63 research outputs found

    A Multiple Component Matching Framework for Person Re-Identification

    Full text link
    Person re-identification consists in recognizing an individual that has already been observed over a network of cameras. It is a novel and challenging research topic in computer vision, for which no reference framework exists yet. Despite this, previous works share similar representations of human body based on part decomposition and the implicit concept of multiple instances. Building on these similarities, we propose a Multiple Component Matching (MCM) framework for the person re-identification problem, which is inspired by Multiple Component Learning, a framework recently proposed for object detection. We show that previous techniques for person re-identification can be considered particular implementations of our MCM framework. We then present a novel person re-identification technique as a direct, simple implementation of our framework, focused in particular on robustness to varying lighting conditions, and show that it can attain state of the art performances.Comment: Accepted paper, 16th Int. Conf. on Image Analysis and Processing (ICIAP 2011), Ravenna, Italy, 14/09/201

    Multi-Level Visual Alphabets

    Get PDF
    A central debate in visual perception theory is the argument for indirect versus direct perception; i.e., the use of intermediate, abstract, and hierarchical representations versus direct semantic interpretation of images through interaction with the outside world. We present a content-based representation that combines both approaches. The previously developed Visual Alphabet method is extended with a hierarchy of representations, each level feeding into the next one, but based on features that are not abstract but directly relevant to the task at hand. Explorative benchmark experiments are carried out on face images to investigate and explain the impact of the key parameters such as pattern size, number of prototypes, and distance measures used. Results show that adding an additional middle layer improves results, by encoding the spatial co-occurrence of lower-level pattern prototypes

    Object Tracking with Multiple Instance Learning and Gaussian Mixture Model

    Get PDF
    Recently, Multiple Instance Learning (MIL) technique has been introduced for object tracking\linebreak applications, which has shown its good performance to handle drifting problem. While some instances in positive bags not only contain objects, but also contain the background, it is not reliable to simply assume that each feature of instances in positive bags obeys a single Gaussian distribution. In this paper, a tracker based on online multiple instance boosting has been developed, which employs Gaussian Mixture Model (GMM) and single Gaussian distribution respectively to model features of instances in positive and negative bags. The differences between samples and the model are integrated into the process of updating the parameters for GMM. With the Haar-like features extracted from the bags, a set of weak classifiers are trained to construct a strong classifier, which is used to track the object location at a new frame. And the classifier can be updated online frame by frame. Experimental results have shown that our tracker is more stable and efficient when dealing with the illumination, rotation, pose and appearance changes

    A Convex Relaxation for Weakly Supervised Classifiers

    Full text link
    This paper introduces a general multi-class approach to weakly supervised classification. Inferring the labels and learning the parameters of the model is usually done jointly through a block-coordinate descent algorithm such as expectation-maximization (EM), which may lead to local minima. To avoid this problem, we propose a cost function based on a convex relaxation of the soft-max loss. We then propose an algorithm specifically designed to efficiently solve the corresponding semidefinite program (SDP). Empirically, our method compares favorably to standard ones on different datasets for multiple instance learning and semi-supervised learning as well as on clustering tasks.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Multimodal Visual Concept Learning with Weakly Supervised Techniques

    Full text link
    Despite the availability of a huge amount of video data accompanied by descriptive texts, it is not always easy to exploit the information contained in natural language in order to automatically recognize video concepts. Towards this goal, in this paper we use textual cues as means of supervision, introducing two weakly supervised techniques that extend the Multiple Instance Learning (MIL) framework: the Fuzzy Sets Multiple Instance Learning (FSMIL) and the Probabilistic Labels Multiple Instance Learning (PLMIL). The former encodes the spatio-temporal imprecision of the linguistic descriptions with Fuzzy Sets, while the latter models different interpretations of each description's semantics with Probabilistic Labels, both formulated through a convex optimization algorithm. In addition, we provide a novel technique to extract weak labels in the presence of complex semantics, that consists of semantic similarity computations. We evaluate our methods on two distinct problems, namely face and action recognition, in the challenging and realistic setting of movies accompanied by their screenplays, contained in the COGNIMUSE database. We show that, on both tasks, our method considerably outperforms a state-of-the-art weakly supervised approach, as well as other baselines.Comment: CVPR 201

    On Classification with Bags, Groups and Sets

    Full text link
    Many classification problems can be difficult to formulate directly in terms of the traditional supervised setting, where both training and test samples are individual feature vectors. There are cases in which samples are better described by sets of feature vectors, that labels are only available for sets rather than individual samples, or, if individual labels are available, that these are not independent. To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors. However, having been proposed rather independently of each other, their mutual similarities and differences have hitherto not been mapped out. In this work, we provide an overview of such learning scenarios, propose a taxonomy to illustrate the relationships between them, and discuss directions for further research in these areas
    corecore