2,690 research outputs found

    Managing uncertainty in sound based control for an autonomous helicopter

    Get PDF
    In this paper we present our ongoing research using a multi-purpose, small and low cost autonomous helicopter platform (Flyper ). We are building on previously achieved stable control using evolutionary tuning. We propose a sound based supervised method to localise the indoor helicopter and extract meaningful information to enable the helicopter to further stabilise its flight and correct its flightpath. Due to the high amount of uncertainty in the data, we propose the use of fuzzy logic in the signal processing of the sound signature. We discuss the benefits and difficulties using type-1 and type-2 fuzzy logic in this real-time systems and give an overview of our proposed system

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort

    Supervised Control of a Flying Performing Robot using its Intrinsic Sound

    Get PDF
    We present the current results of our ongoing research in achieving efficient control of a flying robot for a wide variety of possible applications. A lightweight small indoor helicopter has been equipped with an embedded system and relatively simple sensors to achieve autonomous stable flight. The controllers have been tuned using genetic algorithms to further enhance flight stability. A number of additional sensors would need to be attached to the helicopter to enable it to sense more of its environment such as its current location or the location of obstacles like the walls of the room it is flying in. The lightweight nature of the helicopter very much restricts the amount of sensors that can be attached to it. We propose utilising the intrinsic sound signatures of the helicopter to locate it and to extract features about its current state, using another supervising robot. The analysis of this information is then sent back to the helicopter using an uplink to enable the helicopter to further stabilise its flight and correct its position and flight path without the need for additional sensors

    Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper

    Get PDF
    Magnetorheological (MR) dampers are considered as excellent prospect to the vibration control in automotive engineering. To overcome the effect from road disturbances many control algorithms have been developed and opted to control the vibration of the car. In this study, the methodology adopted to get a control structure is based on the experimental results. Experiments have been conducted to establish the behaviour of the MR damper. In this paper, the behavior of MR damper is studied and used in implementing vibration control. The force-displacement and force-velocity response with varying current has been established for the MR damper. The force for the upward motion and downward motion of damper piston is found increasing with current and velocity. In the cycle mode which is the combination of upward and downward motion of the piston, the force having hysteresis behaviour is found increasing with current. Results of this study may serve to aid in the modelling of MR damper for control applications

    Internet based data logging and supervisory control of boiler drum level using LabVIEW

    Get PDF
    This work describes a framework of a Internet based data logging and supervisory control of boiler drum level system. The design and implementation of this process is done by the LabVIEW software. The data of the process variables (Temperature and Level) from the boiler system need to be logged in a database for further analysis and supervisory control. A LabVIEW based data logging and supervisory control program simulates the process and the generated data are logged in to the database as text file with proper indication about the status of the process variable (normal or not normal. Three different types of boiler drum level control system are designed in the Circuit Design and Simulation toolkit of LabVIEW. This work provides the knowledge about the Fuzzy Adaptive PID Controller and the various PID controller design methods such as Zeigler-Nichol method, Tyreus-Luyben method, Internal Model Control (IMC). Comparative study is made on the performance of the PID and Fuzzy Adaptive PID controller for better control system design. The internet plays a significant and vital role in the real time control and monitoring of the industrial process. Internet based system control and monitor the plant system remotely from anywhere without any limitation to any geographical region. Internet based boiler control system is developed by a Web Publishing tool in LabVIEW. The use of internet as a communication medium provides the flexible and cost- effective solution. Now, to analyse the performance of boiler drum level control system, Internet based data logging and supervisory control system is designed. Hence, anyone can control and monitor the boiler plant globally
    corecore