−xdx+

∫ ∞
bn

γb(σ
2
b + PJ)

x
e−xdx

where
∑n−1

i=m

∫ ai+1

bi

γb(σ
2
b+PJ )

x
e−xdx is replaced by zero when m = n. This implies that:

γb(σ
2
b + PJ)

µ

(
m−1∑
i=1

∫ bi

a1

e−xdx+

∫ µ

am

e−xdx

)

≤ γb(σ
2
b + PJ)

bm

n−1∑
i=m

∫ ai+1

bi

e−xdx+
γb(σ

2
b + PJ)

bn

∫ ∞
bn

e−xdx,

and then by the assumption that µ < bm ≤ bn, we have:

m−1∑
i=1

∫ bi

ai

e−xdx+

∫ µ

am

e−xdx ≤
n−1∑
i=m

∫ ai+1

bi

e−xdx+

∫ ∞
bn

e−xdx.
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Thus,

n∑
i=1

∫ bi

ai

e−xdx =
m−1∑
i=1

∫ bi

ai

e−xdx+

∫ µ

am

e−xdx−
n−1∑
i=m

∫ ai+1

bi

e−xdx+

∫ bn

µ

e−xdx

≤
∫ ∞
bn

e−xdx+

∫ bn

µ

e−xdx

=

∫ ∞
µ

e−xdx

which establishes (2.27).

Now, supposing that bm ≤ µ < am+1 and 1 ≤ m < n when bn > µ, the proof

follows similar ideas. From (2.21) we have:

m∑
i=1

∫ bi

ai

γb(σ
2
b + PJ)

x
e−xdx

≤
∫ am+1

µ

γb(σ
2
b + PJ)

x
e−xdx+

n−2∑
i=m

∫ ai+2

bi+1

γb(σ
2
b + PJ)

x
e−xdx+

∫ ∞
bn

γb(σ
2
b + PJ)

x
e−xdx

where
∑n−2

i=m

∫ ai+2

bi+1

γb(σ
2
b+PJ )

x
e−xdx is replaced by zero when m = n − 1. This implies

that:

γb(σ
2
b + PJ)

bm

m∑
i=1

∫ bi

ai

e−xdx

≤ γb(σ
2
b + PJ)

µ

∫ am+1

µ

e−xdx+
γb(σ

2
b + PJ)

bm+1

n−2∑
i=m

∫ ai+2

bi+1

e−xdx+
γb(σ

2
b + PJ)

bn

∫ ∞
bn

e−xdx,

and then by the assumption that bm ≤ µ < bm+1 ≤ bn, we have:

m∑
i=1

∫ bi

ai

e−xdx ≤
∫ am+1

µ

e−xdx+
n−2∑
i=m

∫ ai+2

bi+1

e−xdx+

∫ ∞
bn

e−xdx.

Thus,
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n∑
i=1

∫ bi

ai

e−xdx =
m−1∑
i=1

∫ bi

ai

e−xdx+

∫ bn

µ

e−xdx−
n−2∑
i=m

∫ ai+2

bi+1

e−xdx−
∫ am+1

µ

e−xdx

≤
∫ ∞
bn

e−xdx+

∫ bn

µ

e−xdx

=

∫ ∞
µ

e−xdx,

which establishes (2.27).

Note that when bn =∞ (n must be larger than one since a1 < µ), we can subtract

the integration from an to bn on both sides of (2.21) and then prove that (2.27) is

true for both bn−1 ≤ µ and bn−1 > µ using the same argument as above.
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CHAPTER 3

COVERT COMMUNICATIONS ON A
CONTINUOUS-TIME MODEL WITH AN UNINFORMED

JAMMER

3.1 Introduction

Security is a major concern in modern wireless communications, where it is often

obtained by encryption. However, this is not sufficient in applications where the very

existence of transmission arouses suspicion. For example, in military communications,

the detection of a transmission may reveal activity in the region. Thus, it is important

to study covert communication: a transmitter (Alice) reliably sending messages to

a legitimate receiver (Bob) without being detected by an attentive warden (Willie).

Previous work studied the limits of reliable covert communications. Bash et al. first

studied such limits over discrete-time AWGN channels in [5], establishing a square-

root law (SRL): Alice can transmit at most O(
√
n) covert bits to Bob in n channel

uses of a discrete-time AWGN channel. This SRL was then established in successive

work over binary symmetric channels (BSCs) by Che et al. in [13], over discrete

memoryless channels (DMCs) by Wang et al., [16] and Bloch, [19], and over multiple-

access channels [47] by Arumugam et al.. The length of the secret key needed to

achieve the SRL in covert communications over DMCs was established in [19]. The

work in [16] and [19] also established scaling constants for the covert throughput.

These works provide a thorough study of covert communications in common discrete-

time channel models when Willie has an accurate statistical characterization of Alice’s

channel to him.
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Recently, covert communication has been further studied in various applications

such as the Internet of Things (IoT) [48]- [50], relay and ad-hoc networks [51]- [55],

Unmanned Aerial Vehicle (UAV) networks [56, 57], and D2D underlaying cellular

networks [58, 59]. In particular, in IoT networks, covert communication technology

is emerging as a crucial security technique, since it hides the very existence of the

transmission and hence prevents the detection of the IoT users’ presence. For example,

it can allow patients to privately wear medical devices unknown to others in public

places. Hence, the study of the theory and application of covert communication is

well-motivated.

In covert communications, Willie attempts to determine whether he is only ob-

serving the background environment or a signal from Alice in that environment.

Hence, uncertainty about the environment helps Alice to hide her transmission. Lee

et al., [23] and Che et al., [14] show that O(n) covert bits in n channel uses can be

reliably transmitted from Alice to Bob if Willie is unsure of the variance of the noise

at his receiver. However, Goeckel et al., [37] shows that Willie’s lack of knowledge

of his noise statistics can be compensated for by estimation through a collection of

channel observations when Alice does not transmit. Thus, the limit of covert commu-

nications in this case reverts to the SRL. Sobers et al., [9], introduced another model

to achieve positive covert rate: introducing an uninformed jammer to the system that

randomly generates interference, hence providing the required uncertainty for Willie.

The work of [9] also established the optimality for Willie of a power detector in the

presence of the uninformed jammer in the discrete-time model. It then shows that

Alice can covertly transmit O(n) bits in n channel uses over both AWGN and block

fading channels when Willie uses the optimal detector.

The works mentioned above are all based on a discrete-time model and thus implic-

itly assume that analogous results can be obtained on the corresponding continuous-

time model. Bash et al. first mentioned the potential fragility of such an assump-
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tion [5]: ideal sinc(·) pulse shapes are not feasible for implementation, perfect symbol

synchronization might not always hold true, and sampling at higher rates sometimes

has utility for signal detection at Willie even if the Nyquist intersymbol interfer-

ence (Nyquist ISI) criterion is satisfied. Considering covert communications in a

continuous-time model, Wang in [60, 61] shows that covert channel capacity is posi-

tive over an AWGN channel when there is no bandwidth constraint. Wang [62] also

shows that the covert channel capacity is infinite over a continuous-time, infinite-

bandwidth Poisson channel. Zhang et al. in [63] consider a similar problem as in [60],

but under a spectral mask constraint. They show that without any jamming, despite

the fragilities mentioned in [5], the converted discrete-time signal forms a sufficient

statistic for Willie to perform detection, and hence, it suffices to apply standard

techniques for discrete-time models to the continuous-time model. In particular, they

prove that given a time T and a spectral mask with bandwidth W , Alice can transmit

O(
√
WT ) information bits covertly and reliably to Bob.

However, the above works only study the standard Alice-Bob-Willie scenario, and

the suitability of a discrete-time model has not been considered in the important case

where an uninformed jammer is present to assist Alice. In fact, we will show later that

this study leads to very different conclusions than the case without a jammer. In [11],

Sobers et al. introduced a linear detector for warden Willie that exploits the difference

in the timing offsets of Alice’s and the jammer’s signals. This detector outperforms the

standard power detector implemented in the continuous-time system in some limited

scenarios. Therefore, a major tenet of [9] that facilitated the establishment of positive

rate covert communications in the discrete-time case does not hold in the continuous-

time case. Rather, Willie’s detection capability benefits from the continuous-time

setting, hence raising questions on the covert limits in true continuous-time chan-

nels in the case with a jammer. For general scenarios, we introduce an interference

cancellation detector in Section 3.3 inspired by co-channel interference cancellation
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techniques in cellular networks [70], and show that this detector outperforms the stan-

dard power detector implemented in continuous-time covert communication systems.

Traditional co-channel interference cancellation requires that the receiver be able to

decode the entire stream of data hidden behind the interference. However, in covert

communication, Willie only needs to detect the existence of Alice’s transmission, i.e.,

the receiver only needs to resolve a single bit of uncertainty about what is behind the

interference, hence suggesting the difficult challenge of achieving positive rate covert

communication in such an environment.

In this chapter, we will establish constructions for Alice and an uninformed jammer

such that positive covert rate is achievable over continuous-time band-limited AWGN

channels. In contrast to what is observed in [63] for the case without a jammer, the

continuous-time covert communication problem with a jammer is very different than

the discrete-time problem considered in [9]. In particular, the reader will note how

the constructions provided here are quite different from those in [9]. In addition, we

will also consider the case where there is no frame synchronization between Alice and

the jammer, which also extends the work in [9]. The contributions of the work can

be summarized as follows:

• Continuous-Time Covert Communications in the Presence of a Jammer Re-

quires Different Approaches than Discrete-Time: In contrast to [9], we show

that a straightforward implementation of the standard power detector (which is

optimal in the discrete-time setting) in a continuous-time system in the presence

of a jammer is not the optimal detector at Willie. We introduce an interference

cancellation detector for Willie that outperforms the standard power detector.

• Technique for Alice to Achieve Continuous-Time Covert Communication with

Positive Rate in the Presence of a Jammer: For a continuous-time channel with

asymptotic bandwidth W as T → ∞, as defined precisely in Section 3.2, we
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establish a construction for Alice and the jammer such that O(WT ) information

bits can be transmitted covertly and reliably in T seconds.

• No Frame Synchronization Between Alice and the Jammer: The work in [9]

assumes perfect frame synchronization between Alice and the jammer in a

discrete-time system. We argue that the construction in [9] that achieves O(n)

covert bits in n channel uses may not achieve such if there is no frame synchro-

nization. For a continuous-time system, we extend our construction to show

that O(WT ) bits can be transmitted covertly and reliably when there is no

frame synchronization.

The rest of this chapter is organized as follows: Section 3.2 provides the system

model and metrics. Section 3.3 introduces the interference cancellation detector and

presents a performance analysis that shows Willie’s advantages in a continuous-time

system over a discrete-time system. In Section 3.4, we establish constructions that

enable covert communications when there is perfect frame synchronization between

Alice and the jammer. In particular, for a continuous-time channel with asymptotic

bandwidth W , O(WT ) information bits can be transmitted covertly and reliably

in T seconds. Section 3.5 extends the construction by relaxing the requirement of

frame synchronization between Alice and the jammer. Finally, Section 3.6 draws the

conclusions.

3.2 System Model and Metrics

3.2.1 System Model

Consider the scenario shown in Fig. 3.1 where transmitter Alice (“a”) wants to

transmit a message to intended recipient Bob (“b”) reliably without being detected

by a warden Willie (“w”). A jammer (“j”) assists the communication by actively

sending jamming signals, but without any coordination with Alice.
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Figure 3.1: System model: With help from a jammer, Alice attempts to transmit
reliably and covertly to intended recipient Bob in the presence of a warden Willie.

Figure 3.2: Illustration of the time slots, each of length T . Alice may (or may not)
transmit in slot [0, T ], and Willie attempts to detect her presence in that slot.

For an integer C, we consider a continuous-time channel with 2C time slots, each

of length T , as shown in Fig. 3.2. We focus on slot [0, T ]; i.e., Alice may (or may

not) transmit in this slot, and assume the jammer transmits in all time slots, and

does not know if Alice decides to transmit. If Alice decides to transmit, she will use

the slot [0, T ]. Since any signal restricted in a finite time interval cannot have finite

bandwidth, [63] employs a spectral mask that restricts excessive radiation beyond the

bandwidth of interest, resulting in an approximate finite bandwidth. For our work,

with T →∞, we use the following definition of asymptotic bandwidth:

Definition 3.1 (Asymptotic Bandwidth). We say that a signal x(t) with t ∈ [0, T ] has

an asymptotic bandwidth W in the limit of large T , if lim
T→∞

1
T

∫∞
W
E [|X(f)|2] df = 0,
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where X(f) is the Fourier transform of x(t), and X(f) depends on T since x(t) is

restricted to [0, T ].

Alice sends message signal xa(t) (if she decides to transmit) that is restricted

to asymptotic bandwidth W under an average power constraint of PA. The jammer

sends interference signal xj(t) that is restricted to asymptotic bandwidth W under an

average power constraint of PJ . The channels between each transmitter and receiver

pair are assumed to be AWGN, and thus the signal observed by Willie is given by:

z(t) =


xa(t−τa)

d
r/2
aw

+
xj(t−τj)
d
r/2
jw

+N (w)(t), Alice transmits and t ∈ [0, T ]

xj(t−τj)
d
r/2
jw

+N (w)(t), else
, (3.1)

where dxy is the distance between a transmitter x and a receiver y, r is the path-loss

exponent, τa and τj are timing offsets of Alice’s and the jammer’s signal, respectively,

and N (w)(t) is the noise observed at Willie’s receiver, which is a zero-mean stationary

Gaussian random process with power spectral density N
(w)
0 /2. Bob observes the

channel output y(t) at time t, which is analogous to z(t) but with the substitution of

the distance dxb for dxw, where transmitter x is either Alice or the jammer, and the

substitution of the noise N (b)(t) for N (w)(t), where N (b)(t) is a zero-mean stationary

Gaussian random process with power spectral density N
(b)
0 /2.

