246,064 research outputs found

    Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions

    Get PDF
    We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space C[0,1]C[0,1], involving a linear functional α[u]\alpha[u] but, although we seek positive solutions, the functional is not assumed to be positive for all positive uu. The results are new even for the classic boundary conditions of clamped or hinged ends when α[u]=0\alpha[u]=0, because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs

    Nontrivial solutions for nonlinear discrete boundary value problems of the fourth order

    Get PDF
    We study the existence of multiple nontrivial solutions for two nonlinear fourth order discrete boundary value problems. We first establish criteria for the existence of at least two nontrivial solutions of the problems and obtain conditions to guarantee that the two solutions are sign-changing. Under some appropriate assumptions, we further prove that the problems have at least three nontrivial solutions, which are respectively positive, negative, and sign-changing. We include two examples to illustrate the applicability of our results. Our theorems are proved by employing variational approaches, combined with the classic mountain pass lemma and a result from the theory of invariant sets of descending flow

    Adjoint recovery of superconvergent functionals from PDE approximations

    Get PDF
    Motivated by applications in computational fluid dynamics, a method is presented for obtaining estimates of integral functionals, such as lift or drag, that have twice the order of accuracy of the computed flow solution on which they are based. This is achieved through error analysis that uses an adjoint PDE to relate the local errors in approximating the flow solution to the corresponding global errors in the functional of interest. Numerical evaluation of the local residual error together with an approximate solution to the adjoint equations may thus be combined to produce a correction for the computed functional value that yields the desired improvement in accuracy. Numerical results are presented for the Poisson equation in one and two dimensions and for the nonlinear quasi-one-dimensional Euler equations. The theory is equally applicable to nonlinear equations in complex multi-dimensional domains and holds great promise for use in a range of engineering disciplines in which a few integral quantities are a key output of numerical approximations
    corecore