409 research outputs found

    Studies on deep learning approach in breast lesions detection and cancer diagnosis in mammograms

    Get PDF
    Breast cancer accounts for the largest proportion of newly diagnosed cancers in women recently. Early diagnosis of breast cancer can improve treatment outcomes and reduce mortality. Mammography is convenient and reliable, which is the most commonly used method for breast cancer screening. However, manual examinations are limited by the cost and experience of radiologists, which introduce a high false positive rate and false examination. Therefore, a high-performance computer-aided diagnosis (CAD) system is significant for lesions detection and cancer diagnosis. Traditional CADs for cancer diagnosis require a large number of features selected manually and remain a high false positive rate. The methods based on deep learning can automatically extract image features through the network, but their performance is limited by the problems of multicenter data biases, the complexity of lesion features, and the high cost of annotations. Therefore, it is necessary to propose a CAD system to improve the ability of lesion detection and cancer diagnosis, which is optimized for the above problems. This thesis aims to utilize deep learning methods to improve the CADs' performance and effectiveness of lesion detection and cancer diagnosis. Starting from the detection of multi-type lesions using deep learning methods based on full consideration of characteristics of mammography, this thesis explores the detection method of microcalcification based on multiscale feature fusion and the detection method of mass based on multi-view enhancing. Then, a classification method based on multi-instance learning is developed, which integrates the detection results from the above methods, to realize the precise lesions detection and cancer diagnosis in mammography. For the detection of microcalcification, a microcalcification detection network named MCDNet is proposed to overcome the problems of multicenter data biases, the low resolution of network inputs, and scale differences between microcalcifications. In MCDNet, Adaptive Image Adjustment mitigates the impact of multicenter biases and maximizes the input effective pixels. Then, the proposed pyramid network with shortcut connections ensures that the feature maps for detection contain more precise localization and classification information about multiscale objects. In the structure, trainable Weighted Feature Fusion is proposed to improve the detection performance of both scale objects by learning the contribution of feature maps in different stages. The experiments show that MCDNet outperforms other methods on robustness and precision. In case the average number of false positives per image is 1, the recall rates of benign and malignant microcalcification are 96.8% and 98.9%, respectively. MCDNet can effectively help radiologists detect microcalcifications in clinical applications. For the detection of breast masses, a weakly supervised multi-view enhancing mass detection network named MVMDNet is proposed to solve the lack of lesion-level labels. MVMDNet can be trained on the image-level labeled dataset and extract the extra localization information by exploring the geometric relation between multi-view mammograms. In Multi-view Enhancing, Spatial Correlation Attention is proposed to extract correspondent location information between different views while Sigmoid Weighted Fusion module fuse diagnostic and auxiliary features to improve the precision of localization. CAM-based Detection module is proposed to provide detections for mass through the classification labels. The results of experiments on both in-house dataset and public dataset, [email protected] and [email protected] (recall rate@average number of false positive per image), demonstrate MVMDNet achieves state-of-art performances among weakly supervised methods and has robust generalization ability to alleviate the multicenter biases. In the study of cancer diagnosis, a breast cancer classification network named CancerDNet based on Multi-instance Learning is proposed. CancerDNet successfully solves the problem that the features of lesions are complex in whole image classification utilizing the lesion detection results from the previous chapters. Whole Case Bag Learning is proposed to combined the features extracted from four-view, which works like a radiologist to realize the classification of each case. Low-capacity Instance Learning and High-capacity Instance Learning successfully integrate the detections of multi-type lesions into the CancerDNet, so that the model can fully consider lesions with complex features in the classification task. CancerDNet achieves the AUC of 0.907 and AUC of 0.925 on the in-house and the public datasets, respectively, which is better than current methods. The results show that CancerDNet achieves a high-performance cancer diagnosis. In the works of the above three parts, this thesis fully considers the characteristics of mammograms and proposes methods based on deep learning for lesions detection and cancer diagnosis. The results of experiments on in-house and public datasets show that the methods proposed in this thesis achieve the state-of-the-art in the microcalcifications detection, masses detection, and the case-level classification of cancer and have a strong ability of multicenter generalization. The results also prove that the methods proposed in this thesis can effectively assist radiologists in making the diagnosis while saving labor costs

    Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review

    Get PDF
    Background: Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and radiogenomics, have been adding more to personalize healthcare to stratify patients better. These techniques associate imaging phenotypes with the related disease genes. Various imaging modalities have been used for years to diagnose breast cancer. Nonetheless, digital breast tomosynthesis (DBT), a state-of-the-art technique, has produced promising results comparatively. DBT, a 3D mammography, is replacing conventional 2D mammography rapidly. This technological advancement is key to AI algorithms for accurately interpreting medical images. Objective and methods: This paper presents a comprehensive review of deep learning (DL), radiomics and radiogenomics in breast image analysis. This review focuses on DBT, its extracted synthetic mammography (SM), and full-field digital mammography (FFDM). Furthermore, this survey provides systematic knowledge about DL, radiomics, and radiogenomics for beginners and advanced-level researchers. Results: A total of 500 articles were identified, with 30 studies included as the set criteria. Parallel benchmarking of radiomics, radiogenomics, and DL models applied to the DBT images could allow clinicians and researchers alike to have greater awareness as they consider clinical deployment or development of new models. This review provides a comprehensive guide to understanding the current state of early breast cancer detection using DBT images. Conclusion: Using this survey, investigators with various backgrounds can easily seek interdisciplinary science and new DL, radiomics, and radiogenomics directions towards DBT

    Breast Cancer Classification using Deep Learned Features Boosted with Handcrafted Features

    Full text link
    Breast cancer is one of the leading causes of death among women across the globe. It is difficult to treat if detected at advanced stages, however, early detection can significantly increase chances of survival and improves lives of millions of women. Given the widespread prevalence of breast cancer, it is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis. Artificial intelligence research community in coordination with medical practitioners are developing such frameworks to automate the task of detection. With the surge in research activities coupled with availability of large datasets and enhanced computational powers, it expected that AI framework results will help even more clinicians in making correct predictions. In this article, a novel framework for classification of breast cancer using mammograms is proposed. The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features including HOG (Histogram of Oriented Gradients) and LBP (Local Binary Pattern). The obtained results on CBIS-DDSM dataset exceed state of the art
    corecore