We consider two cases: 1) When there is frame synchronization between Alice’s

and the jammer’s signals; and 2) When there is no frame synchronization. In both

cases, we assume that the path-loss between Alice and Willie is unknown, but there

is an upper and lower bound on the received power at Willie from Alice that is known

to the jammer.
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3.2.2 Metrics

3.2.2.1 Willie

Based on his observations, Willie attempts to determine whether Alice transmitted

or not. We define the null hypothesis (H0) to be that Alice did not transmit during

the time interval and the alternative hypothesis (H1) to be that Alice transmitted

a message. We denote P (H0) and P (H1) as the probability that hypothesis H0 or

H1 is true, respectively. Willie tries to minimize his probability of error P
(w)
e =

P (H0)PFA+P (H1)PMD, where PFA and PMD are the probabilities of false alarm and

missed detection at Willie, respectively. We assume pessimistically that P (H0) and

P (H1) are known by Willie. Since P
(w)
e ≥ min(P (H0), P (H1))(PFA+PMD) [5], we say

that Alice achieves covert communication if, for a given ε > 0, PFA+PMD ≥ 1− ε [5].

We assume that Willie has full knowledge of the statistical model: the time slot

[0, T ], the parameters for Alice’s codebook generation, the parameters for the jam-

mer’s interference generation, and the noise power of his channel. Willie does not

know the secret key shared between Alice and Bob, or the instantiation of the ran-

dom jamming.

3.2.2.2 Bob

Bob should be able to reliably decode Alice’s message. This is characterized by

the probability 1 − P (b)
e where P

(b)
e is the probability of error at Bob. We say that

Alice achieves reliable communication if, for a given δ > 0, P
(b)
e < δ [5].

3.3 Interference Cancellation Detection by Willie

Here we show that in contrast to [9], a straightforward implementation of the

standard power detector at Willie is not optimal in the continuous-time model. This

means that the achievability result for the covert limit cannot assume a power de-

tector at Willie, and hence, the positive covert rate established in [9] may not hold
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true. The work in [70] introduced a co-channel interference cancellation technique

that exploits the excess bandwidth in any realizable continuous-time system for ini-

tial signal separation when the signals have different timing offsets. We show that

similar techniques can be applied by Willie in continuous-time covert communication

systems and that these techniques outperform the power detector. Different from

traditional co-channel interference cancellation, where the receiver wants to decode

the information in a signal that is mixed with another signal, here Willie only needs

to detect the existence of Alice’s transmission – a single bit decision indicating H0 or

H1. Without loss of generality, we assume that drxy = 1 for all transmitters x (Alice

or the jammer) and receivers y (Willie or Bob). However, this assumption is not

necessary, and is not required to be known by Willie.

3.3.1 Construction

Here we introduce the natural extension of the work in [9] to continuous-time

to demonstrate its limitation. We employ random coding and generate codewords

by independently drawing symbols from a zero-mean complex Gaussian distribution

with variance σ2
a (σ2

a ≤ PA). The codebook is shared between Alice and Bob, and

is unknown to Willie. If Alice decides to transmit, she first selects the codeword

corresponding to her message, sets fi to the ith symbol of that codeword (E[|fi|2] =

σ2
a), and transmits the sequence {fi}ni=1, where n is the length of the codeword. The

jammer, with knowledge of the slot boundaries but not whether Alice transmits in

a given slot (or at all), transmits the zero-mean complex Gaussian symbol sequence

{v(ξ)
i }ni=1 in time slot [ξT, (ξ+ 1)T ] with variance E[|v(ξ)

i |2] = σ2
j,ξ (σ2

j,ξ varies between

slots and σ2
j,ξ ≤ PJ), where ξ ∈ {−C,−(C − 1), . . . , C − 1, }.

Over time interval [0, T ], Alice (if she decides to transmit) sends her codeword

with pulse-shaped waveform:
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xa(t) =
n∑
i=1

fip(t− iTs), 0 ≤ t ≤ T

where Ts = T/n is the symbol period, and p(t) is a square-root raised cosine (SRRC)

pulse shaping filter with bandwidth (1+β)/2Ts < W , where β is the excess bandwidth

or roll-off factor. The jammer sends waveform:

xj(t) =
C−1∑
ξ=−C

n∑
i=1

v
(ξ)
i p(t− ξT − iTs), −CT ≤ t ≤ CT

3.3.2 Willie’s Receiver

Willie employs a matched filter with impulse response p(−t) at the front-end of

his receiver. Define zmf (t) = z(t) ∗ p(−t) as the output of the matched filter, where

∗ denotes convolution. Then, when Alice does not transmit and t ∈ [0, T ], zmf (t)|H0

is given by:

zmf (t)|H0 =
n∑
i=1

v
(0)
i q(t− iTs − τj) +N (w)(t) ∗ p(−t), 0 ≤ t ≤ T (3.2)

where q(t) = p(t) ∗ p(−t) is the zero-ISI raised cosine (RC) pulse. When Alice

transmits and t ∈ [0, T ], zmf (t)|H1 is given by:

zmf (t)|H1 =
n∑
i=1

fiq(t− iTs − τa) +
n∑
i=1

v
(0)
i q(t− iTs − τj) +N (w)(t) ∗ p(−t), 0 ≤ t ≤ T

(3.3)

We assume that Willie knows the timing offset τj of the jammer’s signal, as he can

accurately estimate it prior to Alice’s transmission [24]. Unlike [11], we do not require

that Willie know Alice’s timing offset τa. Since the power of Alice’s signal is much

smaller than that of the jammer and Alice might transmit just once, obtaining τa

could be challenging for Willie; hence, removing the requirement that τa is available
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at Willie is a significant strength of the converse results of this section. As shown in

Fig. 3.3, Willie first samples the signal at τj + kTs, k = 1, 2, . . . , n at Branch J. This

sampled signal is then used to reconstruct an estimate of the jammer’s signal. Next,

this estimated interference signal is subtracted from the received signal, and Willie

thus obtains an approximation of Alice’s signal as the output, which he can sample

(above Nyquist rate) and then employ a standard power detector.

Figure 3.3: Model of interference cancellation at Willie in a covert communication
system in the presence of a jammer.

Let r(j) denote the vector of samples at Branch J. The kth element of the sample

vector r(j) is given by:

r
(j)
k =v

(0)
k +

n∑
i=1

fiq ((k − i)Ts + τj − τa) +N
(j)
k , k = 1, 2, . . . , n

where N
(j)
k = N (w) ∗ p(−kTs − τj) is the sampled noise at Branch J. Willie then

reconstructs the jammer’s interference signal using pulse shape function q(t):

x̂j(t) =
n∑
k=1

r
(j)
k q(t− kTs − τj) . (3.4)

Then, x̂j(t) is subtracted from zmf (t):
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r(t) =
n∑
i=1

fiq(t− iTs − τa)−
n∑
k=1

n∑
i=1

fiq((k − i)Ts + τj − τa)q(t− kTs − τj)

+N (w)(t) ∗ p(−t)−N (j)
k q(t− kTs − τj) (3.5)

which has no components due to the jammer. Rather, since the signal is projected on

the null space of the jammer’s interference, it only experiences a small reduction in

the signal-to-noise ratio (SNR) of Alice’s signal due to noise enhancement, as will be

observed in the simulation results in the next section. This implies that when Willie

employs this interference cancellation detector, adding a jammer will not change the

order of the covert throughput as n→∞. Thus, in contrast to [9], where the authors

prove that O(n) bits in n channel uses can be transmitted reliably and covertly

on a discrete-time channel in the presence of a jammer, the natural extension of

the techniques in [9] to continuous-time channels is not effective in the presence of

interference cancellation detection at Willie. Rather, the covert throughput obeys the

SRL proved in [5] for the case without a jammer. Obviously, the same upper bound

on covert throughput then holds true for an optimal detector at Willie.
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3.3.3 Simulation

(a) τa = 4 samples

(b) τa = 8 samples
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(c) τa = 12 samples

(d) τa = 16 samples

Figure 3.4: Receiver operating characteristic of the interference cancellation detector
and the standard power detector (implemented in a continuous-time covert commu-
nication system) when the jammer’s SNR is 20, 15 and 10 dB.
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Fig. 3.4 compares the performance of the interference cancellation detector and the

standard power detector implemented at Willie in the continuous-time system. In the

simulation, we set the number of trials to 2000. For each trial, Alice and the jammer

each send 200 independent and identically distributed (i.i.d.) zero-mean Gaussian

symbols with pulse-shaped waveforms using a square-root raised cosine pulse shaping

filter with roll-off factor 0.2. The two signals have symbol period Ts = 48 discrete-

time samples. Alice has a timing offset τa of 4, 8, 12 and 16 discrete-time samples,

respectively, and the jammer has a timing offset of zero. Alice’s SNR is set to 5 dB,

and the jammer’s SNR is set to 20, 15, and 10 dB. For the interference cancellation

detector, a standard power detector is applied after interference cancellation to detect

Alice’s presence. The standard power detector employs a sample rate of 2/Ts.

From Fig. 3.4, we observe that the performance of the interference cancellation

detector does not change with respect to the jammer’s SNR, as expected, since the

jammer’s signal is canceled. When τa = 4, the difference between the timing offsets of

Alice’s and the jammer’s signals |τa − τj| = Ts/12 is small. As shown in Fig. 3.4 (a),

when the jammer’s SNR is relatively low (10 and 15 dB), the interference cancellation

detector does not perform as well as the standard power detector implemented in

the continuous-time system due to the significant noise enhancement in this case.

Note that the noise enhancement is independent of n, so even in this case (small

|τa − τj|), the interference cancellation detector at Willie would limit the order of

the covert throughput that Alice could achieve. When τa is large enough (τa = 8, 10

or 12 samples), the interference cancellation detector significantly outperforms the

standard power detector. This shows that while Alice can reliably transmit O(n)

bits in n channel uses when the standard power detector is employed at Willie, she

can only transmit O(
√
n) bits if Willie employs the interference cancellation detector

since the interference cancellation detector completely cancels out the jammer’s signal

with only a reduction to the SNR that is independent of n. Hence, it is important
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for us to analyze covert communications using a continuous-time model to establish

achievability results for the covert communications. In the next two sections, we will

show that positive rate covert communications can be achieved in continuous-time

systems, using a very different construction than that employed in [9].

3.4 Achievable Covert Communications: Perfect Frame Syn-

chronization between Alice and the Jammer

In this section, we provide a construction for Alice and the jammer in the case

that they both agree (or know) on the codeword slot timing, as is plausible because

Alice could listen before transmitting to obtain such. A challenge to hiding Alice’s

transmission in the jammer’s interference will be that Alice and the jammer will

have different and unknown pathloss draw and drjw, respectively, to Willie. Hence,

without loss of generality, we assume drxy = 1 for all transmitter and receiver pairs

(x, y), but that draw may not. The construction consists of Alice and the jammer

sending randomly located pulses, and hence, Willie will not be able to detect the

presence of Alice by exploiting the difference between the timing offsets of Alice and

the jammer’s signals, as was done in Section 3.3. Also, to thwart Willie detecting the

presence of Alice by looking for a pulse power distribution that is the combination of

two distributions, we have the jammer send pulses at multiple power levels that cover

a wide range of the power spectrum. Thus, if Alice uses an average power resulting in

the pulses arriving at Willie with power within that range, she can hide herself in the

jammer’s interference. We demonstrate that, under this construction, the number of

power levels Willie observes is a sufficient statistic for a genie-aided Willie to detect

Alice’s presence. The ability for Alice to covertly send O(WT ) bits in [0, T ] is then

established against an optimal genie-aided Willie, which guarantees the achievability

against the optimal true Willie. This shows that positive rate covert communications

can be achieved in a continuous-time systems when aided by a jammer:
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Theorem 3.1. Given the system model in Section 3.2 with frame synchronization

between Alice and the jammer, there exists a construction for Alice and the jammer

to achieve O(WT )-bit covert and reliable transmission on a continuous-time channel

employing asymptotic bandwidth W Hz for T seconds as T →∞.

3.4.1 Construction

Alice: We employ random coding and generate an i.i.d. Gaussian codebook. If

Alice decides to transmit, she sends the codeword corresponding to her message, an

i.i.d. complex zero-mean Gaussian symbol sequence {fi}Mn
i=1 with variance E[|fi|2] =

σ2
a, where Mn = bαWT c with a constant 0 < α < 1 to be chosen later. Alice’s

transmission power is random: she chooses a power level uniformly at random from

[Pa, Pa + ∆Pa ], i.e., σ2
a ∼ U [Pa, Pa + ∆Pa ], where Pa and ∆Pa are constants such that

Pa+∆Pa ≤ PA, and then transmits symbols with this average power σ2
a for each pulse

she sends in the time interval [0, T ]. Her waveform within [0, T ] is given by:

xa(t) =
Mn∑
i=1

fip(t− τi) (3.6)

where p(t) is a unit-energy square-root raised cosine pulse with roll-off factor β and

bandwidth W , and τi, i = 1, 2, . . . ,Mn is a sequence of i.i.d. pulse delays that are

uniformly distributed in [0, T ]. Alice’s signal xa(t) with t ∈ [0, T ] has an asymptotic

bandwidth W , as shown in Appendix 3.7.1. Since Alice sends Mn pulses, and sends

them at any time in the continuous-time interval [0, T ], she and Bob share an infinite

length key [19] encoding those symbols and time locations unknown to Willie.

Jammer: The jammer transmits an i.i.d. zero-mean complex Gaussian symbol

sequence {v(ξ)
i }

Mn
i=1 in time slot [ξT, (ξ+1)T ], where ξ = −C,−(C−1), . . . , C−1. For

time slot [ξT, (ξ + t)T ], it first selects a number of power levels, Kξ, according to a

Poisson distribution, i.e., Kξ ∼ Pois (λj), where λj is a constant to be chosen later.

The jammer then chooses each of the Kξ power levels uniformly in [Pj, Pj + ∆Pj ],
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where Pj and ∆Pj are constants and Pj + ∆Pj ≤ PJ , to transmit its symbols. Note

that the range of the jammer’s power received at Willie needs to cover the range of

all possible values of Alice’s power at Willie. Then, Pj and ∆Pj are chosen such that[
Pa
draw
,
Pa+∆Pa

draw

]
⊂
[
Pj, Pj + ∆Pj

]
. The jammer transmits Mn pulses at each randomly

chosen power level in each time slot. Hence, it transmits a total of KξMn pulses in

slot [ξT, (ξ + 1)T ], and its waveform is given by:

xj(t) =

ξ=C−1∑
ξ=−C

Kξ∑
k=1

Mn∑
i=1

v
(ξ)
k,ip(t− ξT − τ

(ξ)
k,i ), −CT ≤ t ≤ CT (3.7)

where {v(ξ)
k,i}

Mn
i=1 is a sequence of i.i.d. zero-mean complex Gaussian symbols with

variance being the kth power level randomly chosen by the jammer in slot [ξT, (ξ+1)T ],

and {τ (ξ)
k,i }

Mn
i=1 is a sequence of Mn i.i.d. pulse delays that are uniformly distributed in

[ξT, (ξ + 1)T ] for each k. Note that although the above form of xj(t) is complicated,

the outer sum will go away when we focus on the single slot of interest in the next

section.

3.4.2 Analysis

Since observations outside of [0, T ] do not help Willie detect Alice under our con-

struction, Willie makes his decision on Alice’s transmission based on his observation

in the slot [0, T ]. When Alice does not transmit, his received signal z(t)|H0 when

t ∈ [0, T ] is given by:

z(t) | H0 =

K0∑
k=1

Mn∑
i=1

v
(0)
k,i p(t− τ

(0)
k,i − τj) +N (w)(t) .

When Alice transmits, Willie’s received signal z(t) | H1 for t ∈ [0, T ] is given by:

z(t) | H1 =
Mn∑
i=1

fi

d
r/2
aw

p(t− τi − τa) +

K0∑
k=1

Mn∑
i=1

v
(0)
k,i p(t− τ

(0)
k,i − τj) +N (w)(t) .
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To obtain an achievability result for covert communications between transmitter

Alice and intended recipient Bob, as assumed the adversary Willie employs an optimal

detector. We will upper bound the performance of the optimal detector by assuming

a genie provides Willie additional information; in particular, we provide Willie with

knowledge of the exact power range
[
Pa
d2

aw
,
Pa+∆Pa

draw

]
that may contain a signal from

Alice, the distribution of the number of the jammer’s power levels, the locations of

the pulses, and values of all power levels employed by the jammer and Alice (if she

decides to transmit), but not which power level is employed by whom. We then prove

our achievability result against an optimal Willie who possesses this extra information,

which guarantees achievability against the optimal Willie under the assumptions of

Section 3.2.

3.4.3 Optimal Hypothesis Test

In this section, we show that the number of power levels in the range
[
Pa
d2

aw
,
Pa+∆Pa

draw

]
,

which we term the detection region, is a sufficient statistic for the genie-aided Willie in

deciding between hypothesis H0 or H1. Fig. 3.5 illustrates the power levels observed

by Willie.

Figure 3.5: Willie’s received power levels from Alice and the jammer. An impulse
means a power level chosen by either Alice or the jammer within slot [0, T ].
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Let K
(1)
0 be the number of power levels inside the detection region, K

(2)
0 be the

number of power levels outside the detection region, i.e. K0 = K
(1)
0 + K

(2)
0 . By

construction, the power levels sent by the jammer form a Poisson point process on

[Pj, Pj+∆Pj ] with K0 ∼ Pois (λj), under H0; K0−1 ∼ Pois (λj), under H1. Note that

for a Poisson point process, intervals are independent, and thus generating K
(1)
0 +K

(2)
0

power levels with mean λj and placing them uniformly over [Pj, Pj+∆Pj ] is equivalent

to generating K
(1)
0 power levels with mean

∆Pa

∆Pj
draw
λj and placing them uniformly inside

the detection region, and generating K
(2)
0 power levels with mean

(
1− ∆Pa

∆Pj
draw

)
λj

and placing them uniformly outside the detection region. This is critical in the proof

below.

Here we use a Markov chain to prove that the number of power levels in the detec-

tion region is a sufficient statistic for Willie to detect Alice’s presence. An alternative

derivation via the likelihood ratio test (LRT) is provided in Appendix 3.7.2. We de-

note Alice’s decision on transmission as D (which corresponds to hypothesis H1 when

Alice decides to transmit, or H0 when she decides not to); the locations over [0, T ]

of pulses as a vector L, i.e., L is the vector of pulse delays of both the jammer and

Alice (if she decides to transmit); the values of all power levels (within and outside

the detection region) as a vector V; and the original complex symbols sent as S, i.e.,

S consists of the elements in both the vector v and f of symbols (if Alice decides to

transmit). The random variables D, K
(1)
0 , V, L and S form a Markov chain shown

in Fig. 3.6, which illustrates the transition from Alice’s state D to Willie’s received

signal z(t) in [0, T ]. The transitions of the Markov chain are:

• D −→ K
(1)
0 : K

(1)
0 and K

(1)
0 −1 are characterized by a Poisson process with mean

∆Paλj
∆Pj

draw
when Alice does not transmit (D = H0) and when she does transmit

(D = H1), respectively.

• K
(1)
0 −→ V,L: Let {Vk : k = 1, 2, . . . , K

(1)
0 }, be the values of power levels

within the detection region, and {Vk : k = K
(1)
0 + 1, K

(1)
0 + 2, . . . , K0}, be
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the values of the power levels outside the detection region. Given K
(1)
0 , the

conditional distribution of Vk, k = 1, 2, . . . , K
(1)
0 , is uniform within the detection

region. Note that K
(2)
0 is independent of D since the pulses sent with power

levels outside the detection region can only come from the jammer, no matter

if Alice transmits or not. Given K
(2)
0 (Poisson with mean

(
1− ∆Pa

∆Pj
draw

)
λj),

the distribution of Vk, k = K
(1)
0 + 1, K

(1)
0 + 2, . . . , K0, is uniform outside the

detection region. Let {Lk,m : k = 1, . . . , K
(1)
0 ,m = 1, . . . ,Mn} denote the

locations in [0, T ] of pulses sent with power within the detection region, and

{Lk,m : k = K
(1)
0 + 1, . . . , K0,m = 1, . . . ,Mn} denote the locations of pulses

sent with power outside the detection region. Given K
(1)
0 , the distribution of

Lk,m for k = 1, 2, . . . , K
(1)
0 and all m is uniform over [0, T ]. Given K

(2)
0 , the

distribution of Lk for k = K
(1)
0 + 1, K

(1)
0 + 2, . . . , K0 and all m is also uniform

over [0, T ], which is independent from D.

• V,L −→ S,L: The conditional distribution of Sk,m, for k = 1, 2, . . . , K0,m =

1, 2, . . . ,Mn, given Vk, is a zero-mean complex Gaussian random variable with

variance E[|Sk,m|2] = Vk.

Figure 3.6: Markov chain illustrating the transition from Alice’s decision D on trans-
mission, to Willie’s observed signal z(t).

Given the pulse locations and the original complex symbols sent, the signal z(t)

can be constructed from p(t) and the AWGN of Willie’s channel. From the Markov

chain shown in Fig. 3.6, we see that z(t) conditioned on K
(1)
0 is independent of D.

Therefore, K
(1)
0 is a sufficient statistic for Willie to decide between hypotheses H0

and H1.

In particular, hypotheses H0 and H1 can be stated as:
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• H0: the number of power levels within the detection region follows Pois
(
λj∆Pa

∆Pj
draw

)
;

• H1: the number of power levels within the detection region follows

Pois
(
λj∆Pa

∆Pj
draw

)
+ 1.

3.4.4 Covertness

Let P0 and P1 denote the distributions of the number of power levels observed by

Willie within the detection region given H0 and H1, respectively:

P0(k) =
λke−λ

k!
, k ≥ 0 (3.8)

and

P1(k) =
λk−1e−λ

(k − 1)!
, k ≥ 1 (3.9)

where λ =
λj∆Pa

∆Pj
draw

. Theorem 13.1.1 in [85] shows that for the optimal hypothesis test,

PFA + PMD = 1− VT (P0, P1)

where

VT (P0, P1) =
1

2

∑
k

|P0(k)− P1(k)|

is the total variation distance between P0 and P1, where the sum is over all k in the

support of P0 ∪ P1. Therefore, by the definition of covertness, if

VT (P0, P1) ≤ ε, (3.10)
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Alice achieves covert communications. Given (3.8) and (3.9):

VT (P0, P1) =
1

2

∞∑
k=1

|P0(k)− P1(k)|+ 1

2
P0(0)

=
1

2

∞∑
k=1

λk−1e−λ

(k − 1)!

∣∣∣∣λk − 1

∣∣∣∣+
1

2
e−λ

=
1

2

[ bλc∑
k=1

λk−1e−λ

(k − 1)!

(
λ

k
− 1

)
+

∞∑
k=bλc+1

λk−1e−λ

(k − 1)!

(
1− λ

k

)
+ e−λ

]

=
1

2

[ bλc∑
k=1

λke−λ

k!
−
bλc∑
k=1

λk−1e−λ

(k − 1)!
+

∞∑
k=bλc+1

λk−1e−λ

(k − 1)!
−

∞∑
k=bλc+1

λke−λ

k!
+ e−λ

]

=
1

2

[ bλc∑
k=1

λke−λ

k!
+

∞∑
k=bλc

λke−λ

k!
−
bλc−1∑
k=0

λke−λ

k!
−

∞∑
k=bλc+1

λke−λ

k!
+ e−λ

]

=
1

2

(
∞∑
k=1

λke−λ

k!
+
λbλce−λ

λ!
−
∞∑
k=0

λke−λ

k!
+
λbλce−λ

λ!
+ e−λ

)

=
1

2

(
2
λbλce−λ

λ!
− e−λ + e−λ

)
=
λbλce−λ

λ!

Using Stirling’s approach, this can be upper bounded as:

λbλce−λ

λ!
≤ λλe−λ√

2πλλ+1/2e−λ
=

1√
2πλ

.

Thus, if

λ ≥ 1

2πε2
,

i.e.,

λj ≥
∆Pjd

r
aw

2π∆Paε
2
, (3.11)

covertness is achieved. This implies that one of two strategies can be employed: 1)

Alice chooses a ∆Pa and the jammer can use an upper bound on draw to choose λj; 2)
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the jammer chooses a λj and Alice can use draw to choose ∆Pa . Since under the above

construction, Alice can send Mn = bαWT c pulses with a constant power (which does

not decrease with WT ), O(WT ) bits can be transmitted covertly from Alice to Bob.

3.4.5 Reliability

Since Alice and Bob share a secret key indicating the locations (in [0, T ]) of the

pulses sent by Alice, then Bob can sample at the correct time instances and obtain

an Mn-length vector Y(a) with each element corresponding to a transmitted symbol

from Alice, plus noise and interference. The interference is due to pulses sent by

the jammer and Alice’s intersymbol interference (ISI), since Alice’s pulses are sent at

random. We upper bound the power of the interference by a constant.

Recall that xa(t) and xj(t) are given by (3.6) and (3.7), respectively. Bob employs

a matched filter with impulse response p(−t). Let ymf (t) = xa(t)

d
r/2
ab

∗p(−t)+
xj(t)

d
r/2
jb

∗p(−t)+

N (b)(t) ∗ p(−t) be the received signal at Bob for t ∈ [0, T ] after passing through his

matched filter:

ymf (t) =
Mn∑
i=1

fi

d
r/2
ab

q(t− τi) +
K∑
k=1

Mn∑
i=1

v
(0)
k,i q(t− τ

(0)
k,i ) +N (b)(t) ∗ p(−t) (3.12)

where q(t) = p(t)∗p(−t) is the zero-ISI pulse, e.g., raised cosine pulse. Per above, Bob

can sample at {τi}Mn
i=1 and obtain an Mn-length vector Y(a). For any m = 1, 2, . . . ,Mn,

the sample attempting to capture symbol fm is given by:

Y (a)
m = fm +

Mn∑
i=1,i 6=m

fi

d
r/2
ab

q(τm − τi) +
K∑
k=1

Mn∑
i=1

v
(0)
k,i

d
r/2
jb

q(τm − τ (0)
k,i ) +N (b)(τm) ∗ q(−τm) .

Thus, the expected power of the interference and noise in one sample is:
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PI = E

( Mn∑
i=1,i 6=m

fi

d
r/2
ab

q(τm − τi) +
K∑
k=1

Mn∑
i=1

v
(0)
k,i

d
r/2
jb

q(τm − τ (0)
k,i ) +N (b)(τm) ∗ q(−τm)

)2


=
σ2
a

drab

Mn∑
i=1,i 6=m

q2(τm − τi) +
σ2
j

drjb

K∑
k=1

Mn∑
i=1

q2(τm − τ (0)
k,i ) + E

[(
N (b)(τm) ∗ q(−τm)

)2
]

(3.13)

where (3.13) is obtained by the fact that {fi}Mn
i=1 and {v(0)

k,i }
Mn,K
i=1,k=1 are sequences

of i.i.d. zero-mean Gaussian random variables with variance σ2
a and σ2

j , respec-

tively. Let P
(a)
I = σ2

a

drab

∑Mn

i=1,i 6=m q
2(τm − τi) be the power of Alice’s ISI, P

(j)
I =

σ2
j

drjb

∑K
k=1

∑Mn

i=1 q
2(τm − τ

(0)
k,i ) be the jammer’s interference power, and let P

(N)
I =

E
[(
N (b)(τm) ∗ q(−τm)

)2
]

be the noise power. We will evaluate each term, seper-

ately starting with P
(a)
I .

Let cd > 0 be a small constant, and Md,i be the number of Alice’s pulses whose

offset τi is within a distance of di ∈
(

(i− 1) cd
W
, i cd
W

]
, i = 1, 2, . . . , TW

cd
from τm; that is

|τi − τm| ∈
(

(i− 1) cd
W
, i cd
W

]
. Then, since the pulses are uniformly located over [0, T ],

for any i = 1, 2, . . . , TW
cd

,

E[Md,i] =
2cdMn

WT
≤ 2αcd . (3.14)

Obviously, on each interval
(

(i − 1) cd
W
, i cd
W

]
, i = 1, 2, . . . , TW

cd
, a pulse located the

closest to τk maximizes the interference power. Upper bounding P
(a)
I and taking the

expectation over Mdi yields:
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EMd,i
[P

(a)
I ] ≤ EMd,i

 σ2
a

d
r/2
ab

·

TW
cd∑
i=1

Md,i · q2
(

(i− 1) · cd
W

)
≤ σ2

a

d
r/2
ab

·

TW
cd∑
i=1

E[Md,i] ·
C0(

W 3 ·
(

(i−1)cd
W

)3
)2 (3.15)

≤ 2αc−5
d σ2

aC0

d2
ab

·

TW
cd∑
i=1

1

i6
(3.16)

where C0 is a constant, and (3.15) is obtained by the fact that q(τ) is a raised cosine

pulse, which has a tail that decays in the order of 1
(Wτ)3 with τ being the timing offset.

Since
∑TW

cd
i=0

1
i6

converges to a constant as WT → ∞, and σ2
a ≤ PA, (3.16) is upper

bounded by a constant.

Similarly, the jammer’s interference can be upper bounded by:

EMd,i
[P

(j)
I ] ≤

2Kαc−5
d σ2

jC0

d2
jb

· lim
WT→∞

TW
cd∑
i=0

1

i6
. (3.17)

Thus, since σ2
j ≤ PJ , the power of the jammer’s interference is also bounded by a

constant. Since N (b) has power spectral density N
(b)
0 /2, and q(t) is a raised cosine

pulse with asymptotic bandwidth W and a roll-off factor β, the noise power P
(N)
I =

N
(b)
0 W/(1 + β), which is independent of T .

By [5, Eq.(9)] and Jensen’s inequality:

EMdi
[P (b)
e ] ≤ 2

MnR−Mn2 log2

1+
σ2
a

2

(
P

(N)
I

+EMdi
[P

(a)
I

]+EMdi
[P

(j)
I

]

)


(3.18)

where R is the rate of Alice’s transmission. Since Alice uses a transmission power

that is independent of T , her transmission rate is also independent of T . Hence, Bob’s

error probability is upper bounded by a constant. Therefore, under this construction,

Alice achieves both covert and reliable communications with a positive rate.
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3.5 Extension to the Case Without Frame Synchronization

In discrete-time systems, frame synchronization between Alice and the jammer is

assumed in [9]. It is plausible that Alice could listen to the jammer’s signal before

transmitting to determine the slot boundaries and then choose an upcoming slot in

which to transmit. But since waiting for the upcoming slot incurs delay, and having

Alice and Bob agree on the time of transmission makes it challenging for both of them

to perform frame synchronization with negligible error, it is desirable to be able to

transmit without worrying about such frame synchronization.

In continuous-time systems, the construction provided in the previous section

allows Alice to achieve positive rate covert communication when there is perfect

frame synchronization between her and the jammer. But the covert rate in the case

without frame synchronization also needs to be established. In this section, we extend

the construction to relax the requirement that the jammer and Alice both agree (or

know) the codeword slot timing. Like before, Alice sends her pulses within time slot

[0, T ] if she decides to transmit. The jammer transmits in all slots. Without loss of

generality, we assume that drxy = 1 for all transmitter and receiver pairs (x, y), with

the exception that draw is not necessarily equal to one. We will show that positive rate

covert communications can be achieved in continuous-time systems with no frame

synchronization:

Theorem 3.2. Given the system model of Section 3.2 without frame synchronization

between Alice and the jammer, there exists a construction for Alice and the jammer

to achieve O(WT )-bit covert and reliable transmission on a continuous-time channel

employing asymptotic bandwidth W Hz for T seconds as T →∞.
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3.5.1 Construction

3.5.1.1 Alice

The codebook construction is identical to Section 3.4. Over the time period [0, T ],

Alice sends Mn pulses (if she decides to transmit). To avoid Willie’s detection by

simply looking for a pulse starting at time zero, Alice sends pulses during a period

of length T/2 starting at time Ta drawn uniformly at random from [0, T/2]. The

starting time of each pulse is uniformly distributed over a [Ta, Ta + T/2]. As before,

she picks a power level uniformly at random from the power range (Pa, Pa + ∆Pa) to

send her pulses. Thus, her waveform is given by:

xa(t) =
Mn∑
i=1

fip(t− τi)

where fi
Mn
i=1 is the sequence of i.i.d. code symbols, p(t) is a square-root raised co-

sine pulse with roll-off factor β, {τi}Mn
i=1 is a sequence of i.i.d. pulse delays that are

uniformly distributed on [Ta, Ta + T/2].

3.5.1.2 Jammer

As shown in Fig. 3.7, the jammer sends multiple length-T
2

pulse trains, each con-

sisting of Mn pulses, having a different power level, and starting at a random point

in time. We term these random points the “starting points”. The location of each

pulse in a pulse train is uniformly distributed over a length-T
2

time interval starting

from the starting point of that pulse train. Let λT denote the density of the starting

points per time T . For each length-T period, the number of starting points, which we

denote as MT , follows a Poisson distribution with density λT , i.e., MT ∼ Pois (λT ).

For each starting point, the jammer picks a power level uniformly at random from

the power range (Pj, Pj + ∆Pj) to transmit one pulse train. The jammer’s waveform

due to pulse trains started within slot [0, T ] is given by:
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xj(t) =

MT∑
k=1

Mn∑
i=1

vk,ip(t− τk,i), 0 ≤ t ≤ T

where {vk,i}Mn
i=1 is a sequence of i.i.d. zero-mean complex Gaussian symbols with

variance being the power level associated with the kth starting point, and {τk,i}Mn
i=1 is

a sequence of i.i.d. pulse delays that are uniformly distributed in a length-T
2

interval

starting at the kth starting point.

Figure 3.7: Pulse trains sent from Alice and the jammer over [0, T ]. An impulse
means a pulse sent by Alice or the jammer.

3.5.2 Analysis

For achievability, we derive an upper bound on the performance of Willie’s optimal

detector by assuming a genie provides Willie extra knowledge on the exact power

range
[
Pa
d2

aw
,
Pa+∆Pa

draw

]
received from Alice, the exact time range [0, T ] Alice will employ

if she decides to transmit, the values of all power levels employed by the jammer and

Alice (if she decides to transmit), the locations of the pulses, the starting points of

all the pulse trains corresponding to each power level employed, and the distribution

of the time instances. Willie does not know which power level is employed by whom,

or for each time instance who starts to send pulses.
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Willie makes his decision on Alice’s transmission based on his observation over

the time interval [0, T ]. Note that any pulse train started outside [0, T ] does not paid

Willie’s detection, and thus the genie-aided Willie can ignore it. When Alice does not

transmit, Willie’s received signal due to pulse trains started within [0, T ] is given by:

z(t) | H0 =

MT∑
k=1

Mn∑
i=1

vk,ip(t− τk,i − τj) +N (w)(t), 0 ≤ t ≤ T .

When Alice transmits, Willie’s received signal is given by:

z(t) | H1 =
Mn∑
i=1

fi

d
r/2
aw

p(t− τi − τa) +

MT∑
k=1

Mn∑
i=1

vk,ip(t− τk,i − τj) +N (w)(t), 0 ≤ t ≤ T .

3.5.3 Optimal Hypothesis Test

In this section, we show that the number of time instances over [0, T ] that cor-

respond to pulse trains with power levels within the detection region is a sufficient

statistic for the genie-aided Willie to decide between H0 and H1.

We denote M as the number of starting points in [0, T ], and M1 and M2 as the

number of those points that corresponds to pulse trains with power levels within

the detection region (including Alice’s pulse train) and outside the detection region,

respectively. The proof for M1 being a sufficient statistic is analogous to the proof

for K
(1)
0 being a sufficient statistic in Section 3.4.3. We provide it in Appendix 3.7.3.

Since M1 is a sufficient statistic for the genie-aided Willie to detect the presence

of Alice, hypotheses H0 and H1 can be stated as:

• H0: M1 follows Pois
(

∆Pa

∆Pj
draw
· λT

)
;

• H1: M1 follows Pois
(

∆Pa

∆Pj
draw
· λT

)
+ 1.
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3.5.4 Covert Limit

Similar to Section IV, we can derive a lower bound to λT :

λT ≥
∆Pjd

2
aw

2π∆Paε
2

(3.19)

such that covertness is achieved. As before, the maximum interference at Bob can

be upper bounded by a constant, and thus reliability is achieved under the same

construction. Also, Alice can send Mn = αbWT c pulses with a constant power (which

does not decrease with WT ), and thus O(WT ) bits can be transmitted covertly and

reliably from Alice to Bob.

3.6 Conclusion

In this chapter, we have studied covert communications in continuous-time sys-

tems, where transmitter Alice wants to reliably communicate with intended receiver

Bob in the presence of a jammer without being detected by warden Willie. We

first introduced an interference cancellation detector for Willie that outperforms the

standard power detector, hence demonstrating that the continuous-time system will

require different approaches than those proposed for discrete-time systems. We then

established constructions that allow Alice to achieve covert communications in differ-

ent cases: when there is perfect frame synchronization between Alice and the jammer,

and when there is no frame synchronization. We proved that O(WT ) covert informa-

tion bits can be reliably transmitted from Alice to Bob on a channel with asymptotic

bandwidth W in T seconds for both cases. In this work, an infinite number of key bits

shared between Alice and Bob is assumed. A direction for future work is to consider

the use of a finite number of key bits and the values of the scaling constants in the

performance characterization.
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3.7 Appendix

3.7.1 Discussion of the Bandwidth of the Constructions

Here we provide a discussion on the bandwidth of our construction. For the

construction in Section 3.4, each of a constant number Mn of pulses with pulse shape

p(t) is multiplied by its corresponding symbol and then placed with delay randomly

drawn from the interval [0, T ]. This results in a waveform:

xa(t) =
Mn∑
i=1

fip(t− τi), 0 ≤ t ≤ T

where {fi}Mn
i=1 is the i.i.d. sequence of zero-mean symbol values, and {τi}Mn

i=1 is the

i.i.d. sequence of pulse delays. Since the delays are drawn uniformly over only the

interval [0, T ], the process xa(t) is not wide-sense stationary and thus its bandwidth

is not strictly defined. Hence, consider rather the following random process, which is

an extension of the construction to the infinite interval:

x̃a(t) =
∞∑

k=−∞

Mn∑
i=1

f
(k)
i p(t− τ (k)

i − kT )

where f
(0)
i = ai and τ

(0)
i = τi, i = 1, 2, . . . ,Mn, and the values for the intervals

outside of [0, T ] are chosen independently but according to the same construction as

within [0, T ]. The random process x̃a(t) is wide-sense stationary, and, through stan-

dard digital communication system analysis arguments, has power spectral density

Sx̃a(f) = |P (f)|2, where P (f) is the Fourier transform of p(t). Hence, the bandwidth

of x̃a(t) is the same as that of P (f). Suppose P (f) has a bandwidth of W−∆W , where

∆W is a very small constant, then x̃a(t) has a bandwidth of W −∆W . Observing that

xa(t) is a windowed version of x̃a(t):

xa(t) = rect

(
t− T/2
T

)
· x̃a(t) (3.20)
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Taking the Fourier transform:

Xa(f) = e−jπftT sinc(fT ) ∗ X̃a(f) . (3.21)

In the limit of large T , we have:

lim
T→∞

1

T

∫ ∞
W

E
[
|Xa(f)|2

]
df

= lim
T→∞

1

T

∫ ∞
W

E

[∣∣∣∣e−jπft ∫ W−∆W

−W+∆W

T sinc(T (f − v)) · X̃a(v)dv

∣∣∣∣2
]
df

≤ lim
T→∞

T

∫ ∞
W

E

[(∫ W−∆W

−W+∆W

1

T (f −W + ∆W )
· |X̃a(v)|dv

)2
]
df

= lim
T→∞

T

∫ ∞
W

1

T 2(f −W + ∆W )2
E

[(∫ W−∆W

−W+∆W

|X̃a(v)|dv
)2
]
df

= lim
T→∞

1

T

∫ ∞
W

1

(f −W + ∆W )2
E

[∫ W−∆W

−W+∆W

∫ W−∆W

−W+∆W

|X̃a(v)| · |X̃a(u)|dvdu
]
df

≤ lim
T→∞

1

T

∫ ∞
W

1

(f −W + ∆W )2
E

[∫ W−∆W

−W+∆W

∫ W−∆W

−W+∆W

1

2

(
|X̃a(v)|2 + |X̃a(u)|2

)
dvdu

]
df

≤ lim
T→∞

1

T

∫ ∞
W

1

(f −W + ∆W )2
E

[∫ W−∆W

−W+∆W

|X̃a(v)|2dv
]
df

≤ lim
T→∞

1

T

∫ ∞
W

1

(f −W + ∆W )2
E

[∫ W−∆W

−W+∆W

|P (v)|2dv
]
df (3.22)

= lim
T→∞

1

T

∫ ∞
W

1

(f −W + ∆W )2
(2W − 2∆W ) df

≤ lim
T→∞

2W − 2∆W

T∆W

(3.23)

= 0

where (3.22) is obtained by noting that
∫W−∆W

−W+∆W
|X̃a(v)|2dv is the power of x̃a(t) and

x̃a(t) has power spectral density Sx̃a(f) = |P (f)|2, and (3.23) is obtained by noting

p(t) is a unit-energy pulse.
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3.7.2 Proof of Sufficient Statistic at Genie-Aided Willie Using the LRT

Recall that L denotes the locations of the pulses over [0, T ], V denotes the values

of all power levels, and S denotes the original complex symbols sent by Alice (if she

transmits) and the jammer. For i = 1, 2, . . . , K
(1)
0 and all m, the variables Li,m, Vi

and Si,m are associated with pulses sent with power levels within the detection region,

and for i = K
(1)
0 + 1, K

(1)
0 + 2, . . . , K0 and all m, the variables Li,m, Vi and Si,m are

associated with pulses sent with power levels outside the detection region. The LRT

is given by:

Λ(x, l, v, k) =
Pz(t),L,V,K0|H1(x, l, v, k)

Pz(t),L,V,K0|H0(x, l, v, k)

=
PS,L,V,K0|H1(s, l, v, k)

PS,L,V,K0|H0(s, l, v, k)
(3.24)

=
PS,V,L|H1,K0(s, l, v) · PK0|H1(k)

PS,V,L|H0,K0(s, l, v) · PK0|H0(k)

=

∏K
(1)
0

i=1

∏Mn

m=1 PSi,m,Vi|H1,Li,m(s) · PLi,m|H1(l) · P
K

(1)
0 |H1

(k)∏K
(1)
0

i=1

∏Mn

m=1 PSi,m,Vi|H0,Li,m(s) · PLi,m|H0(l) · P
K

(1)
0 |H0

(k)

·

∏K0

i=K
(1)
0 +1

∏Mn

m=1 PSi,m,Vi|H1,Li,m(s) · PLi,m|H1(l) · P
K

(2)
0 |H1

(k)∏K0

i=K
(1)
0 +1

∏Mn

m=1 PSi,m,Vi|H0,Li,m(s) · PLi,m|H0(l) · P
K

(2)
0 |H0

(k)

=

∏K
(1)
0

i=1

∏Mn

m=1 PSi,m|H1,Vi(s) · PVi|H1(v) · PLi,m|H1(l) · P
K

(1)
0 |H1

(k)∏K
(1)
0

i=1

∏Mn

m=1 PSi,m|H0,Vi(s) · PVi|H0(v) · PLi,m|H0(l) · P
K

(1)
0 |H0

(k)

·

∏K0

i=K
(1)
0 +1

∏Mn

m=1 PSi,m|H1,Vi(s) · PVi|H1(v) · PLi,m|H1(l) · P
K

(2)
0 |H1

(k)∏K0

i=K
(1)
0 +1

∏Mn

m=1 PSi,m|H0,Vi(s) · PVi|H0(v) · PLi,m|H0(l) · P
K

(2)
0 |H0

(k)

=
P
K

(1)
0 |H1

(k)

P
K

(1)
0 |H0

(k)
(3.25)

where (3.24) is obtained by the fact that z(t) can be constructed from p(t) given

the locations L and the original complex symbols S sent, and (3.25) by recognizing:

1) PSi,m|H1,Vi(s) and PSi,m|H0,Vi(s) are both zero-mean Gaussian distributions with

variance Vi for i and m; 2) PVi|H1(v) and PVi|H0(v) are both uniform distributions
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over the detection region; 3) PLi,m|H1(l) and PLi,m|H0(l) are both uniform distributions

over a length-T interval; and 4) P
K

(2)
0 |H1

and P
K

(2)
0 |H0

are both Poisson distributions

with parameter λj

(
1− ∆Pa

∆Pj
draw

)
.

3.7.3 Proof of M1 Being a Sufficient Statistic for the Genie-Aided Willie

Recall that D denotes Alice’s decision on transmission. Let L′ denote the locations

of all of the pulses over [0, T ], S′ denote the original complex symbols sent, and

V′ denote the values of all power levels (within and outside the detection region)

employed during [0, T ]. The random variables D, M1, V′, L′ and S′ form a Markov

chain shown in Fig. 3.8, which illustrates the transition from Alice’s state D to Willie’s

received signal z(t) in [0, T ]. The transitions of the Markov chain are:

• D −→ M1: M1 and M1 − 1 are characterized by a Poisson process with mean

∆Pa

∆Pj
draw
·λT when Alice does not transmit (D = H0) and when she does transmit

(D = H1), respectively.

• M1 −→ V′,L’: Let {V ′k : k = 1, 2, . . . ,M1}, be the values of power levels

within the detection region, and {V ′k : k = M1 + 1,M1 + 2, . . . ,M}, be the

values of power levels outside the detection region. Given M1, the conditional

distribution of V ′k , k = 1, 2, . . . ,M1, is uniform within the detection region. Note

that M2 is independent of D since the pulses sent with power levels outside the

detection region can only come from the jammer, no matter if Alice transmits

or not. Given M2 (Poisson with mean
(

1− ∆Pa

∆Pj
draw

)
λT ), the distribution of

V ′k , k = M1 + 1,M1 + 2, . . . ,M , is uniform outside the detection region. Let

{L′k,m : k = 1, . . . ,M1,m = 1, . . . ,Mn} denote the locations (in [0, T ]) of pulses

sent with power within the detection region, and {L′k,m : k = M1+1, . . . ,M,m =

1, . . . ,Mn} denote the locations of pulses sent with power outside the detection

region. Given M1 and the time instances each pulse train starts, the distribution

of L′k,m for k = 1, 2, . . . ,M1 and all m is uniform over the length-T
2

interval
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starting from the time instances corresponding to each power level. Given M2,

the distribution of Lk for k = M1 + 1,M1 + 2, . . . ,M and all m is also uniform

over the length-T
2

interval starting from the time instances corresponding to

each power level, which is independent from D.

• V′,L′ −→ S′,L′: The conditional distribution of S ′k,m, k = 1, 2, . . . ,M,m =

1, 2, . . . ,Mn, given V ′k , is a zero-mean complex Gaussian random variable with

variance E[|S ′k,m|2] = V ′k .

Figure 3.8: Markov chain illustrating the transition from Alice’s decision D on trans-
mission, to Willie’s observed signal z(t).

Given the pulse locations and the original complex symbols sent over [0, T ], the

signal z(t) can be constructed from p(t) and the AWGN of Willie’s channel. From the

Markov chain shown in Fig. 3.8, we see that z(t) conditioned on M1 is independent

of D. Therefore, M1 is a sufficient statistic for Willie to decide between hypotheses

H0 and H1.
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CHAPTER 4

COVERT COMMUNICATIONS UNDER THE COVER OF
A RADAR

4.1 Introduction

Covert communication allows a transmitter (Alice) to reliably send messages to

a legitimate receiver (Bob) without being detected by an attentive warden (Willie).

This is crucial for many applications where the existence of a transmission reveals

sensitive information. Previous work studied the limits of reliable covert communica-

tions. Bash et al. first studied such limits over discrete-time AWGN channels in [5],

establishing a square-root law (SRL): Alice can reliably and covertly transmit at most

O(
√
n) bits to Bob in n channel uses of a discrete-time AWGN channel. This SRL

was then established in successive work over binary symmetric channels (BSCs) by

Che et al. in [13], over discrete memoryless channels (DMCs) by Wang et al., [16] and

Bloch, [19], and over multiple-access channels [47] by Arumugam et al.. These works

provide a thorough study of covert communications in common discrete-time channel

models when Willie has an accurate statistical characterization of Alice’s channel to

him.

In covert communications, Willie attempts to determine whether he is only observ-

ing the background environment or a signal from Alice in that environment. Hence,

uncertainty about the environment helps Alice to hide her transmission. Sobers at

al., [9] achieve positive rate by introducing a model with an interference source: an

uninformed jammer that randomly generates interference, hence providing the re-

quired uncertainty at Willie. It is shown in [9] that Alice can covertly transmit O(n)

bits in n channel uses over both discrete-time AWGN and block fading channels.
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In many scenarios, the jammer is assumed to be an intentional jammer that help

Alice to achieve covert communications on purpose [33]. However, this requires an

active non-covert Alice-Bob teammate, which may be difficult to provide in some

situations. For example, in military communications where a transmitter attempts

to covertly communicate with a receiver in enemy territory, it may be difficult to

provide such a jammer. In addition, the jammer in [9] is itself not covert since the

warden knows that the jammer is present and potentially trying to hide something.

Hence, it is often useful to exploit an interference source that already exists in the

environment, such as radars [34,35] and other existing communication sources [36,37],

so that Alice and Bob can operate in such environment and hide under the cover of

the interference. This chapter is the first work that analyzes the fundamental covert

rate of a system that uses an unintentional interference source.

The work in [34] and [35] by Blunt et al. introduces an intra-pulse radar-embedded

communication system where the transmitter attempts to covertly send transmission

symbols to the radar. In order to achieve covertness, the transmission symbols are

embedded with the incident radar pulses, and are hidden behind the backscatter

induced by the radar reflections. The design of intra-pulse covert symbols based on the

incident radar waveform is studied in [34] such that the covert symbols are sufficiently

different from the ambient radar scattering to ensure acceptable bit error rate (BER)

but at the same time sufficiently similar to the scattering to avoid detection by any

adversary.

In this chapter, we exploit the idea of embedding covert symbols into radar pulses

in a standard Alice-Bob-Willie covert communication scenario. When Alice decides

to transmit, each incident radar pulse is remodulated into one communication wave-

form. Alice embeds her transmission waveforms into the scattering of the radar. We

establish the theoretical limit on the covert rate of the transmission between Alice and

Bob. In particular, we show that O(n) bits can be transmitted covertly regardless of
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Willie’s receiver in n samples of a radar pulse. We analyze Bob’s decoding capability

and provide an upper bound to his probability of error, which also shows that O(n)

covert bits in n samples of a radar pulse can be transmitted reliably to Bob. A differ-

ence between this work and [9], where the interference comes from a jammer, is that

here the interference from the radar scattering is correlated, and the variance of the

average power of the local scattering is random. This leads to significant differences

in the proofs of the covert limit and the error probability of Bob’s decoding.

The rest of this chapter is organized as follows: after introducing the system

model and metric in Section 4.2, we discuss the design of the covert communication

waveform in Section 4.3. In Section 4.4, we prove the covertness of the system and

analyze the covert rate. We then derive the error probability at Bob to determine

reliability in Section 4.5. Finally, Section 4.6 draws the conclusions.

4.2 System Model and Metrics

4.2.1 System Model

Figure 4.1: System model: Alice attempts to transmit covertly to Bob in a commu-
nication system with an illuminating radar.

Consider a radar-embedded covert communication system shown in Fig. 4.1, where

the radar illuminates and introduces scattering due to the reflectors in the environ-
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ment. The transmitter Alice attempts to covertly transmit messages to the receiver

Bob in this environment. In order to do so, she embeds her transmission into the

scattering of the radar to avoid being detected by the warden Willie.

Since each incident radar pulse is remodulated into one communication wave-

form, we are interested in Alice’s ability to covertly transmit in a pulse with length

equal to that of the codeword length n and Willie’s ability to detect such a transmis-

sion. We assume that the environment (i.e, clutter) is dynamic such that it changes

over different pulse repetition intervals (PRI) but is static within each PRI. Let

s = [s1, s2, . . . , sn]T be the sequence of samples of the illuminating radar waveform

with average power σ2
s , where (·)T denotes the transpose operation. Since the am-

bient scattering can be assumed to be a linear time-invariant process, the received

signal due to the clutter can be expressed as a convolution of the radar signal and the

aggregation of the local scattering at a given range delay with respect to the receiver.

Hence, the ambient radar scattering in the surrounding area can be modeled as Sx

where x is a vector of random complex scattering coefficients, and:

S =



sn sn−1 . . . s1 0 . . . 0

0 sn s2 s1 0

...
. . .

...
...

. . .

0 0 sn sn−1 . . . s1



is an n-by-(2n − 1) matrix of delay shifts of s that characterizes the convolution of

the radar signal with the local scattering, i.e., Sx = (s ∗ x)(n). Due to the scattering

being a collection of the reflections from a large number of scatterers, we assume that

x is a zero-mean independent and identically distributed (i.i.d.) complex Gaussian

random vector with variance σ2
x. In addition, since the environment (i.e., clutter)

changes over different PRIs, we assume σ2
x is random and has a probability density

function (pdf) of fσ2
x
.
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Without loss of generality, we assume that the distance between any transmitter

and receiver is one. In the case of AWGN channels between all transmitters and

receivers, the received vector at Willie when Alice does not transmit is given by:

z = Sx + u (4.1)

where u is the length-n noise vector observed at Willie, which is an i.i.d. zero-mean

complex Gaussian vector with variance σ2
u, i.e., ui ∼ CN (0, σ2

u), i = 1, 2, . . . , n. When

Alice transmits, the received vector at Willie is given by:

z = Sx + σcck + u (4.2)

where ck is the length-n codeword Alice transmits, and σc is the square root of Alice’s

transmission power.

Bob observes the channel output y, which is analogous to z but with the substi-

tution of the noise u′ for u, where u′ is an i.i.d. zero-mean complex Gaussian vector

with variance σ2
u′ , and the substitution of the radar scattering x′ for x, where x′ is a

zero-mean random vector with variance σ2
x′ , and σ2

x′ is a random variable with a pdf

of fσ2
x
.

4.2.2 Metric

Based on his observation z(t), Willie will determine whether Alice transmitted or

not. We define the null hypothesis (H0) to be that Alice did not transmit, and the

alternative hypothesis (H1) to be that Alice transmitted a message. We assume Alice

transmits a message with probability p. Willie tries to minimize his probability of

error P(w)
e = (1− p) ·PFA + p ·PMD, where PFA and PMD are the probabilities of false

alarm and missed detection at Willie, respectively. We assume that P(H0) and P(H1)

are known to Willie. Since P(w)
e ≥ min(P(H0),P(H1))(PFA + PMD) [5], we say that
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Alice achieves covert communication if, for a given ε > 0, PFA + PMD ≥ 1 − ε [5].

Reliability is measured by the probability P(b)
e of Bob’s decoding error averaged over

all codebooks. The transmission is reliable if, for a given ε′ > 0, P(b)
e < ε′.

We assume that Willie has full knowledge of the statistical model: The radar

signal s, his background noise power, i.e., σ2
u, and the distribution fσ2

x
of the average

power of the random local scattering of the radar. However, Willie does not know

the exact coefficients x.

4.3 Communication Waveform against Detection

4.3.1 Waveform Design

For a rate of R, we employ random coding arguments and independently generate

K = 2nR codewords {ck, k = 1, 2, . . . , 2nR} as described in detail below. If Alice

decides to transmit, she selects the codeword corresponding to her message, scales it

with σc to embed it into one radar pulse, and sends it over the AWGN channel. Unlike

in [9] where Alice’s codeword is independent of the jammer’s signal, the codeword

ck in our scenario should possess some correlation with the radar scattering to avoid

detection by simply being projected away from the radar signal. A basis within

which to generate Alice’s communication codeword can be obtained by the eigen-

decomposition of the power-normalized correlation matrix of Sx:

1

σ2
x

E
[
(Sx) (Sx)H

]
= SSH = VΛVH (4.3)

where V = [v1,v2, . . . ,vn] is the set of n eigenvectors, Λ is a diagonal matrix that

contains the associated eigenvalues {λi}ni=1 in descending order, i.e., λ1 ≥ λ2 ≥ . . . ≥

λn, and (·)H denotes the Hermitian operation. Note that VΛVH does not depend on

σ2
x in the left-hand side of (4.3) since it is cancelled out by σ2

x that comes out of the

expectation.
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The work in [34] introduces three design strategies for the communication wave-

form in an intra-pulse radar-embedded system: 1) use a subset of the nondominant

eigenvectors (i.e., eigenvectors associated with small eigenvalues) as communication

waveforms; 2) use a weighted combination of multiple nondominant eigenvectors; 3)

project onto the non-dominant subspace. The general idea behind all three designs

is to let the covert symbols be sufficiently different from the radar scattering to en-

sure acceptable BER at the receiver but at the same time similar enough to avoid

detection by the adversary.

In our work, we will use both the dominant and non-dominant subspace of the

radar scattering. Let bk, k = 1, 2, . . . , K, be a normal random vector. We define

Alice’s codeword as:

ck = V(Λ + I)
1
2 bk (4.4)

where I is the identity matrix. Note that bk is the secret key shared only between

Alice and Bob but not Willie.

We want the dimension of the dominant subspace of the radar scattering to be

of the same order as n. Thus, we analyze the matrix Λ in (4.3) containing the

eigenvalues to show that there is a constant fraction of non-negligible eigenvalues as

n becomes large.

Lemma 4.1. Given the continuous-time radar signal s(t) and local scattering x(t), if

the Fourier transform of the windowed (s∗x)(t) is above a constant level for a constant

fraction of time, then a constant fraction of the eigenvalues of SSH as n → ∞ will

also be above a constant level.

Proof. The covariance matrix SSH is an n-by-n Toeplitz and Hermitian matrix. Let

Tn denote this n-by-n Toeplitz matrix. By [67], the sequence {Tn} is asymptotically

equivalent to a sequence of n-by-n circulant matrices {Cn} derived from the Toeplitz
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matrices as n → ∞, and the asymptotic equivalence of the circulant and Toeplitz

matrices implies the individual asymptotic convergence of the eigenvalues for Tn to

those of Cn. By [68, Eq. (5)], Cn
∆
= FH

n ∆nFn, where ∆n is a diagonal matrix con-

taining the eigenvalues of Cn, and Fn is the n-by-n (discrete Fourier transform) DFT

matrix. Thus, ∆n ∼ Λn, i.e., the matrix containing the eigenvalues of Tn is asymp-

totically equivalent to ∆n; hence, is also equivalent to the set of diagonal elements

of the covariance matrix FnTnF
H
n of the DFT FnSx of Sx [69]. We aim to study

the fraction of non-negligible eigenvalues of the covariance matrix 1
σ2
x
E
[
(Sx) (Sx)H

]
(i.e., the fraction of non-negligible diagonal entries of 1

σ2
x
E
[
(FnSx) (FnSx)H

]
) as n

goes large. The sequence {λi}ni=1 of the eigenvalues is

{λi}ni=1 =
1

σ2
x

E
[∣∣FnSx

∣∣2] .
Since increasing n will only result in a higher resolution of the DFT, then as long as

the Fourier transform of the windowed (s ∗ x)(t) is above a constant non-negligible

level for a constant fraction of time, there will be a constant fraction of non-negligible

eigenvalues of SSH as n→∞.

In Fig. 4.2, we provide an example of the eigenvalues of the covariance ma-

trix 1
σ2
x
E
[
(Sx) (Sx)H

]
when the radar signal is a constant frequency modulated

continuous-wave radar waveform. We observe that as n increases, the shape of the

curves of the eigenvalues stays the same, and there is a constant fraction of non-

negligible eigenvalues as n becomes large.
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Figure 4.2: Comparison of the eigenvalues (in dB scale) of SSH when n = 5000 and
n = 20000.

4.3.2 Willie’s Detection Capability

Willie’s receiver observes the vector z given in (4.1) and (4.2) when H0 and H1 are

true, respectively, and attempts to decide between the two hypotheses. Since Willie

knows the radar signal and hence can learn the eigenstructure of SSH , he can first

perform (Λ+I)−
1
2 VHz to decorrelate z without loss of optimality, since the operation

is invertible. Then, the two hypotheses become:

• H0: (Λ + I)−
1
2 VHz = (Λ + I)−

1
2 VH(Sx + u);

• H1: (Λ + I)−
1
2 VHz = (Λ + I)−

1
2 VH(Sx + u) + σcbk.

Let us denote w = (Λ + I)−
1
2 VH(Sx + u). Since x is an i.i.d. zero-mean complex

Gaussian random vector, the elements of Sx are jointly Gaussian. Then, w is a

zero-mean complex Gaussian random vector with covariance matrix:
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E[wwH ] =(Λ + I)−
1
2 VHE[(Sx + u)(Sx + u)H ]V(Λ + I)−

1
2

=



σ2
xλ1+σ2

u

λ1+1
0 . . . 0

0 σ2
xλ2+σ2

u

λ2+1
0

...
. . .

...

0 0 . . . σ2
xλn+σ2

u

λn+1


. (4.5)

A straightforward test for Willie is a power detector on (Λ+ I)−
1
2 VHz. However, this

threshold test is not necessarily optimal for Willie. Typically, constructing the optimal

detector for Willie is the most challenging task. Thus, many works just assume that

the optimal detector is a threshold test on the power without establishing it. Sobers

et al. in [9] shows that this is not true except for a limited set of distributions. In this

work, we can show that zHV(Λ + I)−1VHz is a sufficient statistic for a genie-aided

Willie, which provides an upper bound for Willie’s detection capability and guarantees

achievability against an optimal Willie. The threshold test on zHV(Λ + I)−1VHz is

optimal when σ2
x is uniformly distributed according to [9].

While it is hard to prove the optimality of the power detector on (Λ + I)−
1
2 VHz

when w is not an i.i.d. sequence, we can again upper bound Willie’s performance

by assuming Willie has a powerful receiver that reduces the interference power on

certain eigendirections to result in an i.i.d. observing sequence, i.e., Willie eventually

observes w̃ and w̃ + σcbk when H0 and H1 are true, respectively, where w̃ is an

i.i.d. zero-mean complex Gaussian random vector with variance min
0<i≤n

σ2
xλi+σ

2
u

λi+1
which

we denote as σ2
w̃. Note that since we want our covert communication scheme to

be effective against an optimal Willie, assuming a genie-aided Willie that is able to

perform such an operation only helps Willie, and hence, as notes above, provides an

upper bound on Willie’s detection capability.

Let z′ = {z′i}ni=1 denote the i.i.d vector observed by the genie-aided Willie after

the above operation and θ denote the variance of the power of z′. Then, θ = σ2
w̃ under
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H0 and θ = σ2
w̃ + 1 under H1. Note that θ is random since σ2

x in σ2
w̃ is random. The

pdf of z′ is given by:

fz′(z
′) = Eσ2

x

[
n∏
i=1

1

πθ
· exp

(
−|z

′
i|2

θ

)]

= Eσ2
x

[(
1

πθ

)n
· exp

(
−
∑n

i=1 |z′i|2

θ

)]
(4.6)

Thus, by the Fisher-Neyman Factorization Theorem, the total power
∑n

i=1 |z′i|2 is a

sufficient statistic for the test of the genie-aided Willie, based on which we will prove

covertness of our communication system.

If σ2
x is uniformly distributed, then using a similar method to [9] (employing LRT

and stochastic ordering [66]), it can be shown that the optimal test for the genie-aided

Willie is a threshold test on
∑n

i=1 |z′i|2, i.e.,

n∑
i=1

|z′i|2
H1

≷
H0

τ (4.7)

where τ is the threshold. However, an optimal threshold test on the power is not

necessary for our proof in Section 4.4.

4.4 Covertness

In this section, we prove the covertness of the system with the genie-aided Willie

when Alice sends the communication waveforms given in (4.4). Assuming we do not

know the distribution of σ2
x, we will only consider

∑n
i=1 |z′i|2 being a sufficient statistic

for the genie-aided Willie, and prove the limit on the covert rate in this case.

Under H0, we write
∑n

i=1 |z′i|2 =
∑n

i=1 |w̃i|2 with w̃i ∼ CN (0, σ2
w̃) where σ2

w̃ =

min
0<i≤n

σ2
xλi+σ

2
u

λi+1
; and under H1, we write

∑n
i=1 |z′i|2 =

∑n
i=1 |w̃i|2 + σ2

cb
H
k bk. Define a

region R = [0, L) on the real line such that L is a constant, and given any ε > 0:
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P

(
1

n

n∑
i=1

|w̃i|2 ∈ R

)
> 1− ε

4
. (4.8)

Define the region for 1
n

∑n
i=1 |z′i|2 in which Willie decides there is no Alice’s transmis-

sion asRH0 , i.e., if 1
n

∑n
i=1 |z′i|2 ∈ RH0 , Willie will decide H0 to be true. We also define

the region in which Willie decides that Alice transmits as RH1 (and RH1 = RH0).

Conditioned on σ2
w̃ = t, the false alarm probability of Willie’s detection is then given

by:

PFA(t) = P

(
1

n

n∑
i=1

|z′i|2 ∈ RH1 | σ2
w̃ = t,H0

)

= P

(
1

n

n∑
i=1

|w̃i|2 ∈ RH1 | σ2
w̃ = t

)

≥ P

(
1

n

n∑
i=1

|w̃i|2 ∈ RH1 ∪R | σ2
w̃ = t

)
− P

(
1

n

n∑
i=1

|w̃i|2 ∈ R | σ2
w̃ = t

)

> P

(
1

n

n∑
i=1

|w̃i|2 ∈ RH1 ∪R | σ2
w̃ = t

)
− ε

4
(4.9)

where R denotes the complement of R. Similarly, the conditional probability of

missed detection is given by:

PMD(t) = P

(
1

n

n∑
i=1

|z′i|2 ∈ RH0 | σ2
w̃ = t,H1

)

= P

(
1

n

n∑
i=1

|w̃i|2 +
1

n
σ2
cb

H
k bk ∈ RH0 | σ2

w̃ = t

)

≥ P

(
1

n

n∑
i=1

|w̃i|2 +
1

n
σ2
cb

H
k bk ∈ RH0 ∪R | σ2

w̃ = t

)

− P

(
1

n

n∑
i=1

|w̃i|2 +
1

n
σ2
cb

H
k bk ∈ R | σ2

w̃ = t

)

where 1
n
σ2
cb

H
k bk can be dropped since it is a very small value due to the average power

σ2
c is very small to allow covert communication for Alice. Thus,
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PMD(t) > P

(
1

n

n∑
i=1

|w̃i|2 +
1

n
σ2
cb

H
k bk ∈ RH0 ∪R | σ2

w̃ = t

)
− ε

4
. (4.10)

Let χ2
l denote a chi-squared random variable with l degrees of freedom. Then,

since w̃i ∼ CN (0, σ2
w̃), we have 1

n

∑n
i=1 |w̃i|2 = 1

n
σ2
w̃χ

2
2n in distribution. By the weak

law of large numbers, χ2
2n/n converges in probability to one. Hence, for any δ > 0,

there exists an N0 such that for any n ≥ N0,

P
(

1

n
χ2

2n ∈
(

1− δ

σ2
w̃

, 1 +
δ

σ2
w̃

))
> 1− ε

4
. (4.11)

Hence, for any n ≥ N0,

P

(
1

n

n∑
i=1

|w̃i|2 ∈
(
σ2
w̃ − δ, σ2

w̃ + δ
))

> 1− ε

4
. (4.12)

Therefore, for any n ≥ N0, if (t − δ, t + δ) ∈ RH1 ∪ R, then from (4.9), we have

PFA(t) > 1− ε
2
. Likewise, following analogous arguments, there exists N1 such that,

for any n ≥ N1, if (t − δ, t + δ) + 1
n
σ2
cb

H
k bk ∈ RH0 ∪ R, then from (4.10), we have

PMD(t) > 1− ε
2
. Define A as the set of σ2

w̃ such that:

(σ2
w̃ − δ, σ2

w̃ + δ) ∈
(
RH1 ∪R

)
∪
(
RH0 ∪R−

1

n
σ2
cb

H
k bk

)
.

Then, for any n ≥ max(N0, N1), PFA(t) + PMD(t) > 1 − ε
2

if t ∈ A. As for the

complement set A, it can be written as such that:

(σ2
w̃ − δ, σ2

w̃ + δ) ∈ (RH0 ∩R) ∩
(
RH1 ∩R−

1

n
σ2
cb

H
k bk

)
.

Then, PFA(t) + PMD(t) < ε
2

if and only if t ∈ A.

We will show next that the expected probability that σ2
w̃ ∈ A can be upper

bounded by ε
2

when σ2
c is set to be a certain constant number. Define a region
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B0 ∈ RH0 ∩R such that B0 contains all intervals in RH0 ∩R that have a length larger

than or equal to 2δ. Since RH0 ∩ R has a finite length, there are only a constant

number (which we denote as m0) of such intervals in B0. Similarly, define a region

B1 ∈ RH1 ∩R such that B1 contains all intervals in RH1 ∩R that have a length larger

than or equal to 2δ. Since RH1 ∩ R has a finite length, there are only a constant

number (which we denote as m1) of such intervals in B1. Then:

Ebk

[
P (A)

]
= Ebk

[
P
(
σ2
w̃ − δ, σ2

w̃ + δ) ∈ B0 ∩
(
B1 −

1

n
σ2
cb

H
k bk

))]
≤ Ebk

[
P
(
σ2
w̃ ∈ B0 ∩

(
B1 −

1

n
σ2
cb

H
k bk

))]
= Ebk

[∫
B0∩(B1− 1

n
σ2
cb

H
k bk)

fσ2
w̃
(x)dx

]

≤ Ebk

[
m · 1

n
σ2
cb

H
k bk ·max

x
fσ2

w̃
(x)

]
= mσ2

c ·max
x

fσ2
w̃
(x) (4.13)

where m = min(m0,m1), and fσ2
w̃
(x) denotes the pdf of σ2

w̃ (which can be obtained

from fσ2
x
). Hence, choosing σ2

c = ε
2m·maxx fσ2

w̃
(x)

yields Ebk

[
P(A)

]
≤ ε

2
, and we can

upper bound PFA + PMD as:

PFA + PMD = Eσ2
w̃,bk

[
PFA(σ2

w̃) + PMD(σ2
w̃)
]

≥ Eσ2
w̃,bk

[
PFA(σ2

w̃) + PMD(σ2
w̃) | A

]
Ebk [P(A)]

> 1− ε

2

Therefore, Alice can transmit with constant average power σ2
c and remain covert from

Willie. This shows that Alice can covertly transmit O(n) bits to Bob in n samples of

a radar pulse.
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4.5 Reliability

Now we examine Bob’s decoding error probability P(b)
e averaged over all codebooks

using similar methods as those in [5]. The key difference is that in our case, Bob

observes colored noise due to the correlation of the interference from the clutter. So

first, in the same way that Willie decorrelates z, Bob performs (Λ + I)−
1
2 VHy to

decorrelate y. Then, when Alice transmits, Bob observes:

(Λ + I)−
1
2 VHy = (Λ + I)−

1
2 VH(Sx′ + u′) + σcbk .

Let w′ = (Λ + I)−
1
2 VH(Sx′+ u′). Then w′ is a zero-mean complex Gaussian random

vector with covariance matrix:

E[w′w′H ] =



σ′2x λ1+σ′2u
λ1+1

0 . . . 0

0 σ′2x λ2+σ′2u
λ2+1

0

...
. . .

...

0 0 . . . σ′2x λn+σ′2u
λn+1


. (4.14)

Let Bob employ a maximum-likelihood (ML) decoder (i.e., minimum distance de-

coder) to process his observed vector (Λ + I)−
1
2 VHy when codeword ck (i.e. key bk)

was sent. Let Erri(bk) denote the event that the decoder suffers an error, i.e., when

(Λ + I)−
1
2 VHy is closer to another key bi for i 6= k. Then,

P(b)
e = Ebk

[
P
(
∩2nR

i=1,i 6=kErri(bk)
)]

≤
2nR∑

i=1,i 6=k

Ebk [P (Erri(bk))] (4.15)

where (4.15) is obtained using a union bound.

97



If w′ is an i.i.d complex Gaussian random vector with variance σ2
w′ , then by [64]:

Ebk [P (Erri(bk))] = Ebk,σ
2
w′

[
Q

(√
σ2
c ||bk − bi||22

4σ2
w′

)]

where Q(·) denotes the Q-function, || · ||2 denotes the L2 norm, and ||bk − bi||22 =

(bk − bi)
H(bk − bi) with (bk − bi) ∼ CN (0, 2). However, recall that in our case, w′

is not identically distributed, but rather has covariance matrix given in (4.14). Since

increasing the power of the interference can only degrade Bob’s decoding capability,

we can then upper bound Ebk [P (Erri(bk))] as:

Ebk [P (Erri(bk))] ≤ Ebk,σ
2
x′

Q
√√√√ σ2

c ||bk − bi||22
4 max

0<i≤n

σ2
x′λi+σ

2
u′

λi+1




= Ebk,σ
2
x′

[
Q

(√
σ2
c ||bk − bi||22

4(σ2
x′λ1 + σ2

u′)

)]

Let W = 1
2
(bk − bi)

H(bk − bi), then:

Ebk [P (Erri(bk))] ≤ EW,σ2
x′

[
Q

(√
σ2
cW

2(σ2
x′λ1 + σ2

u′)

)]
(4.16)

where W ∼ χ2
2n. Since Q(x) ≤ 1

2
e−x

2/2 [65]:
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EW,σ2
x′

[
Q

(√
σ2
cW

2(σ2
x′λ1 + σ2

u′)

)]
≤ EW,σ2

x′

[
exp

(
− σ2

cW

4(σ2
x′λ1 + σ2

u′)

)]

= Eσ2
x′

∫ ∞
0

e
− σ2

cx

4(σ2
x′
λ1+σ2

u′
)
−x

2
2−nxn−1

Γ(n)
dx


= Eσ2

x′

[
2−n

(
1

2
+

σ2
c

4(σ2
x′λ1 + σ2

u′)

)−n]

= Eσ2
x′

[
2
−n log2

(
1+

σ2
c

2(σ2
x′
λ1+σ2

u′
)

)]

≤ 2
−n log2

(
1+

σ2
c

2(E[σ2
x′ ]λ1+σ2

u′)

)
(4.17)

where Γ(n) =
∫∞

0
xn−1e−xdx is the Gamma function, and (4.17) is obtained by

Jensen’s inequality. Thus, Bob’s decoding error probability is upper bounded as:

P(b)
e ≤ 2

nR−n log2

(
1+

σ2
c

2(E[σ2
x′ ]λ1+σ2

u′)

)
.

If σ2
c is constant, then as long as R < log2

(
1 + σ2

c

2(E[σ2
x′ ]λ1+σ2

u′)

)
, P(b)

e approaches to

zero exponentially as n becomes large, and Bob obtains nR = n log2

(
1 + σ2

c

2(E[σ2
x′ ]λ1+σ2

u′)

)
bits in n samples of a radar pulse.

4.6 Conclusion

In this chapter, we have studied covert communication that relies on the inter-

ference from a pulsed radar system. Covertness is achieved by embedding the trans-

mission into the scattering of the radar. We have provided a design of the covert

communication waveform. In the case of AWGN channels, we have analyzed the ca-

pability of both the optimal detection at Willie and the decoding at Bob. We have

established that O(n) bits can be covertly and reliably transmitted from Alice to Bob

in n samples of a radar pulse.
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CHAPTER 5

FUNDAMENTAL LIMITS IN DETECTING WHETHER A
SIGNAL HAS BEEN QUANTIZED

5.1 Introduction

In many scenarios, it is important to know whether a received signal was sent

by a friend directly, or whether it was recorded by an adversary and then replayed.

This is the common replay attack (or playback attack) in network security, where the

attacker records messages from a transmitter to a receiver and replays the massages

later to trick the receiver into unauthorized operations. This type of attack can be

used effectively in many real-world applications like remote keyless-entry system for

vehicles [73,74] or text-dependent speaker verification [75].

Similar attacks also occur in radar jamming and deception to protect targets from

being detected by enemy radar systems. Deceptive jamming uses techniques like

range gate pull-off (RGPO) [76] to break a radar lock from the target. The basic idea

is to generate a signal pulse very similar to the one that is reflected by the target,

and then send it a fraction of time later so that the radar’s range gate starts to follow

the false pulse instead of the real reflection. Along with the appearance of digital

radio frequency memory (DRFM) [77], a modern deception jammer can capture and

retransmit the radiation signal of the target, producing a false signal that confuses

the receiver radar and hides the target’s real position or velocity.

Many approaches have been studied to prevent a replay attack in network secu-

rity or deception jamming in radar systems: [78] presents a comparison of different

feature extraction techniques and classifiers for replay attack detection; [79] provides
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a mobile payment scheme based on radio frequency identification that can prevent

replay attack; [80] theoretically studies the detection and classification of jamming

signals by analyzing the adaptive coherent estimator and the generalized likelihood

ratio test; and [81] proposes a DRFM deception jamming detection approach based

on singular spectrum analysis. Although these methods are proposed to efficiently

detect false signals that are recorded and replayed in the field of network security and

radar jamming, the fundamental limits of such attacks with hardware imperfections

has not been explored. In either the replay attack or deception jamming, imperfect

hardware such as quantization or nonlinearities of RF components has a significant

impact on the detection of signals. Here, motivated by our previous work in iden-

tifying transmitters based on subtle imperfections [82]– [84], we initiate a study in

employing such imperfections in detecting a recording of the signal. Learning the

fundamental thresholds for the characteristics of the hardware will provide us with

both theoretical insight and application utility.

We start by studying the theoretical limits in the detection of quantized signals.

Analogous to [5] and [11] where a theoretical limit on the amount of information

transmitted reliably without detection is presented, we are interested in finding the

characteristics of the quantizer employed in a replay system that avoid its detection.

Based on the mathematics of statistical hypothesis testing, we provide a limit on the

quantization bits and the quantizer span such that the quantized signal essentially

cannot be detected. We consider a discrete-time model where signals are discrete-

time series. We will show that if a signal with length m is sent, and the quantization

is uniform with b bits, then 2b = ω (
√
m) and a quantizer span of ω

(√
lnm

)
are

sufficient to avoid detection. Conversely, having 2b = O (
√
m) or a quantizer span of

o
(√

lnm
)

results in detection by the observer with high probability as m→∞.

The rest of this chapter is organized as follows: after introducing the system model

and metric in Section 5.2, we derive the optimal hypothesis test and the probability of
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error in distinguishing the original signal and the quantized signal in Section 5.3. We

prove the achievability and converse results in Section 5.4 and Section 5.5 respectively.

Section 5.6 draws the conclusion.

5.2 System Model and Metrics

We employ a discrete-time model with real-valued elements. The framework of

our system is shown in Fig. 5.1, where Alice sends a vector X = {Xi}mi=1 of m

real values and an observer receives a vector Y = {Yi}mi=1. If the signal X is sent

directly, which we term as the “original signal”, then Yi = Xi+Ni for i = 1, 2, . . . ,m,

is an independent and identically distributed (i.i.d.) sequence of Gaussian random

variables, where Ni ∼ N (0, σ2) is the noise on the channel between the observer and

Alice. However, if the signal is recorded and replayed, then the signal X is first

quantized before being sent through the channel; in this case, Yi = Q(Xi) + Ni for

i = 1, 2, . . . ,m, where Q(·) is the quantization function taking the original signal as

input and outputing the quantized signal.

Figure 5.1: System framework: Alice sends a real-valued vector X and an observer
attempts to classify his observed vector Y as either a vector X + N of the original
signal through the channel or a vector Q(X) + N of the quantized signal through
the channel.

The goal of our work is to study how the parameters of the quantizer affect the

ability of the observer to distinguish the original signal and the quantized signal. In

order to distinguish the two signals, the observer performs a statistical hypothesis

test on his observed vector Y . We define:
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• H0: Y = X + N ;

• H1: Y = Q(X) + N .

Our metric is the probability of error. We assume that the observer uses classical

hypothesis testing with equal prior probabilities of each of the two hypotheses being

true. The rejection of H0 when it is true is known as a type I error (or false alarm),

and we denote its probability as α [85]. The acceptance of H0 when it is not true is

known as a type II error (or missed detection), and we denote β to be its probability.

Thus, the error probability for the observer to distinguish the two hypotheses can be

written as Pe = α+β
2

.

We also assume that the observer knows X and the realization of the quantization

function Q, and he also knows the variance σ2 of the Gaussian noise on the channel

between the observer and Alice. So, the observer is aware of the statistics of the two

hypotheses H0 and H1.

5.3 Optimal Test and the Probability of Error

The observer’s goal is to determine whether his observed vector is the original

signal sent through the channel or the signal that is quantized and then sent through

the channel. The observer will make his decision based on the optimal test between

H0 and H1. The likelihood ratio test (LRT) is:

Ω(Y = y) =
fY |H0(y)

fY |H1(y)

H0

≷
H1

1

where fY |H0(y) is the probability distribution of Y given H0 is true and fY |H1(y) is

the probability distribution of Y given H1 is true.
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Given that X = x, since the observer knows x andQ(x), we have Yi ∼ N (xi, σ
2), i =

1, 2, . . . ,m when H0 is true (i.e., Yi = xi+Ni), and Yi ∼ N (Q(xi), σ
2), i = 1, 2, . . . ,m

when H1 is true (i.e., Yi = Q(xi) +Ni). Thus, the LRT can be written as:

Ω(Y = y) =

m∏
i=1

1√
2πσ2

e−
(yi−xi)

2

σ2

m∏
i=1

1√
2πσ2

e−
(yi−Q(xi))

2

σ2

H0

≷
H1

1

which could be further written as:

m∑
i=1

[
−(yi − xi)2 + (yi −Q(xi))

2
] H0

≷
H1

0 ,

i.e.,

m∑
i=1

[
2yi(xi −Q(xi)) + (Q(xi))

2 − x2
i

] H0

≷
H1

0 .

Now we would like to derive the error probability for the above test. Let us denote

Zi = 2Yi(Xi − Q(Xi)) + (Q(Xi))
2 − X2

i , i = 1, 2, . . . ,m. Given H0 is true and X is

known to the observer, then Yi = Xi+Ni and Yi ∼ N (Xi, σ
2), i = 1, 2, . . . ,m. In this

case, we see that Zi is a Gaussian random variable with mean 2Xi(Xi − Q(Xi)) +

(Q(Xi))
2−X2

i and variance 4(Xi−Q(Xi))
2σ2. Thus, under the assumption of equal

prior probabilities of H0 and H1, the probability of false alarm is given by:

α = P

(
m∑
i=1

Zi < 0

)
=

1

2
− 1

2
erf


√

m∑
i=1

U2
i

2
√

2σ


where Ui = Xi −Q(Xi), i = 1, 2, . . . ,m, is the quantization error which is uniformly

distributed over [−∆
2
, ∆

2
]. The quantization step size is denoted as ∆.
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By the symmetry of the problem, the probability of missed detection has the

same form (α = β). Thus, the error probability for the observer to distinguish the

two hypotheses is given by:

Pe(X) =
1

2
− 1

2
erf


√

m∑
i=1

U2
i

2
√

2σ

 . (5.1)

In order to confuse the observer, we want the error probability Pe to be close to

1
2

so that it is equivalent to a random guess for the observer in distinguishing the

original and the quantized signal, meaning that we want Pe ≥ 1
2
− ε for any ε > 0 [5].

Conversely, we want Pe ≤ ε for any ε > 0 for the observer to be able to detect the

quantized signal with high probability.

5.4 Achievability

In this section, we will state the achievability theorems under the assumption that

the quantizer in our system is uniform. We seek the sufficient quantization step size

∆ as a function of the vector length m. Intuitively, ∆ should be small, and since we

do not want ∆ goes to infinity, we must have ∆ = O(1) for all circumstances. We

can write ∆ = C
2b

where b is the number of quantization bits and C is a constant.

Theorem 5.1 (Achievability under uniform quantization with no overflows). Suppose

that Alice sends a length-m discrete-time signal that never exceeds the range of the

quantizer, and the quantizer is uniform with b bits of quantization. If 2b = ω (
√
m)

(in particular, b ≥ log2
C
√
m

4
√

6σerf−1
(2ε)

, where C is a constant and σ is the standard

deviation of the noise on the channel), then the observer can only distinguish the

original signal and the quantized signal with error probability Pe ≥ 1
2
− ε for any

ε > 0.
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Proof. We will first take the expectation of Pe(X) in (5.1) over Ui ∈ [−∆
2
, ∆

2
] for

i = 1, 2, . . . ,m. Since −erf(·) is a convex function, then by Jensen’s inequality we

have:

Pe = EX [Pe(X)] ≥ 1

2
− 1

2
erf


√
E[

m∑
i=1

U2
i ]

2
√

2σ

 (5.2)

which is a tight lower bound since erf(x) is approximately linear at small x. Substi-

tuting E[
m∑
i=1

U2
i ] = m∆2

12
and ∆ = C

2b
in (5.2) yields:

Pe ≥
1

2
− 1

2
erf

(
C
2b

√
m
12

2
√

2σ

)
.

If b ≥ log2
C
√
m

4
√

6σerf−1
(2ε)

for any ε > 0, then 1
2
erf

(
C

2b

√
m
12

2
√

2σ

)
≤ ε. This implies that

Pe ≥ 1
2
− ε for any ε > 0. Thus, 2b = ω (

√
m) is sufficient to prevent detection by the

observer.

In many scenarios, the transmitted signals can have a wide range of values; for

example, a Gaussian signal would have values ranging from negative infinity to infin-

ity. In this case, the quantizer would have overflows that can assist the observer in

detecting the signal. So, we next assume that the original signal Xi ∼ N (0, σ2
0), i =

1, 2, . . . ,m. We consider that the system employs quantization with a span of [−l, l].

If its input has value within this span, it outputs the quantized value using the quan-

tization function Q. If the input value is outside of the span, it overflows and outputs

either −l or l. To keep the observer from detecting the overflows, l should be scaled

with the length m of the transmitted signal. Intuitively, l must go to infinity as

m → ∞ or the quantization is readily detected. Thus, we consider l = ω (1) for all

circumstances. We obtain the achievability result in this case as below.
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Theorem 5.2 (Achievability under uniform quantization with overflows). Suppose

that Alice sends a discrete-time signal with length m and the quantizer is uniform

with b bits of quantization and a span of [−l, l]. Then, if 2b = ω (
√
m) bits and

l = ω
(√

lnm
)

, the observer can only distinguish the original signal and the quantized

signal with error probability Pe ≥ 1
2
− ε for any ε > 0.

Proof. Since the quantizer has a span of [−l, l], then if hypothesis H1 is true, Yi can

be written as:

Yi =


Q(Xi), |Xi| < l

l, Xi > l

−l, Xi < −l

, i = 1, 2, . . . ,m

and the quantization error can be written as:

Ui =


Xi −Q(Xi), |Xi| < l

Xi − l, Xi > l

Xi + l, Xi < −l

, i = 1, 2, . . . ,m . (5.3)

Recall that Xi ∼ N (0, σ2
0) and E[U2

i ] = ∆2

12
when Ui = Xi − Q(Xi) for i =

1, 2, . . . ,m. Then, we derive the expectation of U2
i for the general case in (5.3) as:

E[U2
i ] = P (|Xi| < l) · ∆2

12
+ P (Xi > l) ·

∞∫
0

1√
2πσ2

0

e
− (x+l)2

2σ2
0 x2dx

+ P (Xi < −l) ·
0∫

−∞

1√
2πσ2

0

e
− (x−l)2

2σ2
0 x2dx

=
∆2

12
erf

(
l√
2σ0

)
+

σ2
0le
− l2

2σ2
0

√
2π

+
l2 + σ2

0

2

(
1− erf

(
l√
2σ0

))(1− erf

(
l√
2σ0

))
.

(5.4)
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Substituting (5.4) in (5.2) we have a lower bound for Pe in this case when the

quantizer has overflows:

Pe ≥
1

2
− 1

2
erf

(√
mE[U2

i ]

2
√

2σ

)
. (5.5)

Note that l goes to infinity as m→∞. If 2b = ω (
√
m), then:

m∆2

12
erf

(
l√
2σ0

)
≤ m∆2

12
→ 0 ,

i.e., the first term of mE[U2
i ] goes to zero as m→∞.

On the other hand, if l = ω
(√

lnm
)

, we have:

m

σ2
0le
− l2

2σ2
0

√
2π

+
l2 + σ2

0

2
· e

− l2

2σ2
0

√
π l√

2σ0

 e
− l2

2σ2
0

√
π l√

2σ0

→ 0 (5.6)

since keeping only the dominant terms in (5.6) yields
mσ0(σ2

0+1)e
− l2

σ2
0

π
→ 0 when l =

ω
(√

lnm
)

. If we take the Taylor series expansion of erf
(

l√
2σ0

)
at l√

2σ0
= ∞, then

the second term of mE[U2
i ] is upper bounded by (5.6), and hence goes to zero as

m→∞.

Therefore, letting 2b = ω (
√
m) and l = ω

(√
lnm

)
, we get mE[U2

i ] → 0 as

m → ∞, which implies that 1
2
erf

(√
mE[U2

i ]

2
√

2σ

)
≤ ε for any ε > 0. By (5.5), we have

Pe ≥ 1
2
− ε for any ε > 0.

5.5 Converse

In this section, we provide the converse results under the assumption that the

quantizer is uniform with step size ∆.
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Theorem 5.3 (Converse under uniform quantization with no overflows). Suppose

that Alice sends a length-m discrete-time signal that never exceeds the range of

the quantizer, and the quantizer is uniform with b bits of quantization levels. If

2b = O (
√
m) (in particular, b ≤ log2

C
√
m

8
√

2σ
√

ln 1
2ε

for any ε > 0, where C is a constant

and σ is the standard deviation of the noise on the channel), then the observer can

distinguish the original signal and the quantized signal with arbitrarily low probability

of error.

Proof. For the achievability result, we give a tight lower bound (5.2) to the error

probability Pe. Now, we need an analogous upper bound. Using the fact that erf(x) ≥

1− e−x2
[72], we upper bound Pe(X) in (5.1) as:

Pe(X) ≤ 1

2
e−

m∑
i=1

U2
i

8σ2 =
1

2

m∏
i=1

e−
U2
i

8σ2 , (5.7)

and taking the expectation yields:

Pe = EX [Pe(X)]

≤ 1

2

(∫ ∆
2

−∆
2

e−
x2

8σ2
1

∆
dx

)m

=
1

2

(
2
√

2πσ

∆
erf

(
∆

4
√

2σ

))m

. (5.8)

If 2b = O (
√
m), ∆ is small, and thus we take the Taylor series expansion of

erf
(

∆
4
√

2σ

)
at ∆

4
√

2σ
= 0:
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Pe ≤
1

2

(
4
√

2σ

∆

(
∆

4
√

2σ
− ∆3

3(4
√

2σ)2
+

∆5

10(4
√

2σ)5

))m

=
1

2

(
1− ∆2

3(4
√

2σ)2
+

∆4

10(4
√

2σ)4

)m
.

Note that at ∆
4
√

2σ
= 0:

e
− ∆2

4(4
√

2σ)2 = 1− ∆2

4(4
√

2σ)2
+

∆4

32(4
√

2σ)4
+O(∆5) .

When ∆ is small, the first and second terms are dominant. Thus, we have:

Pe ≤
1

2
e
− m∆2

4(4
√

2σ)2 +O
(
∆3
)
. (5.9)

For large m, we can ignore the error term O (∆3). Then, if b ≤ log2
C
√
m

8
√

2σ
√

ln 1
2ε

for

any ε > 0, Pe ≤ ε for any ε > 0. Thus, 2b = O (
√
m) is sufficient for the observer to

detect the signal.

Now we consider the case that the system employs a quantizer with overflows; in

particular, the quantizer has a span of [−l, l], and we assume that the original signal

Xi ∼ N (0, σ2
0), i = 1, 2, . . . ,m. We provide the converse result in this case.

Theorem 5.4 (Converse under uniform quantization with overflows). Suppose that

Alice sends a discrete-time signal with length m and the quantizer is uniform with b

bits of quantization levels. Then, if b = O (
√
m) or l = o

(√
lnm

)
, the observer can

distinguish the original signal and the quantized signal with arbitrarily low probability

of error.
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Proof. We derive the upper bound for the error probability Pe in the case that the

quantizer has overflows. In this case, the quantization error Ui for i = 1, 2, . . . ,m is

given by (5.3). Following (5.7), we write:

Pe = EX [Pe(X)]

≤ 1

2

[
P (|Xi| < l) ·

∫ ∆
2

−∆
2

e−
x2

8σ2
1

∆
dx+ P (Xi > l) ·

∫ ∞
0

1√
2πσ2

0

e
− (x+l)2

2σ2
0 e−

x2

8σ2 dx

+ P (Xi < −l) ·
∫ 0

−∞

1√
2πσ2

0

e
− (x−l)2

2σ2
0 e−

x2

8σ2 dx

]m

=
1

2

[
erf

(
l√
2σ0

)
2
√

2πσ

∆
erf

(
∆

4
√

2σ

)
︸ ︷︷ ︸

A

+

(
1− erf

(
l√
2σ0

))
e
− l2

8σ2+2σ2
0

1− erf

 √
2l√

σ4
0
σ2 +4σ2

0


√

σ2
0

σ2 + 4︸ ︷︷ ︸
B

]m
.

If 2b = O (
√
m) and l is arbitrary, then by the discussion from (5.8) to (5.9), we

have:

Am ≤

(
2
√

2πσ

∆
erf

(
∆

4
√

2σ

))m

≤ e
− m∆2

4(4
√

2σ)2 +O
(
∆3
)

(5.10)

which goes to zero as m→∞. On the other hand, recall that l = ω (1), then for any

a ≥ 1, Ba → 0 as l becomes large. This can be seen by noting that if we ignore all of

the constants in B and use the fact that 1 − erf(x) < e−x
2

[72], we have B < e−3l2 .

Thus, if 2b = O (
√
m), Pe ≤ ε for any ε > 0.

If l = o
(√

lnm
)

and b is arbitrary, then:
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Am ≤
(

erf

(
l√
2σ0

))m
→ 0

as m → ∞. Again, for any a ≥ 1, we have Ba → 0 as l becomes large. Thus, when

l = o
(√

lnm
)

, Pe ≤ ε for any ε > 0.

Therefore, if 2b = O (
√
m) or l = o

(√
lnm

)
, the error probability Pe at the

observer is arbitrarily small, which establishes the converse result.

5.6 Conclusion

In many applications such as the detection of a replay attack in network secu-

rity or the detection of deception jamming in radar systems, it is important to know

whether a received signal was sent directly, or was recorded and then replayed. Many

approaches to this problem have been proposed in prior work; however, the funda-

mental limits of such detection with hardware imperfections have not been explored.

Thus, we have studied this limit and analyzed the characteristics of the hardware,

in particular the quantizer, that affect the detection. Specifically, if a signal with

length m is sent and a uniform b-bit quantizer is employed, then 2b = ω (
√
m) and a

quantizer span of ω
(√

lnm
)

are sufficient to avoid detection; that is, the error prob-

ability at the observer is bounded as Pe ≥ 1
2
− ε for any ε > 0. Conversely, having

2b = O (
√
m) or a quantizer span of o

(√
lnm

)
results in detection by the observer

with high probability as m→∞.
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CHAPTER 6

CONCLUSION

This dissertation explored covert communications, where a transmitter Alice in-

tends to communicate with a legitimate receiver Bob without being detected by a

warden Willie. We focused on addressing critical aspects of moving towards imple-

mentation of covert communications.

Chapter 2 considered a power allocation problem for covert communications using

a standard discrete-time model as a cornerstone to understand the underlying mech-

anisms of covert communications. In particular, with the information about the gain

on the channel between Alice and Bob, Alice can adapt her transmit power to this

gain to achieve a certain rate and meet the requirement on covertness such that Willie

detects the presence of the transmission with low probability. We provided exact op-

timal power adaptation schemes in different scenarios that significantly outperform

standard power adaptation schemes.

In Chapter 3, we studied covert communications in a true continuous-time model.

To demonstrate that the power detector for Willie which is optimal in a discrete-time

model may not be optimal in the continuous-time case, we provided and analysed an

interference cancellation detector that outperforms the power detector. This shows

that Willie can benefit from the continuous-time setting, which has a significant

impact on the true covert throughput of the system. We then established novel

constructions that allow Alice to achieve covert communications on the continuous-

time model in two different cases: when there is perfect frame synchronization between

Alice and the jammer, and when there is no such frame synchronization. We proved
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that O(WT ) covert information bits can be reliably transmitted from Alice to Bob

in T seconds on a channel with asymptotic bandwidth W for both cases.

Since it is useful to exploit an interference source that already exists in the envi-

ronment rather than a friendly jammer, Chapter 4 considers the case where Alice and

Bob operating in an environment with an illuminating radar. We designed a commu-

nication waveform that embeds covert symbols in the radar signals and established a

construction such that the messages are sent under the cover of the radar scattering.

We showed that O(n) bits in n samples of the radar signal can be transmitted covertly

and reliably from Alice to Bob.

Finally, in Chapter 5, we researched fundamental limits of the number of quan-

tization bits and quantizer span of a quantizer that prevent or allow an observer

to determine whether a signal has been recorded and then replayed. In particular,

if a signal with length m is sent and a uniform b-bit quantizer is employed, then

2b = ω (
√
m) and a quantizer span of ω

(√
lnm

)
are sufficient to avoid detection.

Conversely, having 2b = O (
√
m) or a quantizer span of o

(√
lnm

)
results in detec-

tion by the observer with high probability as m→∞.
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